[go: up one dir, main page]

Follow
Lukas Schäfer
Lukas Schäfer
Microsoft Research Cambridge
Verified email at microsoft.com - Homepage
Title
Cited by
Cited by
Year
Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks
G Papoudakis, F Christianos, L Schäfer, SV Albrecht
Conference on Neural Information Processing Systems, Track on Datasets and …, 2020
499*2020
Multi-agent reinforcement learning: Foundations and modern approaches
SV Albrecht, F Christianos, L Schäfer
Massachusetts Institute of Technology: Cambridge, MA, USA, 2024
3942024
Shared experience actor-critic for multi-agent reinforcement learning
F Christianos, L Schäfer, S Albrecht
Advances in neural information processing systems 33, 10707-10717, 2020
2892020
Decoupled reinforcement learning to stabilise intrinsically-motivated exploration
L Schäfer, F Christianos, JP Hanna, SV Albrecht
Proceedings of the 21st International Conference on Autonomous Agents and …, 2022
57*2022
Scalable multi-agent reinforcement learning for warehouse logistics with robotic and human co-workers
A Krnjaic, RD Steleac, JD Thomas, G Papoudakis, L Schäfer, AWK To, ...
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2024
512024
Deep reinforcement learning for multi-agent interaction
IH Ahmed, C Brewitt, I Carlucho, F Christianos, M Dunion, E Fosong, ...
Ai Communications 35 (4), 357-368, 2022
242022
Robust on-policy sampling for data-efficient policy evaluation in reinforcement learning
R Zhong, D Zhang, L Schäfer, S Albrecht, J Hanna
Advances in Neural Information Processing Systems 35, 37376-37388, 2022
23*2022
Using Offline Data to Speed-up Reinforcement Learning in Procedurally Generated Environments
A Andres, L Schäfer, E Villar-Rodriguez, SV Albrecht, J Del Ser
Adaptive and Learning Agents Workshop, AAMAS 2023, 2023
122023
Learning task embeddings for teamwork adaptation in multi-agent reinforcement learning
L Schäfer, F Christianos, A Storkey, SV Albrecht
arXiv preprint arXiv:2207.02249, 2022
112022
Ensemble Value Functions for Efficient Exploration in Multi-Agent Reinforcement Learning
L Schäfer, O Slumbers, S McAleer, Y Du, SV Albrecht, D Mguni
Adaptive and Learning Agents Workshop, AAMAS 2023, 2023
102023
Learning temporally-consistent representations for data-efficient reinforcement learning
T McInroe, L Schäfer, SV Albrecht
arXiv preprint arXiv:2110.04935, 2021
102021
Curiosity in Multi-Agent Reinforcement Learning
L Schäfer
University of Edinburgh, 2019
82019
Visual Encoders for Imitation Learning in Modern Video Games
L Schäfer, L Jones, A Kanervisto, Y Cao, T Rashid, R Georgescu, ...
The Seventeenth Workshop on Adaptive and Learning Agents, 0
6*
Multi-horizon representations with hierarchical forward models for reinforcement learning
T McInroe, L Schäfer, SV Albrecht
arXiv preprint arXiv:2206.11396, 2022
52022
Task generalisation in multi-agent reinforcement learning
L Schäfer
Proceedings of the 21st International Conference on Autonomous Agents and …, 2022
42022
Learning Representations for Reinforcement Learning with Hierarchical Forward Models
T McInroe, L Schäfer, SV Albrecht
Deep Reinforcement Learning Workshop NeurIPS 2022, 0
2*
Domain-Dependent Policy Learning using Neural Networks in Classical Planning
L Schäfer
Saarland University, 2018
12018
Efficient exploration in single-agent and multi-agent deep reinforcement learning
L Schäfer
The University of Edinburgh, 2024
2024
Autonomous Agents Research Group
S Albrecht, F Christianos, L Schäfer, T McInroe, M Dunion, A Jelley, ...
2020
The UK Multi-Agent Systems Symposium
L Schäfer
2020
The system can't perform the operation now. Try again later.
Articles 1–20