[go: up one dir, main page]

Follow
Philipp Kopper
Title
Cited by
Cited by
Year
Deep learning for survival analysis: a review
S Wiegrebe, P Kopper, R Sonabend, B Bischl, A Bender
Artificial Intelligence Review 57 (3), 65, 2024
1972024
Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models
WH Hartl, P Kopper, A Bender, F Scheipl, AG Day, G Elke, H Küchenhoff
Critical Care 26 (1), 7, 2022
562022
A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses
H Seibold, S Czerny, S Decke, R Dieterle, T Eder, S Fohr, N Hahn, ...
PLoS One 16 (6), e0251194, 2021
382021
Limitations of interpretable machine learning methods
T Altmann, J Bodensteiner, C Dankers, T Dassen, N Fritz, S Gruber, ...
Department of Statistics LMU Munich, 2020
36*2020
Deeppamm: Deep piecewise exponential additive mixed models for complex hazard structures in survival analysis
P Kopper, S Wiegrebe, B Bischl, A Bender, D Rügamer
Pacific-Asia conference on knowledge discovery and data mining, 249-261, 2022
27*2022
Semi-structured deep piecewise exponential models
P Kopper, S Pölsterl, C Wachinger, B Bischl, A Bender, D Rügamer
Survival Prediction-Algorithms, Challenges and Applications, 40-53, 2021
272021
Deepregression: A flexible neural network framework for semi-structured deep distributional regression
D Rügamer, C Kolb, C Fritz, F Pfisterer, P Kopper, B Bischl, R Shen, ...
Journal of Statistical Software 105, 1-31, 2023
26*2023
Relevance of protein intake for weaning in the mechanically ventilated critically ill: analysis of a large international database
WH Hartl, P Kopper, L Xu, L Heller, M Mironov, R Wang, AG Day, G Elke, ...
Critical Care Medicine 52 (3), e121-e131, 2024
52024
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression
L Kook, C Kolb, P Schiele, D Dold, M Arpogaus, C Fritz, P Baumann, ...
Proceedings of the Fortieth Conference on Uncertainty in Artificial …, 2024
42024
Examining properness in the external validation of survival models with squared and logarithmic losses
R Sonabend, J Zobolas, P Kopper, L Burk, A Bender
arXiv:2212.05260, 2024
4*2024
Correction: A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses
H Seibold, S Czerny, S Decke, R Dieterle, T Eder, S Fohr, N Hahn, ...
Plos one 17 (5), e0269047, 2022
42022
Flexible estimation of complex effects in the context of competing risks survival analysis
P Kopper
22020
Pammtools: piece-wise exponential additive mixed modeling tools for survival analysis 0.5. 4., 2020
A Bender, F Scheipl, P Kopper
2
mlr3extralearners: Expanding the mlr3 Ecosystem with Community-Driven Learner Integration
S Fischer, J Zobolas, R Sonabend, M Becker, M Lang, M Binder, ...
Journal of Open Source Software 10 (115), 8331, 2025
2025
On Training Survival Models with Scoring Rules
P Kopper, D Rügamer, R Sonabend, B Bischl, A Bender
Joint European Conference on Machine Learning and Knowledge Discovery in …, 2025
2025
Bedeutung der Proteinzufuhr für die Entwöhnung bei mechanisch beatmeten Intensivpatient* innen–Analyse einer großen internationalen Datenbank
WH Hartl, P Kopper, L Xu, L Heller, M Mironow, R Wang, AG Day, G Elke, ...
Aktuelle Ernährungsmedizin 48 (03), Abstract 23, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–16