WO2021194808A1 - Fabric care composition - Google Patents
Fabric care composition Download PDFInfo
- Publication number
- WO2021194808A1 WO2021194808A1 PCT/US2021/022654 US2021022654W WO2021194808A1 WO 2021194808 A1 WO2021194808 A1 WO 2021194808A1 US 2021022654 W US2021022654 W US 2021022654W WO 2021194808 A1 WO2021194808 A1 WO 2021194808A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- care composition
- fabric care
- fabric
- polymer
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
- C11D3/0015—Softening compositions liquid
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/373—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/83—Mixtures of non-ionic with anionic compounds
- C11D1/831—Mixtures of non-ionic with anionic compounds of sulfonates with ethers of polyoxyalkylenes without phosphates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/22—Carbohydrates or derivatives thereof
- C11D3/222—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
- C11D3/227—Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin with nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/26—Organic compounds containing nitrogen
- C11D3/30—Amines; Substituted amines ; Quaternized amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention relates to a fabric care composition.
- the present invention relates to a fabric care composition including water; a cleaning surfactant; a fabric softening silicone; and a deposition aid polymer, wherein the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the deposition aid polymer enhances deposition of the fabric softening silicone from the fabric care composition onto a fabric.
- a modified carbohydrate polymer having quaternary ammonium groups has been disclosed for use in fabric care by Eldredge, et al. in U.S. Patent Application Publication No. 20170335242.
- Eldredge, et al disclose a fabric care composition comprising a modified carbohydrate polymer having quaternary ammonium groups having at least one Cs-22 alkyl or alkenyl group; wherein the modified carbohydrate polymer has a weight- average molecular weight of at least 500,000; and wherein at least 20 wt% of the quaternary ammonium groups on the at least one modified carbohydrate polymer have at least one Cs-22 alkyl or alkenyl group.
- the present invention provides a fabric care composition comprising: water; a cleaning surfactant; a fabric softening silicone; and a deposition aid polymer, wherein the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the deposition aid polymer enhances deposition of the fabric softening silicone from the fabric care composition onto a fabric.
- the present invention provides a method of treating an article of laundry, comprising: providing an article of laundry; selecting a fabric care composition according to the present invention; providing a bath water; and applying the bath water and the fabric care composition to the article of laundry to provide a treated article of laundry; wherein the fabric softening silicone is associated with the treated article of laundry.
- a fabric care composition including a fabric softening silicone in combination with a deposition aid polymer comprising a dextran polymer functionalized with quaternary ammonium moieties provides a surprisingly favorable balance of softening and anti-redeposition.
- Weight percentages (or wt%) in the composition are percentages of dry weight, i.e., excluding any water that may be present in the composition.
- weight average molecular weight and “Mw” are used interchangeably to refer to the weight average molecular weight as measured in a conventional manner with gel permeation chromatography (GPC) and conventional standards, such as polyethylene glycol standards.
- GPC techniques are discussed in detail in Modem Size Exclusion Chromatography, W. W. Yau, J. J. Kirkland, D. D. Bly; Wiley-lnterscience, 1979, and in A Guide to Materials Characterization and Chemical Analysis, J. P. Sibilia; VCH, 1988, p. 81-84. Weight average molecular weights are reported herein in units of Daltons.
- the fabric care composition of the present invention comprises: water (preferably, 10 to 94.9 wt% (more preferably, 25 to 94 wt%; still more preferably, 40 to 85 wt%; most preferably, 50 to 75 wt%), based on the weight of the fabric care composition, of water); a cleaning surfactant (preferably, 5 to 89.9 wt% (more preferably, 7.5 to 75 wt%; still more preferably, 10 to 60 wt%; most preferably, 15 to 30 wt%), based on the weight of the fabric care composition, of the cleaning surfactant); a fabric softening silicone (preferably, 0.05 to 10 wt% (more preferably, 0.1 to 5 wt%; most preferably, 0.1 to 3 wt%), based on the weight of the fabric care composition, of the fabric softening silicone)(preferably, wherein the fabric softening silicone is selected from the group consisting of a nitrogen free silicone polymer, an anionic silicone
- the fabric care composition of the present invention is a liquid formulation. More preferably, the fabric care composition of the present invention is an aqueous liquid formulation.
