[go: up one dir, main page]

Follow
philipp grohs
Title
Cited by
Cited by
Year
Optimal approximation with sparsely connected deep neural networks
H Bolcskei, P Grohs, G Kutyniok, P Petersen
SIAM Journal on Mathematics of Data Science 1 (1), 8-45, 2019
3662019
Deep neural network approximation theory
D Elbrächter, D Perekrestenko, P Grohs, H Bölcskei
IEEE Transactions on Information Theory, 2019
3602019
A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations
P Grohs, F Hornung, A Jentzen, P Von Wurstemberger
Memoirs of the American Mathematical Society 284 (1410), 2023
3272023
Solving the Kolmogorov PDE by means of deep learning
C Beck, S Becker, P Grohs, N Jaafari, A Jentzen
Journal of Scientific Computing 88 (3), 73, 2021
2722021
The modern mathematics of deep learning
J Berner, P Grohs, G Kutyniok, P Petersen
arXiv preprint arXiv:2105.04026 78, 3, 2021
2692021
Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of …
J Berner, P Grohs, A Jentzen
SIAM Journal on Mathematics of Data Science 2 (3), 631-657, 2020
2382020
DNN expression rate analysis of high-dimensional PDEs: application to option pricing
D Elbrächter, P Grohs, A Jentzen, C Schwab
Constructive Approximation 55 (1), 3-71, 2022
1632022
Phase retrieval: uniqueness and stability
P Grohs, S Koppensteiner, M Rathmair
SIAM Review 62 (2), 301-350, 2020
1202020
Mathematical aspects of deep learning
P Grohs, G Kutyniok
Cambridge University Press, 2022
1062022
Stable phase retrieval in infinite dimensions
R Alaifari, I Daubechies, P Grohs, R Yin
Foundations of Computational Mathematics 19 (4), 869-900, 2019
932019
Laguerre minimal surfaces, isotropic geometry and linear elasticity
H Pottmann, P Grohs, NJ Mitra
Advances in computational mathematics 31 (4), 391, 2009
932009
ε-subgradient algorithms for locally lipschitz functions on Riemannian manifolds
P Grohs, S Hosseini
Advances in Computational Mathematics 42 (2), 333-360, 2016
922016
Phase retrieval in the general setting of continuous frames for Banach spaces
R Alaifari, P Grohs
SIAM journal on mathematical analysis 49 (3), 1895-1911, 2017
882017
Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks
M Scherbela, R Reisenhofer, L Gerard, P Marquetand, P Grohs
Nature Computational Science 2 (5), 331-341, 2022
862022
Parabolic molecules
P Grohs, G Kutyniok
Foundations of Computational Mathematics 14 (2), 299-337, 2014
862014
Group testing for SARS-CoV-2 allows for up to 10-fold efficiency increase across realistic scenarios and testing strategies
CM Verdun, T Fuchs, P Harar, D Elbrächter, DS Fischer, J Berner, ...
Frontiers in Public Health 9, 583377, 2021
852021
Numerically solving parametric families of high-dimensional Kolmogorov partial differential equations via deep learning
J Berner, M Dablander, P Grohs
Advances in neural information processing systems 33, 16615-16627, 2020
832020
Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces
P Grohs, F Voigtlaender
Foundations of Computational Mathematics 24 (4), 1085-1143, 2024
802024
Stable Gabor phase retrieval and spectral clustering
P Grohs, M Rathmair
Communications on Pure and Applied Mathematics 72 (5), 981-1043, 2019
752019
Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions
P Grohs, L Herrmann
IMA Journal of Numerical Analysis 42 (3), 2055-2082, 2022
742022
The system can't perform the operation now. Try again later.
Articles 1–20