[go: up one dir, main page]

Follow
Tobias Friedrich
Tobias Friedrich
Chair for Algorithm Engineering, Hasso Plattner Institute, Potsdam, Germany
Verified email at hpi.de
Title
Cited by
Cited by
Year
Why rumors spread so quickly in social networks
B Doer, M Fouz, T Friedrich
Communications of the ACM 55 (6), 70-75, 2012
5182012
Approximating the volume of unions and intersections of high-dimensional geometric objects
K Bringmann, T Friedrich
Computational Geometry 43 (6-7), 601-610, 2010
2112010
Approximating the least hypervolume contributor: NP-hard in general, but fast in practice
K Bringmann, T Friedrich
Theoretical Computer Science 425, 104-116, 2012
1842012
Approximating covering problems by randomized search heuristics using multi-objective models
T Friedrich, N Hebbinghaus, F Neumann, J He, C Witt
Proceedings of the 9th annual conference on Genetic and evolutionary …, 2007
1842007
Social networks spread rumors in sublogarithmic time
B Doerr, M Fouz, T Friedrich
Proceedings of the forty-third annual ACM symposium on Theory of computing …, 2011
1832011
Approximation quality of the hypervolume indicator
K Bringmann, T Friedrich
Artificial Intelligence 195, 265-290, 2013
173*2013
Escaping local optima using crossover with emergent diversity
DC Dang, T Friedrich, T Kötzing, MS Krejca, PK Lehre, PS Oliveto, ...
IEEE Transactions on Evolutionary Computation 22 (3), 484-497, 2017
1622017
Analyzing hypervolume indicator based algorithms
D Brockhoff, T Friedrich, F Neumann
International conference on parallel problem solving from nature, 651-660, 2008
1572008
Do additional objectives make a problem harder?
D Brockhoff, T Friedrich, N Hebbinghaus, C Klein, F Neumann, E Zitzler
Proceedings of the 9th annual conference on Genetic and evolutionary …, 2007
1372007
Analysis of diversity-preserving mechanisms for global exploration
T Friedrich, PS Oliveto, D Sudholt, C Witt
Evolutionary Computation 17 (4), 455-476, 2009
1322009
Quasirandom rumor spreading
B Doerr, T Friedrich, T Sauerwald
ACM Transactions on Algorithms (TALG) 11 (2), 1-35, 2014
126*2014
Predicting the energy output of wind farms based on weather data: Important variables and their correlation
E Vladislavleva, T Friedrich, F Neumann, M Wagner
Renewable Energy 50, 236-243, 2013
1242013
The compact genetic algorithm is efficient under extreme gaussian noise
T Friedrich, T Kötzing, MS Krejca, AM Sutton
IEEE Transactions on Evolutionary Computation 21 (3), 477-490, 2016
1142016
An efficient algorithm for computing hypervolume contributions
K Bringmann, T Friedrich
Evolutionary Computation 18 (3), 383-402, 2010
1142010
Approximation-guided evolutionary multi-objective optimization
K Bringmann, T Friedrich, F Neumann, M Wagner
IJCAI Proceedings-International Joint Conference on Artificial Intelligence …, 2011
1122011
On the effects of adding objectives to plateau functions
D Brockhoff, T Friedrich, N Hebbinghaus, C Klein, F Neumann, E Zitzler
IEEE Transactions on Evolutionary Computation 13 (3), 591-603, 2009
1092009
Efficient embedding of scale-free graphs in the hyperbolic plane
T Bläsius, T Friedrich, A Krohmer, S Laue
IEEE/ACM transactions on Networking 26 (2), 920-933, 2018
1022018
On the diameter of hyperbolic random graphs
T Friedrich, A Krohmer
SIAM Journal on Discrete Mathematics 32 (2), 1314-1334, 2018
1022018
Two-dimensional subset selection for hypervolume and epsilon-indicator
K Bringmann, T Friedrich, P Klitzke
Proceedings of the 2014 Annual Conference on Genetic and Evolutionary …, 2014
932014
Pareto optimization for subset selection with dynamic cost constraints
V Roostapour, A Neumann, F Neumann, T Friedrich
Artificial Intelligence 302, 103597, 2022
922022
The system can't perform the operation now. Try again later.
Articles 1–20