- the fabric care composition of the present invention comprises: water. More preferably, the fabric care composition of the present invention, comprises: 10 to 94.9 wt% (more preferably, 25 to 94 wt%; still more preferably, 40 to 85 wt%; most preferably, 50 to 75 wt%), based on the weight of the fabric care composition, of water.
- the fabric care composition of the present invention comprises: 10 to 94.9 wt% (more preferably, 25 to 94 wt%; still more preferably, 40 to 85 wt%; most preferably, 50 to 75 wt%), based on the weight of the fabric care composition, of water, wherein the water is at least one of distilled water and deionized water.
- the fabric care composition of the present invention comprises: 10 to 94.9 wt% (more preferably, 25 to 94 wt%; still more preferably, 40 to 85 wt%; most preferably, 50 to 75 wt%), based on the weight of the fabric care composition, of water, wherein the water is distilled and deionized.
- the fabric care composition of the present invention comprises: a cleaning surfactant. More preferably, the fabric care composition of the present invention, comprises: 5 to 89.9 wt% (preferably, 7.5 to 75 wt%; more preferably, 10 to 60 wt%; most preferably, 15 to 30 wt%), based on the weight of the fabric care composition, of a cleaning surfactant.
- the fabric care composition of the present invention comprises: 5 to 89.9 wt% (preferably, 7.5 to 75 wt%; more preferably, 10 to 60 wt%; most preferably, 15 to 30 wt%), based on the weight of the fabric care composition, of a cleaning surfactant; wherein the cleaning surfactant is selected from the group consisting of anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants and mixtures thereof.
- the fabric care composition of the present invention comprises: 5 to 89.9 wt% (preferably, 7.5 to 75 wt%; more preferably, 10 to 60 wt%; most preferably, 15 to 30 wt%), based on the weight of the fabric care composition, of a cleaning surfactant; wherein the cleaning surfactant is selected from the group consisting of a mixture including an anionic surfactant and a non-ionic surfactant.
- the fabric care composition of the present invention comprises: 5 to 89.9 wt% (preferably, 7.5 to 75 wt%; more preferably, 10 to 60 wt%; most preferably, 15 to 30 wt%), based on the weight of the fabric care composition, of a cleaning surfactant; wherein the cleaning surfactant includes a mixture of a linear alkyl benzene sulfonate, a sodium lauryl ethoxysulfate and a nonionic alcohol ethoxylate.
- Anionic surfactants include alkyl sulfates, alkyl benzene sulfates, alkyl benzene sulfonic acids, alkyl benzene sulfonates, alkyl polyethoxy sulfates, alkoxylated alcohols, paraffin sulfonic acids, paraffin sulfonates, olefin sulfonic acids, olefin sulfonates, alpha-sulfocarboxylates, esters of alpha-sulfocarboxylates, alkyl glyceryl ether sulfonic acids, alkyl glyceryl ether sulfonates, sulfates of fatty acids, sulfonates of fatty acids, sulfonates of fatty acid esters, alkyl phenols, alkyl phenol poly ethoxy ether sulfates, 2-acryloxy-alkane-l
- Preferred anionic surfactants include Cs- 2 o alkyl benzene sulfates, Cs- 2 o alkyl benzene sulfonic acid, C 8-20 alkyl benzene sulfonate, paraffin sulfonic acid, paraffin sulfonate, alpha-olefin sulfonic acid, alpha-olefin sulfonate, alkoxylated alcohols, Cs- 20 alkyl phenols, amine oxides, sulfonates of fatty acids, sulfonates of fatty acid esters and mixtures thereof.
