| XGBoost: A scalable tree boosting system T Chen, C Guestrin KDD'16, 785-794, 2016 | 70652 | 2016 |
| XGBoost: R-package T Chen, T He, M Benesty R package version 0.4-2, 1-4, 2015 | 5515* | 2015 |
| Empirical evaluation of rectified activations in convolutional network B Xu, N Wang, T Chen, M Li arXiv preprint arXiv:1505.00853, 2015 | 4824 | 2015 |
| MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems T Chen, M Li, Y Li, M Lin, N Wang, M Wang, T Xiao, B Xu, C Zhang, ... LearningSys Workshop at Neural Information Processing Systems 2015, 2015 | 3086 | 2015 |
| TVM: An Automated End-to-End Optimizing Compiler for Deep Learning T Chen, T Moreau, Z Jiang, L Zheng, E Yan, M Cowan, H Shen, L Wang, ... OSDI 2018, 2018 | 2962* | 2018 |
| Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining T Chen, C Guestrin ACM, 2016 | 2273 | 2016 |
| Training deep nets with sublinear memory cost T Chen, B Xu, C Zhang, C Guestrin arXiv preprint arXiv:1604.06174, 2016 | 1416 | 2016 |
| Stochastic gradient hamiltonian monte carlo T Chen, E Fox, C Guestrin International conference on machine learning, 1683-1691, 2014 | 1301 | 2014 |
| Net2Net: Accelerating learning via knowledge transfer T Chen, I Goodfellow, J Shlens ICLR 2016, 2015 | 874 | 2015 |
| A complete recipe for stochastic gradient MCMC YA Ma, T Chen, E Fox Advances in neural information processing systems 28, 2015 | 674 | 2015 |
| Learning to Optimize Tensor Programs T Chen, L Zheng, E Yan, Z Jiang, T Moreau, L Ceze, C Guestrin, ... Neural Information Processing Systems 2018, 2018 | 608 | 2018 |
| Collaborative personalized tweet recommendation K Chen, T Chen, G Zheng, O Jin, E Yao, Y Yu Proceedings of the 35th international ACM SIGIR conference on Research and …, 2012 | 374 | 2012 |
| Optimizing top-n collaborative filtering via dynamic negative item sampling W Zhang, T Chen, J Wang, Y Yu Proceedings of the 36th international ACM SIGIR conference on Research and …, 2013 | 334 | 2013 |
| A hardware–software blueprint for flexible deep learning specialization T Moreau, T Chen, L Vega, J Roesch, E Yan, L Zheng, J Fromm, Z Jiang, ... IEEE Micro 39 (5), 8-16, 2019 | 320* | 2019 |
| XGBoost: a scalable tree boosting system ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016 T Chen, C Guestrin New York, NY, USA, 0 | 293 | |
| SVDFeature: a toolkit for feature-based collaborative filtering T Chen, W Zhang, Q Lu, K Chen, Z Zheng, Y Yu The Journal of Machine Learning Research 13 (1), 3619-3622, 2012 | 289 | 2012 |
| Atom: Low-bit quantization for efficient and accurate llm serving Y Zhao, CY Lin, K Zhu, Z Ye, L Chen, S Zheng, L Ceze, A Krishnamurthy, ... Proceedings of Machine Learning and Systems 6, 196-209, 2024 | 269 | 2024 |
| Higgs boson discovery with boosted trees T Chen, T He Neural Information Processing Systems 2014 Workshop on High-energy Physics …, 2015 | 248 | 2015 |
| Relay: A new ir for machine learning frameworks J Roesch, S Lyubomirsky, L Weber, J Pollock, M Kirisame, T Chen, ... Proceedings of the 2nd ACM SIGPLAN international workshop on machine …, 2018 | 159 | 2018 |
| xgboost: Extreme gradient boosting. R package version 1.6. 0.1 T Chen, T He, M Benesty, V Khotilovich, Y Tang, H Cho, K Chen, ... | 140 | 2022 |