| Energy conservation issues in the numerical solution of the semilinear wave equation L Brugnano, G Frasca-Caccia, F Iavernaro Appl. Math. Comput., 270 (2015), pp. 842–870, 2014 | 101 | 2014 |
| Energy-conserving methods for the nonlinear Schrödinger equation L Barletti, L Brugnano, G Frasca-Caccia, F Iavernaro Applied Mathematics and Computation 318, 3-18, 2018 | 74 | 2018 |
| Efficient implementation of Gauss collocation and Hamiltonian boundary value methods L Brugnano, G Frasca-Caccia, F Iavernaro Numerical Algorithms 65 (3), 633-650, 2014 | 68 | 2014 |
| Simple bespoke preservation of two conservation laws G Frasca-Caccia, PE Hydon IMA Journal of Numerical Analysis 40 (2), 1294-1329, 2020 | 26 | 2020 |
| A new technique for preserving conservation laws G Frasca-Caccia, PE Hydon Foundations of Computational Mathematics 22 (2), 477-506, 2022 | 22 | 2022 |
| Numerical preservation of multiple local conservation laws G Frasca-Caccia, PE Hydon Applied Mathematics and Computation 403, 126203, 2021 | 21 | 2021 |
| A new framework for polynomial approximation to differential equations L Brugnano, G Frasca-Caccia, F Iavernaro, V Vespri Advances in Computational Mathematics 48 (6), 76, 2022 | 19 | 2022 |
| Line integral solution of Hamiltonian PDEs L Brugnano, G Frasca-Caccia, F Iavernaro Mathematics 7 (3), 275, 2019 | 19* | 2019 |
| Locally conservative finite difference schemes for the modified KdV equation G Frasca-Caccia, PE Hydon arXiv preprint arXiv:1903.11491, 2019 | 15 | 2019 |
| Exponentially fitted methods that preserve conservation laws D Conte, G Frasca-Caccia Communications in Nonlinear Science and Numerical Simulation 109, 106334, 2022 | 14 | 2022 |
| Efficient implementation of geometric integrators for separable Hamiltonian problems L Brugnano, G Frasca-Caccia, F Iavernaro PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND …, 2013 | 14 | 2013 |
| Numerical conservation laws of time fractional diffusion PDEs A Cardone, G Frasca-Caccia Fractional Calculus and Applied Analysis 25 (4), 1459-1483, 2022 | 13 | 2022 |
| Hamiltonian boundary value methods (HBVMs) and their efficient implementation L Brugnano, G Frasca-Caccia, F Iavernaro Journal MESA 5 (4), 343-411, 2014 | 12 | 2014 |
| An overview of differential models for corrosion of cultural heritage artefacts G Frasca-Caccia, C Valentino, F Colace, D Conte Mathematical Modelling of Natural Phenomena 18, 27, 2023 | 11 | 2023 |
| A MATLAB code for the computational solution of a phase field model for pitting corrosion D Conte, G Frasca-Caccia Dolomites Research Notes on Approximation 15 (DRNA Volume 15.2), 47-65, 2022 | 11 | 2022 |
| Energy conservation issues in the numerical solution of Hamiltonian PDEs L Brugnano, G Frasca-Caccia, F Iavernaro PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND …, 2015 | 8 | 2015 |
| Recent advances in the numerical solution of Hamiltonian PDEs L Brugnano, G Frasca-Caccia, F Iavernaro PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND …, 2015 | 8 | 2015 |
| Exponentially fitted methods with a local energy conservation law D Conte, G Frasca-Caccia Advances in Computational Mathematics 49 (4), 49, 2023 | 6 | 2023 |
| Line integral formulation of energy and QUadratic invariants preserving (EQUIP) methods for Hamiltonian systems L Brugnano, G Frasca-Caccia, F Iavernaro INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 …, 2016 | 6 | 2016 |
| Finite difference schemes with non polynomial local conservation laws G Frasca-Caccia Journal of Computational and Applied Mathematics 458, 116330, 2025 | 5 | 2025 |