- More preferred anionic surfactants include C 12-16 alkyl benzene sulfonic acid, C 12-16 alkyl benzene sulfonate, C 12-18 paraffin-sulfonic acid, C 12-18 paraffin- sulfonate and mixtures thereof.
- Non-ionic surfactants include secondary alcohol ethoxylates, ethoxylated 2-ethylhexanol, ethoxylated seed oils, butanol caped ethoxylated 2-ethylhexanol and mixtures thereof.
- Preferred non-ionic surfactants include secondary alcohol ethoxylates.
- Cationic surfactants include quaternary surface active compounds.
- Preferred cationic surfactants include quaternary surface active compounds having at least one of an ammonium group, a sulfonium group, a phosphonium group, an iodinium group and an arsonium group. More preferred cationic surfactants include at least one of a dialkyldimethylammonium chloride and alkyl dimethyl benzyl ammonium chloride.
- Still more preferred cationic surfactants include at least one of C16-18 dialkyldimethylammonium chloride, a Cs-is alkyl dimethyl benzyl ammonium chloride di-tallow dimethyl ammonium chloride and di-tallow dimethyl ammonium chloride. Most preferred cationic surfactant includes di-tallow dimethyl ammonium chloride.
- Amphoteric surfactants include betaines, amine oxides, alkylamidoalkylamines, alkyl- substituted amine oxides, acylated amino acids, derivatives of aliphatic quaternary ammonium compounds and mixtures thereof.
- Preferred amphoteric surfactants include derivatives of aliphatic quaternary ammonium compounds. More preferred amphoteric surfactants include derivatives of aliphatic quaternary ammonium compounds with a long chain group having 8 to 18 carbon atoms. Still more preferred amphoteric surfactants include at least one of C12-14 alkyldimethylamine oxide, 3-(N,N-dimethyl-N-hexadecyl-ammonio)propane- 1-sulfonate,
- amphoteric surfactants include at least one of C12-14 alkyldimethylamine oxide.
- the fabric care composition of the present invention comprises: a fabric softening silicone. More preferably, the fabric care composition of the present invention, comprises: 0.05 to 10 wt% (preferably, 0.1 to 5 wt%; more preferably, 0.1 to 3 wt %), based on the weight of the fabric care composition, of a fabric softening silicone.
- the fabric care composition of the present invention comprises: 0.05 to 10 wt% (preferably, 0.1 to 5 wt%; more preferably, 0.1 to 3 wt%), based on the weight of the fabric care composition, of a fabric softening silicone; wherein the fabric softening silicone is selected from the group consisting of a nitrogen free silicone polymer, an anionic silicone polymer and mixtures thereof.
- the fabric care composition of the present invention comprises: 0.05 to 10 wt% (preferably, 0.1 to 5 wt%; more preferably, 0.1 to 3 wt%), based on the weight of the fabric care composition, of a fabric softening silicone; wherein the fabric softening silicone is selected from the group consisting of a nitrogen free silicone polymer, an anionic silicone polymer and mixtures thereof; and wherein the fabric softening silicone is in the form of an emulsion.
- Preferred nitrogen free silicone polymers include nonionic nitrogen free silicone polymers, zwitterionic nitrogen free silicone polymers, amphoteric nitrogen free silicone polymers and mixtures thereof.
