| Communication algorithms via deep learning H Kim, Y Jiang, R Rana, S Kannan, S Oh, P Viswanath Sixth International Conference on Learning Representations (ICLR), 2018 | 320 | 2018 |
| BRP-NAS: Prediction-based NAS using GCNs Ł Dudziak, T Chau, MS Abdelfattah, R Lee, H Kim, ND Lane Advances in Neural Information Processing Systems (NeurIPS), 2020 | 291 | 2020 |
| Deepcode: Feedback Codes via Deep Learning H Kim, Y Jiang, S Kannan, S Oh, P Viswanath IEEE Journal on Selected Areas in Information Theory, 2020 | 205 | 2020 |
| Turbo autoencoder: Deep learning based channel codes for point-to-point communication channels Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath Advances in Neural Information Processing Systems (NeurIPS), 2758-2768, 2019 | 200 | 2019 |
| Deepcode: Feedback codes via deep learning H Kim, Y Jiang, S Kannan, S Oh, P Viswanath Advances in Neural Information Processing Systems (NeurIPS), 2018 | 143 | 2018 |
| Best of Both Worlds: AutoML Codesign of a CNN and its Hardware Accelerator M Abdelfattah, Ł Dudziak, T Chau, R Lee, H Kim, N Lane Design Automation Conference (DAC), https://arxiv.org/abs/2002.05022, 2020 | 117 | 2020 |
| LEARN Codes: Inventing Low-Latency Codes via Recurrent Neural Networks Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath IEEE Journal on Selected Areas in Information Theory, 2020 | 109 | 2020 |
| LEARN Codes: Inventing Low-latency Codes via Recurrent Neural Networks Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath 53rd IEEE International Conference on Communications (ICC 2019), 2018 | 109 | 2018 |
| DeepTurbo: Deep Turbo Decoder Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath https://arxiv.org/abs/1903.02295 (SPAWC 2019), 2019 | 83 | 2019 |
| Physical Layer Communication via Deep Learning H Kim, S Oh, P Viswanath IEEE Journal on Selected Areas in Information Theory, 2020 | 71 | 2020 |
| Journey Towards Tiny Perceptual Super-Resolution R Lee, L Dudziak, M Abdelfattah, S Venieris, H Kim, H Wen, ND Lane European Conference on Computer Vision (ECCV), https://arxiv.org/abs/2007.04356, 2020 | 68 | 2020 |
| Machine learning and wireless communications YC Eldar, A Goldsmith, D Gündüz, HV Poor Cambridge University Press, 2022 | 66 | 2022 |
| HAPI: Hardware-Aware Progressive Inference S Laskaridis, S Venieris, H Kim, N Lane IEEE/ACM International Conference on Computer Aided Design, 2020 | 56 | 2020 |
| MIND: Model Independent Neural Decoder Y Jiang, H Kim, H Asnani, S Kannan IEEE International Workshop on Signal Processing Advances in Wireless …, 2019 | 52 | 2019 |
| Attention with Markov: A Framework for Principled Analysis of Transformers via Markov Chains AV Makkuva, M Bondaschi, A Girish, A Nagle, M Jaggi, H Kim, M Gastpar International Conference on Learning Representations (ICLR) Spotlight, 2025 | 48 | 2025 |
| Neural Distributed Source Coding J Whang, A Acharya, H Kim, AG Dimakis IEEE Journal on Selected Areas in Information Theory (JSAIT), 2024 | 30 | 2024 |
| Joint channel coding and modulation via deep learning Y Jiang, H Kim, H Asnani, S Kannan, S Oh, P Viswanath 2020 IEEE 21st International Workshop on Signal Processing Advances in …, 2020 | 30 | 2020 |
| Superposition coding is almost always optimal for the Poisson broadcast channel H Kim, B Nachman, A El Gamal IEEE Transactions on Information Theory 62 (4), 1782 - 1794, 2016 | 30 | 2016 |
| Superposition coding is almost always optimal for the Poisson broadcast channel H Kim, B Nachman, A El Gamal Information Theory (ISIT), 2015 IEEE International Symposium on, 834-838, 2015 | 30 | 2015 |
| A note on the broadcast channel with stale state information at the transmitter H Kim, YK Chia, A El Gamal IEEE Transactions on Information Theory 61 (7), 3622-3631, 2015 | 22 | 2015 |