[go: up one dir, main page]

Follow
Nicolas Heess
Nicolas Heess
DeepMind
Verified email at google.com
Title
Cited by
Cited by
Year
Continuous control with deep reinforcement learning
TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez, Y Tassa, D Silver, ...
arXiv preprint arXiv:1509.02971, 2015
220132015
Deterministic policy gradient algorithms
D Silver, G Lever, N Heess, T Degris, D Wierstra, M Riedmiller
ICML, 2014
64972014
Recurrent models of visual attention
V Mnih, N Heess, A Graves
Advances in neural information processing systems, 2204-2212, 2014
53882014
Relational inductive biases, deep learning, and graph networks
PW Battaglia, JB Hamrick, V Bapst, A Sanchez-Gonzalez, V Zambaldi, ...
arXiv preprint arXiv:1806.01261, 2018
48702018
A Generalist Agent
S Reed, K Zolna, E Parisotto, SG Colmenarejo, A Novikov, G Barth-Maron, ...
arXiv preprint arXiv:2205.06175, 2022
14302022
Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities
G Comanici, E Bieber, M Schaekermann, I Pasupat, N Sachdeva, I Dhillon, ...
arXiv preprint arXiv:2507.06261, 2025
13372025
Feudal networks for hierarchical reinforcement learning
AS Vezhnevets, S Osindero, T Schaul, N Heess, M Jaderberg, D Silver, ...
Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017
13342017
Emergence of locomotion behaviours in rich environments
N Heess, S Sriram, J Lemmon, J Merel, G Wayne, Y Tassa, T Erez, ...
arXiv preprint arXiv:1707.02286, 2017
13152017
Sample efficient actor-critic with experience replay
Z Wang, V Bapst, N Heess, V Mnih, R Munos, K Kavukcuoglu, ...
arXiv preprint arXiv:1611.01224, 2016
11492016
Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards
M Večerík, T Hester, J Scholz, F Wang, O Pietquin, B Piot, N Heess, ...
arXiv preprint arXiv:1707.08817, 2017
10122017
Continuous control with deep reinforcement learning. arXiv 2015
TP Lillicrap, JJ Hunt, A Pritzel, N Heess, T Erez, Y Tassa, D Silver, ...
arXiv preprint arXiv:1509.02971, 1935
8651935
Open X-Embodiment: Robotic learning datasets and RT-X models
OXE Collaboration, A Padalkar, A Pooley, A Jain, A Bewley, A Herzog, ...
arXiv preprint arXiv:2310.08864, 2023
863*2023
Graph networks as learnable physics engines for inference and control
A Sanchez-Gonzalez, N Heess, JT Springenberg, J Merel, M Riedmiller, ...
arXiv preprint arXiv:1806.01242, 2018
8592018
Imagination-augmented agents for deep reinforcement learning
T Weber, S Racanière, DP Reichert, L Buesing, A Guez, DJ Rezende, ...
arXiv preprint arXiv:1707.06203, 2017
811*2017
Imagination-augmented agents for deep reinforcement learning
S Racanière, T Weber, D Reichert, L Buesing, A Guez, DJ Rezende, ...
Advances in neural information processing systems, 5690-5701, 2017
8062017
Distributed distributional deterministic policy gradients
G Barth-Maron, MW Hoffman, D Budden, W Dabney, D Horgan, A Muldal, ...
arXiv preprint arXiv:1804.08617, 2018
7862018
Learning continuous control policies by stochastic value gradients
N Heess, G Wayne, D Silver, T Lillicrap, T Erez, Y Tassa
Advances in Neural Information Processing Systems, 2944-2952, 2015
7752015
Distral: Robust multitask reinforcement learning
Y Teh, V Bapst, WM Czarnecki, J Quan, J Kirkpatrick, R Hadsell, N Heess, ...
Advances in Neural Information Processing Systems, 4496-4506, 2017
7302017
Sim-to-real robot learning from pixels with progressive nets
AA Rusu, M Vecerik, T Rothörl, N Heess, R Pascanu, R Hadsell
arXiv preprint arXiv:1610.04286, 2016
7182016
Attend, infer, repeat: Fast scene understanding with generative models
SMA Eslami, N Heess, T Weber, Y Tassa, D Szepesvari, GE Hinton
Advances in Neural Information Processing Systems, 3225-3233, 2016
6562016
The system can't perform the operation now. Try again later.
Articles 1–20