- Preferred nitrogen free silicone polymers have formula (1), (2) or (3)(preferably, formula (wherein each R 1 is independently selected from the group consisting of a Ci-20 alkyl group, a C2-20 alkenyl group, a CV20 aryl group, a C7-20 arylalkyl group, a C7-20 alkylaryl group, a C7-20 arylalkenyl group and a C7-20 alkenylaryl group (preferably, wherein R 1 is selected from the group consisting of a methyl group, a phenyl group and a phenylalkyl group); wherein each R 2 is independently selected from the group consisting of a Ci-20 alkyl group, a C2-20 alkenyl group, a Ce-20 aryl group, a C7-20 arylalkyl group, a
- each R 3 is independently selected from the group consisting of a hydrogen, a C M alkyl group and an acetyl group; wherein at least one R 2 is a poly(ethyleneoxy/propyleneoxy) copolymer group having formula (4); wherein a has a value such that the viscosity of the nitrogen free silicone polymer according to formula (1) or formula (3) is 2 to 50,000,000 centistokes at 20 °C (preferably, 10,000 to 800,000 centistokes at 20 °C); wherein b is 1 to 50 (preferably, 1 to 30); wherein c is 1 to 50 (preferably, 1 to 30); wherein n is i to 50 (preferably, 3 to 5); wherein m is 1 to 100 (preferably, 6 to 100); wherein p is 0 to 14 (preferably, 0 to 3); wherein m + p is 5 to 150 (preferably, 7 to
- Preferred nitrogen free silicone polymers include anionic silicone polymers.
- Anionic silicone polymers are described, for example, in The Encyclopedia of Polymer Science, volume 11, p. 765.
- anionic silicone polymers include silicones that incorporate carboxylic, sulphate, sulphonic, phosphate and/or phosphonate functionality.
- Preferred anionic silicone polymers incorporated carboxyl functionality (e.g., carboxylic acid or carboxylate anion).
- Preferred anionic silicone polymers have a weight average molecular weight of 1,000 to 100,000 Daltons (preferably, 2,000 to 50,000 Daltons; more preferably, 5,000 to 50,000 Daltons; most preferably, 10,000 to 50,000 Daltons).
- the anionic silicone polymer has an anionic group content of at least 1 mol% (more preferably, at least 2 mol%).
- the anionic groups on the anionic silicone polymer are not located on the terminal position of the longest linear silicone chain.
- Preferred anionic silicone polymers have anionic groups at a midchain position on the silicone. More preferred anionic silicone polymers have anionic groups located at least 5 silicone atoms from a terminal position on the longest linear silicone chain in the anionic silicone polymer.
- the fabric care composition of the present invention comprises a deposition aid polymer; wherein the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the deposition aid polymer enhances deposition of silicone from the fabric care composition onto a fabric (preferably, a cotton fabric).
- a deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the deposition aid polymer enhances deposition of silicone from the fabric care composition onto a fabric (preferably, a cotton fabric).
- the fabric care composition of the present invention comprises 0.05 to 5.0 wt% (preferably, 0.075 to 3.0 wt%; more preferably, 0.09 to 2.5 wt%; most preferably, 0.1 to 2.25 wt%), based on the weight of the fabric care composition, of a deposition aid polymer; wherein the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the deposition aid polymer enhances deposition of silicone from the fabric care composition onto a fabric (preferably, a cotton fabric).
- the fabric care composition of the present invention comprises 0.05 to 5.0 wt% (preferably, 0.075 to 3.0 wt%; more preferably, 0.09 to 2.5 wt%; most preferably, 0.1 to 2.25 wt%), based on the weight of the fabric care composition, of a deposition aid polymer; wherein the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the deposition aid polymer enhances deposition of silicone from the fabric care composition onto a fabric (preferably, a cotton fabric); wherein the deposition aid polymer has a Kjeldahl nitrogen content corrected for ash and volatiles, TKN, of > 0.5 wt% (preferably, 0.5 to 5.0 wt%; more preferably, 0.5 to 4.0 wt%; still more preferably, 0.75 to 2.5 wt%; most preferably, 1 to 2 wt%) (measured using a Buchi KjelMaster K-375 automated analyzer, corrected
- the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties. More preferably, the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the dextran polymer is a branched chain dextran polymer.
