[go: up one dir, main page]

Follow
Aldo Glielmo
Aldo Glielmo
Verified email at bancaditalia.it - Homepage
Title
Cited by
Cited by
Year
Unsupervised learning methods for molecular simulation data
A Glielmo, BE Husic, A Rodriguez, C Clementi, F Noé, A Laio
Chemical Reviews 121 (16), 9722-9758, 2021
4352021
Accurate interatomic force fields via machine learning with covariant kernels
A Glielmo, P Sollich, A De Vita
Physical Review B 95 (21), 214302, 2017
2712017
Efficient nonparametric n-body force fields from machine learning
A Glielmo, C Zeni, A De Vita
Physical Review B 97 (18), 184307, 2018
1772018
SPONGE: A generalized eigenproblem for clustering signed networks
M Cucuringu, P Davies, A Glielmo, H Tyagi
Proceedings of Machine Learning Research 89, 1088-1098, 2019
1042019
Building machine learning force fields for nanoclusters
C Zeni, K Rossi, A Glielmo, Á Fekete, N Gaston, F Baletto, A De Vita
The Journal of chemical physics 148 (24), 2018
642018
Ranking the information content of distance measures
A Glielmo, C Zeni, B Cheng, G Csányi, A Laio
PNAS Nexus 1 (2), pgac039, 2022
602022
DADApy: Distance-based analysis of data-manifolds in Python
A Glielmo, I Macocco, D Doimo, M Carli, C Zeni, R Wild, M d’Errico, ...
Patterns 3 (10), 2022
56*2022
On machine learning force fields for metallic nanoparticles
C Zeni, K Rossi, A Glielmo, F Baletto
Advances in Physics: X 4 (1), 1654919, 2019
502019
Hierarchical nucleation in deep neural networks
D Doimo, A Glielmo, A Laio, A Ansuini
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020
492020
Exploring the robust extrapolation of high-dimensional machine learning potentials
C Zeni, A Anelli, A Glielmo, K Rossi
Physical Review B 105 (16), 165141, 2022
352022
Gaussian Process States: A data-driven representation of quantum many-body physics
A Glielmo, Y Rath, G Csanyi, A De Vita, GH Booth
Physical Review X 10 (4), 041026, 2020
342020
Can we obtain the coefficient of restitution from the sound of a bouncing ball?
M Heckel, A Glielmo, N Gunkelmann, T Pöschel
Physical Review E 93 (3), 032901, 2016
312016
Compact atomic descriptors enable accurate predictions via linear models
C Zeni, K Rossi, A Glielmo, S De Gironcoli
The Journal of Chemical Physics 154 (22), 2021
272021
Reinforcement Learning for Combining Search Methods in the Calibration of Economic ABMs
A Glielmo, M Favorito, D Chanda, DD Gatti
Proceedings of the Fourth ACM International Conference on AI in Finance, 305–313, 2023
222023
Coefficient of restitution of aspherical particles
A Glielmo, N Gunkelmann, T Pöschel
Physical Review E 90 (5), 052204, 2014
212014
A Bayesian inference framework for compression and prediction of quantum states
Y Rath, A Glielmo, GH Booth
The Journal of chemical physics 153 (12), 2020
202020
Black-it: A ready-to-use and easy-to-extend calibration kit for agent-based models
M Benedetti, G Catapano, F De Sclavis, M Favorito, A Glielmo, ...
Journal of Open Source Software 7 (79), 4622, 2022
192022
Building Nonparametric n-Body Force Fields Using Gaussian Process Regression
A Glielmo, C Zeni, A Fekete, A De Vita
Machine Learning Meets Quantum Physics, 67-98, 2020
192020
Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling
S Brusatin, T Padoan, A Coletta, D Delli Gatti, A Glielmo
Proceedings of the 5th ACM International Conference on AI in Finance, 159-167, 2024
182024
Intrinsic dimension estimation for discrete metrics
I Macocco, A Glielmo, J Grilli, A Laio
Physical Review Letters 130 (6), 067401, 2023
172023
The system can't perform the operation now. Try again later.
Articles 1–20