[go: up one dir, main page]

Follow
Taiji Suzuki
Taiji Suzuki
Verified email at mist.i.u-tokyo.ac.jp - Homepage
Title
Cited by
Cited by
Year
Graph neural networks exponentially lose expressive power for node classification
K Oono, T Suzuki
arXiv preprint arXiv:1905.10947, 2019
11082019
Density ratio estimation in machine learning
M Sugiyama, T Suzuki, T Kanamori
Cambridge University Press, 2012
8602012
Direct importance estimation for covariate shift adaptation
M Sugiyama, T Suzuki, S Nakajima, H Kashima, P Von Bünau, ...
Annals of the Institute of Statistical Mathematics 60 (4), 699-746, 2008
5852008
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
T Suzuki
International Conference on Learning Representations, 2019
3612019
Density-ratio matching under the bregman divergence: a unified framework of density-ratio estimation
M Sugiyama, T Suzuki, T Kanamori
Annals of the Institute of Statistical Mathematics 64 (5), 1009-1044, 2012
2742012
High-dimensional asymptotics of feature learning: How one gradient step improves the representation
J Ba, MA Erdogdu, T Suzuki, Z Wang, D Wu, G Yang
Advances in Neural Information Processing Systems 35, 37932-37946, 2022
2242022
Relative density-ratio estimation for robust distribution comparison
M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama
Neural computation 25 (5), 1324-1370, 2013
1982013
Statistical performance of convex tensor decomposition
R Tomioka, T Suzuki, K Hayashi, H Kashima
Advances in neural information processing systems 24, 2011
1972011
Dual averaging and proximal gradient descent for online alternating direction multiplier method
T Suzuki
International Conference on Machine Learning, 392-400, 2013
1902013
Diffusion models are minimax optimal distribution estimators
K Oko, S Akiyama, T Suzuki
International Conference on Machine Learning, 26517-26582, 2023
1882023
Convex tensor decomposition via structured schatten norm regularization
R Tomioka, T Suzuki
Advances in neural information processing systems 26, 2013
1762013
Approximating mutual information by maximum likelihood density ratio estimation
T Suzuki, M Sugiyama, J Sese, T Kanamori
New challenges for feature selection in data mining and knowledge discovery …, 2008
1732008
Mutual information estimation reveals global associations between stimuli and biological processes
T Suzuki, M Sugiyama, T Kanamori, J Sese
BMC bioinformatics 10 (Suppl 1), S52, 2009
1602009
Statistical analysis of kernel-based least-squares density-ratio estimation
T Kanamori, T Suzuki, M Sugiyama
Machine Learning 86 (3), 335-367, 2012
1542012
Relative density-ratio estimation for robust distribution comparison
M Yamada, T Suzuki, T Kanamori, H Hachiya, M Sugiyama
Advances in neural information processing systems 24, 2011
1332011
Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparsity Regularized Estimation.
R Tomioka, T Suzuki, M Sugiyama
Journal of Machine Learning Research 12 (5), 2011
1142011
Stochastic particle gradient descent for infinite ensembles
A Nitanda, T Suzuki
arXiv preprint arXiv:1712.05438, 2017
1132017
Convex analysis of the mean field langevin dynamics
A Nitanda, D Wu, T Suzuki
International Conference on Artificial Intelligence and Statistics, 9741-9757, 2022
1102022
Generalization of two-layer neural networks: An asymptotic viewpoint
J Ba, M Erdogdu, T Suzuki, D Wu, T Zhang
International conference on learning representations, 2020
1052020
Least-squares conditional density estimation
M Sugiyama, I Takeuchi, T Suzuki, T Kanamori, H Hachiya, D Okanohara
IEICE Transactions on Information and Systems 93 (3), 583-594, 2010
1042010
The system can't perform the operation now. Try again later.
Articles 1–20