| Instance credibility inference for few-shot learning Y Wang, C Xu, C Liu, L Zhang, Y Fu Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 254 | 2020 |
| Learning a few-shot embedding model with contrastive learning C Liu, Y Fu, C Xu, S Yang, J Li, C Wang, L Zhang Proceedings of the AAAI conference on artificial intelligence 35 (10), 8635-8643, 2021 | 250 | 2021 |
| Learning dynamic alignment via meta-filter for few-shot learning C Xu, Y Fu, C Liu, C Wang, J Li, F Huang, L Zhang, X Xue Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021 | 166 | 2021 |
| PatchMix augmentation to identify causal features in few-shot learning C Xu, C Liu, X Sun, S Yang, Y Wang, C Wang, Y Fu IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (6), 7639-7653, 2022 | 28 | 2022 |
| Exploring structural sparsity of deep networks via inverse scale spaces Y Fu, C Liu, D Li, Z Zhong, X Sun, J Zeng, Y Yao IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (2), 1749-1765, 2022 | 26* | 2022 |
| An embarrassingly simple baseline to one-shot learning C Liu, C Xu, Y Wang, L Zhang, Y Fu Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 24 | 2020 |
| Dessilbi: Exploring structural sparsity of deep networks via differential inclusion paths Y Fu, C Liu, D Li, X Sun, J Zeng, Y Yao International Conference on Machine Learning, 3315-3326, 2020 | 12 | 2020 |
| Towards global optimal visual in-context learning prompt selection C Xu, C Liu, Y Wang, Y Yao, Y Fu Advances in Neural Information Processing Systems 37, 74945-74965, 2024 | 11 | 2024 |
| Split-pu: Hardness-aware training strategy for positive-unlabeled learning C Xu, C Liu, S Yang, Y Wang, S Zhang, L Jia, Y Fu Proceedings of the 30th ACM International Conference on Multimedia, 2719-2729, 2022 | 8 | 2022 |
| Optimal sample selection through uncertainty estimation and its application in deep learning Y Lin, C Liu, C Ye, Q Lian, Y Yao, T Zhang arXiv preprint arXiv:2309.02476, 2023 | 7 | 2023 |
| A Generalization Theory of Cross-Modality Distillation with Contrastive Learning H Lin, C Liu, C Xu, Z Gao, Y Fu, Y Yao arXiv preprint arXiv:2405.03355, 2024 | 1 | 2024 |
| Adaptive End-to-End Budgeted Network Learning via Inverse Scale Space. Z Zhong, C Liu, Y Fu BMVC, 18, 2021 | | 2021 |