[go: up one dir, main page]

Follow
Narad Rampersad
Narad Rampersad
Verified email at uwinnipeg.ca - Homepage
Title
Cited by
Cited by
Year
A proof of Dejean’s conjecture
J Currie, N Rampersad
Mathematics of computation 80 (274), 1063-1070, 2011
1162011
Periodicity, repetitions, and orbits of an automatic sequence
JP Allouche, N Rampersad, J Shallit
Theoretical Computer Science 410 (30-32), 2795-2803, 2009
762009
Enumeration and decidable properties of automatic sequences
É Charlier, N Rampersad, J Shallit
International Journal of Foundations of Computer Science 23 (05), 1035-1066, 2012
742012
On NFAs where all states are final, initial, or both
JY Kao, N Rampersad, J Shallit
Theoretical Computer Science 410 (47-49), 5010-5021, 2009
692009
Avoiding large squares in infinite binary words
N Rampersad, J Shallit, M Wang
Theoretical Computer Science 339 (1), 19-34, 2005
602005
The state complexity of L2 and Lk
N Rampersad
Information Processing Letters 98 (6), 231-234, 2006
562006
The computational complexity of universality problems for prefixes, suffixes, factors, and subwords of regular languages
N Rampersad, J Shallit, Z Xu
fundamenta informaticae 116 (1-4), 223-236, 2012
462012
The abelian complexity of the paperfolding word
B Madill, N Rampersad
Discrete Mathematics 313 (7), 831-838, 2013
452013
Finding the growth rate of a regular or context-free language in polynomial time
P Gawrychowski, D Krieger, N Rampersad, J Shallit
International Journal of Foundations of Computer Science 21 (04), 597-618, 2010
392010
Dejean's conjecture holds for n≥ 27
J Currie, N Rampersad
RAIRO-Theoretical Informatics and Applications 43 (4), 775-778, 2009
362009
Shuffling and unshuffling
D Henshall, N Rampersad, J Shallit
arXiv preprint arXiv:1106.5767, 2011
342011
Recurrent words with constant Abelian complexity
J Currie, N Rampersad
arXiv preprint arXiv:0911.5151, 2009
332009
Dejean's conjecture holds for n>= 30
J Currie, N Rampersad
arXiv preprint arXiv:0806.0043, 2008
332008
Critical exponents of infinite balanced words
N Rampersad, J Shallit, É Vandomme
Theoretical Computer Science 777, 454-463, 2019
292019
The number of ternary words avoiding abelian cubes grows exponentially.
A Aberkane, JD Currie, N Rampersad
Journal of Integer Sequences [electronic only] 7 (2), currie18. pdf, 2004
292004
The repetition threshold for binary rich words
JD Currie, L Mol, N Rampersad
Discrete Mathematics & Theoretical Computer Science 22 (Analysis of Algorithms), 2020
282020
Abelian complexity of fixed point of morphism 0↦ 012, 1↦ 02, 2↦ 1
F Blanchet-Sadri, JD Currie, N Rampersad, N Fox
Integers, 2014
272014
Fixed points avoiding Abelian k-powers
JD Currie, N Rampersad
Journal of Combinatorial Theory, Series A 119 (5), 942-948, 2012
252012
Finding the growth rate of a regular of context-free language in polynomial time
P Gawrychowski, D Krieger, N Rampersad, J Shallit
International Conference on Developments in Language Theory, 339-358, 2008
252008
Words avoiding reversed subwords
N Rampersad, J Shallit
arXiv preprint math/0311121, 2003
252003
The system can't perform the operation now. Try again later.
Articles 1–20