[go: up one dir, main page]

Follow
Ghanshyam Pilania
Ghanshyam Pilania
Senior Engineer, GE Aerospace Research
Verified email at ge.com
Title
Cited by
Cited by
Year
Machine learning in materials informatics: recent applications and prospects
R Ramprasad, R Batra, G Pilania, A Mannodi-Kanakkithodi, C Kim
npj Computational Materials 3 (1), 54, 2017
17132017
Accelerating materials property predictions using machine learning
G Pilania, C Wang, X Jiang, S Rajasekaran, R Ramprasad
Scientific reports 3 (1), 2810, 2013
9642013
Machine learning bandgaps of double perovskites
G Pilania, A Mannodi-Kanakkithodi, BP Uberuaga, R Ramprasad, ...
Scientific reports 6 (1), 19375, 2016
5462016
The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design
K Choudhary, KF Garrity, ACE Reid, B DeCost, AJ Biacchi, ...
npj computational materials 6 (1), 173, 2020
5222020
Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
A Mannodi-Kanakkithodi, G Pilania, TD Huan, T Lookman, R Ramprasad
Scientific Reports 6, 20952, 2016
4172016
Rational design of all organic polymer dielectrics
V Sharma, C Wang, RG Lorenzini, R Ma, Q Zhu, DW Sinkovits, G Pilania, ...
Nature communications 5 (1), 4845, 2014
3622014
Multi-fidelity machine learning models for accurate bandgap predictions of solids
G Pilania, JE Gubernatis, T Lookman
Computational Materials Science 129, 156-163, 2017
3502017
Polymer informatics: Current status and critical next steps
L Chen, G Pilania, R Batra, TD Huan, C Kim, C Kuenneth, R Ramprasad
Materials Science and Engineering: R: Reports 144, 100595, 2021
2912021
Machine Learning in Materials Science: From Explainable Predictions to Autonomous Design
G Pilania
Computational Materials Science 193, 110360, 2021
2822021
From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown
CK Kim, G Pilania, R Ramprasad
Chemistry of Materials, 2016
2552016
A polymer dataset for accelerated property prediction and design
TD Huan, A Mannodi-Kanakkithodi, C Kim, V Sharma, G Pilania, ...
Scientific Data 3, 160012, 2016
2342016
Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites
C Kim, G Pilania, R Ramprasad
The Journal of Physical Chemistry C 120 (27), 14575-14580, 2016
2302016
Finding new perovskite halides via machine learning
G Pilania, PV Balachandran, C Kim, T Lookman
Frontiers in Materials 3, 19, 2016
2272016
Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond
A Mannodi-Kanakkithodi, A Chandrasekaran, C Kim, TD Huan, G Pilania, ...
Materials Today, 2018
2212018
Machine-learning-based predictive modeling of glass transition temperatures: a case of polyhydroxyalkanoate homopolymers and copolymers
G Pilania, CN Iverson, T Lookman, BL Marrone
Journal of Chemical Information and Modeling 59 (12), 5013-5025, 2019
1692019
Computational strategies for polymer dielectrics design
CC Wang, G Pilania, SA Boggs, S Kumar, C Breneman, R Ramprasad
Polymer 55 (4), 979-988, 2014
1602014
Design of functional and sustainable polymers assisted by artificial intelligence
H Tran, R Gurnani, C Kim, G Pilania, HK Kwon, RP Lively, R Ramprasad
Nature Reviews Materials 9 (12), 866-886, 2024
1532024
A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides
A Talapatra, BP Uberuaga, CR Stanek, G Pilania
Chemistry of materials 33 (3), 845-858, 2021
1342021
Machine learning in nuclear materials research
D Morgan, G Pilania, A Couet, BP Uberuaga, C Sun, J Li
Current Opinion in Solid State and Materials Science 26 (2), 100975, 2022
1292022
Machine learning for materials design and discovery
R Vasudevan, G Pilania, PV Balachandran
Journal of Applied Physics 129 (7), 2021
1242021
The system can't perform the operation now. Try again later.
Articles 1–20