[go: up one dir, main page]

Follow
Miles Cranmer
Title
Cited by
Cited by
Year
Discovering symbolic models from deep learning with inductive biases
M Cranmer, A Sanchez Gonzalez, P Battaglia, R Xu, K Cranmer, ...
Advances in neural information processing systems 33, 17429-17442, 2020
8562020
Lagrangian neural networks
M Cranmer, S Greydanus, S Hoyer, P Battaglia, D Spergel, S Ho
arXiv preprint arXiv:2003.04630, 2020
7792020
Interpretable machine learning for science with PySR and SymbolicRegression.jl
M Cranmer
arXiv preprint arXiv:2305.01582, 2023
6892023
The CHIME fast radio burst project: system overview
M Amiri, K Bandura, P Berger, M Bhardwaj, MM Boyce, PJ Boyle, C Brar, ...
The Astrophysical Journal 863 (1), 48, 2018
4462018
Learned coarse models for efficient turbulence simulation
K Stachenfeld, DB Fielding, D Kochkov, M Cranmer, T Pfaff, J Godwin, ...
arXiv preprint arXiv:2112.15275, 2021
173*2021
Rediscovering orbital mechanics with machine learning
P Lemos, N Jeffrey, M Cranmer, S Ho, P Battaglia
Machine Learning: Science and Technology 4 (4), 045002, 2023
1722023
PySR: Fast & Parallelized Symbolic Regression in Python/Julia
M Cranmer
http://doi.org/10.5281/zenodo.4041459, 2020
149*2020
Multiple physics pretraining for physical surrogate models
M McCabe, BRS Blancard, LH Parker, R Ohana, M Cranmer, A Bietti, ...
arXiv preprint arXiv:2310.02994, 2023
132*2023
Free-space quantum key distribution to a moving receiver
JP Bourgoin, BL Higgins, N Gigov, C Holloway, CJ Pugh, S Kaiser, ...
Optics express 23 (26), 33437-33447, 2015
1312015
Predicting the long-term stability of compact multiplanet systems
D Tamayo, M Cranmer, S Hadden, H Rein, P Battaglia, A Obertas, ...
Proceedings of the National Academy of Sciences 117 (31), 18194-18205, 2020
1242020
Learning symbolic physics with graph networks
MD Cranmer, R Xu, P Battaglia, S Ho
arXiv preprint arXiv:1909.05862, 2019
1132019
AstroCLIP: a cross-modal foundation model for galaxies
L Parker, F Lanusse, S Golkar, L Sarra, M Cranmer, A Bietti, M Eickenberg, ...
Monthly Notices of the Royal Astronomical Society 531 (4), 4990-5011, 2024
108*2024
The well: a large-scale collection of diverse physics simulations for machine learning
R Ohana, M McCabe, L Meyer, R Morel, F Agocs, M Beneitez, M Berger, ...
Advances in Neural Information Processing Systems 37, 44989-45037, 2024
822024
A deep-learning approach for live anomaly detection of extragalactic transients
VA Villar, M Cranmer, E Berger, G Contardo, S Ho, G Hosseinzadeh, ...
The Astrophysical Journal Supplement Series 255 (2), 24, 2021
762021
xval: A continuous number encoding for large language models
S Golkar, M Pettee, M Eickenberg, A Bietti, M Cranmer, G Krawezik, ...
arXiv preprint arXiv:2310.02989, 2023
722023
Bifrost: A Python/C Framework for High-Throughput Stream Processing in Astronomy
MD Cranmer, BR Barsdell, DC Price, J Dowell, H Garsden, V Dike, ...
Journal of Astronomical Instrumentation 6 (04), 1750007, 2017
612017
Symbolic regression with a learned concept library
A Grayeli, A Sehgal, O Costilla Reyes, M Cranmer, S Chaudhuri
Advances in Neural Information Processing Systems 37, 44678-44709, 2024
562024
A Bayesian neural network predicts the dissolution of compact planetary systems
M Cranmer, D Tamayo, H Rein, P Battaglia, S Hadden, PJ Armitage, S Ho, ...
arXiv preprint arXiv:2101.04117, 2021
542021
Mitigating radiation damage of single photon detectors for space applications
E Anisimova, BL Higgins, JP Bourgoin, M Cranmer, E Choi, D Hudson, ...
EPJ Quantum Technology 4 (1), 10, 2017
542017
Robust simulation-based inference in cosmology with Bayesian neural networks
P Lemos, M Cranmer, M Abidi, CH Hahn, M Eickenberg, E Massara, ...
Machine Learning: Science and Technology 4 (1), 01LT01, 2023
502023
The system can't perform the operation now. Try again later.
Articles 1–20