[go: up one dir, main page]

Follow
Lukas Wutschitz
Lukas Wutschitz
Verified email at microsoft.com
Title
Cited by
Cited by
Year
Differentially private fine-tuning of language models
D Yu, S Naik, A Backurs, S Gopi, HA Inan, G Kamath, J Kulkarni, YT Lee, ...
arXiv preprint arXiv:2110.06500, 2021
5352021
Analyzing leakage of personally identifiable information in language models
N Lukas, A Salem, R Sim, S Tople, L Wutschitz, S Zanella-Béguelin
2023 IEEE Symposium on Security and Privacy (SP), 346-363, 2023
3842023
Numerical composition of differential privacy
S Gopi, YT Lee, L Wutschitz
Advances in Neural Information Processing Systems 34, 11631-11642, 2021
2402021
Analyzing information leakage of updates to natural language models
S Zanella-Béguelin, L Wutschitz, S Tople, V Rühle, A Paverd, ...
Proceedings of the 2020 ACM SIGSAC conference on computer and communications …, 2020
1712020
Bayesian estimation of differential privacy
S Zanella-Beguelin, L Wutschitz, S Tople, A Salem, V Rühle, A Paverd, ...
International Conference on Machine Learning, 40624-40636, 2023
722023
Training data leakage analysis in language models
HA Inan, O Ramadan, L Wutschitz, D Jones, V Rühle, J Withers, R Sim
arXiv preprint arXiv:2101.05405, 2021
662021
Differentially private model compression
F Mireshghallah, A Backurs, HA Inan, L Wutschitz, J Kulkarni
Advances in Neural Information Processing Systems 35, 29468-29483, 2022
282022
Securing AI Agents with Information-Flow Control
M Costa, B Köpf, A Kolluri, A Paverd, M Russinovich, A Salem, S Tople, ...
arXiv preprint arXiv:2505.23643, 2025
222025
dp-transformers: Training transformer models with differential privacy
L Wutschitz, HA Inan, A Manoel
222022
Rethinking privacy in machine learning pipelines from an information flow control perspective
L Wutschitz, B Köpf, A Paverd, S Rajmohan, A Salem, S Tople, ...
arXiv preprint arXiv:2311.15792, 2023
162023
Contextual integrity in llms via reasoning and reinforcement learning
G Lan, HA Inan, S Abdelnabi, J Kulkarni, L Wutschitz, R Shokri, ...
arXiv preprint arXiv:2506.04245, 2025
152025
A full-field simulation methodology for sonic boom modeling on adaptive Cartesian cut-cell meshes
R Yamashita, L Wutschitz, N Nikiforakis
Journal of Computational Physics 408, 109271, 2020
152020
Privacy analysis in language models via training data leakage report
HA Inan, O Ramadan, L Wutschitz, D Jones, V Rühle, J Withers, R Sim
ArXiv, abs/2101.05405, 2021
132021
{Closed-Form} bounds for {DP-SGD} against record-level inference attacks
G Cherubin, B Köpf, A Paverd, S Tople, L Wutschitz, S Zanella-Béguelin
33rd USENIX Security Symposium (USENIX Security 24), 4819-4836, 2024
122024
Permissive Information-Flow Analysis for Large Language Models
SA Siddiqui, R Gaonkar, B Köpf, D Krueger, A Paverd, A Salem, S Tople, ...
arXiv preprint arXiv:2410.03055, 2024
92024
The Canary's Echo: Auditing Privacy Risks of LLM-Generated Synthetic Text
M Meeus, L Wutschitz, S Zanella-Béguelin, S Tople, R Shokri
arXiv preprint arXiv:2502.14921, 2025
72025
Acon: Optimizing context compression for long-horizon llm agents
M Kang, WN Chen, D Han, HA Inan, L Wutschitz, Y Chen, R Sim, ...
arXiv preprint arXiv:2510.00615, 2025
62025
Simulating environments with reasoning models for agent training
Y Li, HA Inan, X Yue, WN Chen, L Wutschitz, J Kulkarni, R Poovendran, ...
arXiv preprint arXiv:2511.01824, 2025
22025
Learning gui grounding with spatial reasoning from visual feedback
Y Zhao, WN Chen, HA Inan, S Kessler, L Wang, L Wutschitz, F Yang, ...
arXiv preprint arXiv:2509.21552, 2025
22025
Quantifying machine-learning model resilience against inference attacks
G Cherubin, BA KÖPF, AJ PAVERD, SS TOPLE, L WUTSCHITZ, ...
US Patent App. 18/400,422, 2025
12025
The system can't perform the operation now. Try again later.
Articles 1–20