[go: up one dir, main page]

Follow
Alexander Immer
Alexander Immer
PhD student, ETH Zürich, Max Planck Institute for Intelligent Systems
Verified email at inf.ethz.ch - Homepage
Title
Cited by
Cited by
Year
Laplace Redux--Effortless Bayesian Deep Learning
E Daxberger*, A Kristiadi*, A Immer*, R Eschenhagen*, M Bauer, ...
NeurIPS, 2021
5172021
Continual deep learning by functional regularisation of memorable past
P Pan, S Swaroop, A Immer, R Eschenhagen, RE Turner, ME Khan
NeurIPS, 2020
1982020
Improving predictions of Bayesian neural nets via local linearization
A Immer, M Korzepa, M Bauer
AISTATS, 2021
1872021
Scalable marginal likelihood estimation for model selection in deep learning
A Immer, M Bauer, V Fortuin, G Rätsch, ME Khan
ICML, 2021
1552021
Approximate inference turns deep networks into gaussian processes
ME Khan, A Immer, E Abedi, M Korzepa
NeurIPS, 2019
1532019
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
T Papamarkou, M Skoularidou, K Palla, L Aitchison, J Arbel, D Dunson, ...
ICML, 2024
101*2024
On the Identifiability and Estimation of Causal Location-Scale Noise Models
A Immer, C Schultheiss, JE Vogt, B Schölkopf, P Bühlmann, A Marx
ICML, 2023
652023
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
A Immer*, TFA van der Ouderaa*, V Fortuin, G Rätsch, M van der Wilk
NeurIPS, 2022
632022
Kronecker-Factored Approximate Curvature for Modern Neural Network Architectures
R Eschenhagen, A Immer, RE Turner, F Schneider, P Hennig
NeurIPS, 2023
482023
Probing as Quantifying the Inductive Bias of Pre-trained Representations
A Immer*, LT Hennigen*, V Fortuin, R Cotterell
ACL, 2022
36*2022
Effective Bayesian Heteroscedastic Regression with Deep Neural Networks
A Immer, E Palumbo, A Marx, JE Vogt
NeurIPS, 2023
292023
Learning Layer-wise Equivariances Automatically using Gradients
TFA van der Ouderaa, A Immer, M van der Wilk
NeurIPS, 2023
232023
Influence functions for scalable data attribution in diffusion models
B Mlodozeniec, R Eschenhagen, J Bae, A Immer, D Krueger, R Turner
arXiv preprint arXiv:2410.13850, 2024
222024
Improving Neural Additive Models with Bayesian Principles
K Bouchiat, A Immer, H Yèche, G Rätsch, V Fortuin
ICML, 2024
19*2024
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
A Immer, TFA van der Ouderaa, M van der Wilk, G Rätsch, B Schölkopf
ICML, 2023
192023
Promises and pitfalls of the linearized Laplace in Bayesian optimization
A Kristiadi, A Immer, R Eschenhagen, V Fortuin
arXiv preprint arXiv:2304.08309, 2023
162023
Pathologies in priors and inference for Bayesian transformers
T Cinquin, A Immer, M Horn, V Fortuin
AABI 2022, 2021
152021
Towards Training Without Depth Limits: Batch Normalization Without Gradient Explosion
A Meterez, A Joudaki, F Orabona, A Immer, G Rätsch, H Daneshmand
ICLR, 2024
112024
Optimizing routes of public transportation systems by analyzing the data of taxi rides
K Richly, R Teusner, A Immer, F Windheuser, L Wolf
Proceedings of the 1st international ACM SIGSPATIAL workshop on smart cities …, 2015
112015
Shaving weights with Occam's razor: Bayesian sparsification for neural networks using the marginal likelihood
R Dhahri, A Immer, B Charpentier, S Günnemann, V Fortuin
Advances in Neural Information Processing Systems 37, 24959-24989, 2024
92024
The system can't perform the operation now. Try again later.
Articles 1–20