| Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities G Comanici, E Bieber, M Schaekermann, I Pasupat, N Sachdeva, I Dhillon, ... arXiv preprint arXiv:2507.06261, 2025 | 1337 | 2025 |
| Extracting training data from diffusion models N Carlini, J Hayes, M Nasr, M Jagielski, V Sehwag, F Tramer, B Balle, ... 32nd USENIX security symposium (USENIX Security 23), 5253-5270, 2023 | 1084 | 2023 |
| Logan: Membership inference attacks against generative models J Hayes, L Melis, G Danezis, E De Cristofaro arXiv preprint arXiv:1705.07663, 2017 | 1035* | 2017 |
| k-fingerprinting: A robust scalable website fingerprinting technique J Hayes, G Danezis 25th USENIX Security Symposium (USENIX Security 16), 1187-1203, 2016 | 615 | 2016 |
| Generating steganographic images via adversarial training J Hayes, G Danezis Advances in neural information processing systems 30, 2017 | 446 | 2017 |
| Towards unbounded machine unlearning M Kurmanji, P Triantafillou, J Hayes, E Triantafillou Advances in neural information processing systems 36, 1957-1987, 2023 | 373 | 2023 |
| Local and central differential privacy for robustness and privacy in federated learning M Naseri, J Hayes, E De Cristofaro arXiv preprint arXiv:2009.03561, 2020 | 371* | 2020 |
| Unlocking high-accuracy differentially private image classification through scale S De, L Berrada, J Hayes, SL Smith, B Balle arXiv preprint arXiv:2204.13650, 2022 | 314 | 2022 |
| The loopix anonymity system AM Piotrowska, J Hayes, T Elahi, S Meiser, G Danezis 26th usenix security symposium (usenix security 17), 1199-1216, 2017 | 311 | 2017 |
| Reconstructing training data with informed adversaries B Balle, G Cherubin, J Hayes 2022 IEEE Symposium on Security and Privacy (SP), 1138-1156, 2022 | 250 | 2022 |
| Learning universal adversarial perturbations with generative models J Hayes, G Danezis 2018 IEEE Security and Privacy Workshops (SPW), 43-49, 2018 | 212 | 2018 |
| Scalable watermarking for identifying large language model outputs S Dathathri, A See, S Ghaisas, PS Huang, R McAdam, J Welbl, V Bachani, ... Nature 634 (8035), 818-823, 2024 | 204 | 2024 |
| On visible adversarial perturbations & digital watermarking J Hayes Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 169 | 2018 |
| Tight auditing of differentially private machine learning M Nasr, J Hayes, T Steinke, B Balle, F Tramèr, M Jagielski, N Carlini, ... 32nd USENIX Security Symposium (USENIX Security 23), 1631-1648, 2023 | 147 | 2023 |
| Website fingerprinting defenses at the application layer G Cherubin, J Hayes, M Juárez Proceedings on Privacy Enhancing Technologies 2017 (2), 168-185, 2017 | 124 | 2017 |
| Differentially private diffusion models generate useful synthetic images S Ghalebikesabi, L Berrada, S Gowal, I Ktena, R Stanforth, J Hayes, S De, ... arXiv preprint arXiv:2302.13861, 2023 | 108* | 2023 |
| Contamination attacks and mitigation in multi-party machine learning J Hayes, O Ohrimenko Advances in neural information processing systems 31, 2018 | 106 | 2018 |
| Imagen 3 J Baldridge, J Bauer, M Bhutani, N Brichtova, A Bunner, L Castrejon, ... arXiv preprint arXiv:2408.07009, 2024 | 90 | 2024 |
| Defeating prompt injections by design E Debenedetti, I Shumailov, T Fan, J Hayes, N Carlini, D Fabian, C Kern, ... arXiv preprint arXiv:2503.18813, 2025 | 76 | 2025 |
| A framework for robustness certification of smoothed classifiers using f-divergences KD Dvijotham, J Hayes, B Balle, Z Kolter, C Qin, A Gyorgy, K Xiao, ... International Conference on Learning Representations, 2020 | 71 | 2020 |