- the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the dextran polymer comprises a branched chain dextran polymer; wherein the branched chain dextran polymer comprises a plurality of glucose structural units; wherein 90 to 98 mol% (preferably, 92.5 to 97.5 mol%; more preferably, 93 to 97 mol%; most preferably, 94 to 96 mol%) of the glucose structural units are connected by a-D-1,6 linkages and 2 to 10 mol% (preferably, 2.5 to 7.5 mol%; more preferably, 3 to 7 mol%; most preferably, 4 to 6 mol%) of the glucose structural units are connected by a- 1,3 linkages.
- the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the dextran polymer is a branched chain dextran polymer; wherein the branched chain dextran polymer comprises a plurality of glucose structural units; wherein 90 to 98 mol% (preferably, 92.5 to 97.5 mol%; more preferably, 93 to 97 mol%; most preferably, 94 to 96 mol%) of the glucose structural units are connected by a-D-1,6 linkages and 2 to 10 mol% (preferably, 2.5 to 7.5 mol%; more preferably, 3 to 7 mol%; most preferably, 4 to 6 mol%) of the glucose structural units are connected by a- 1,3 linkages according to formula (I) wherein R is selected from a hydrogen, a Ci-4 alkyl group and a hydroxy C M alkyl group; and wherein the average branch off the dextran polymer backbone is ⁇ 3 anhydroglucose units
- the dextran polymer contain less than 0.01 wt%, based on weight of the dextran polymer, of alternan. More preferably, the dextran polymer contain less than 0.001 wt%, based on weight of the dextran polymer, ofreteman. Most preferably, the dextran polymer contain less than the detectable limit of alteman.
- the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties. More preferably, the deposition aid polymer is a dextran polymer functionalized with quaternary ammonium moieties; wherein the quaternary ammonium moieties are of formula (A) bound to a pendant oxygen on the dextran polymer wherein pendant oxygen on the dextran polymer; wherein X is a divalent linking group bonding the quaternary ammonium moiety to the pendent oxygen on the dextran polymer (preferably, wherein X is selected from divalent hydrocarbon groups, which may optionally be substituted (e.g., with a hydroxy group, an alkoxy group, an ether group); more preferably, wherein X is a -CH 2 CH(OR 6 )CH 2 - group; wherein R 6 is selected from the group consisting of a hydrogen and a Ci- 4 alkyl group (preferably, a hydrogen); most
- the deposition aid polymer is a cationic dextran polymer; wherein the cationic dextran polymer, comprises a dextran polymer functionalized with quaternary ammonium groups; wherein the quaternary ammonium groups are selected from the group consisting of quaternary ammonium moieties of formula (B) bound to a pendent oxygen on the dextran polymer wherein R 6 is selected from the group consisting of a hydrogen and a C1-4 alkyl group (preferably, a hydrogen); and wherein each R 7 is independently selected from the group consisting of a methyl group and an ethyl group (preferably, a methyl group).
- the deposition aid polymer comprises ⁇ 0.001 meg/gram (preferably, ⁇ 0.0001 meq/gram; more preferably, ⁇ 0.00001 meq/gram; most preferably, ⁇ detectable limit) of aldehyde functionality.
- the deposition aid polymer comprises ⁇ 0.1 % (preferably, ⁇ 0.01 %; more preferably, ⁇ 0.001 %; most preferably, ⁇ detectable limit) , of the linkages between individual glucose units in the deposition aid polymer are b-1,4 linkages.
- the deposition aid polymer comprises ⁇ 0.1 % (preferably, ⁇ 0.01 %; more preferably, ⁇ 0.001 %; most preferably, ⁇ detectable limit) , of the linkages between individual glucose units in the deposition aid polymer are b-1,3 linkages.
- the deposition aid polymer comprises ⁇ 0.001 meq/gram (preferably, ⁇ 0.0001 meq/gram; more preferably, ⁇ 0.00001 meq/gram; most preferably, ⁇ detectable limit) of silicone containing functionality.
- the fabric care composition of the present invention is a laundry detergent.
- the fabric care composition of the present invention is a laundry detergent.
- the laundry detergent optional comprises additives selected from the group consisting of builders (e.g., sodium citrate), hydrotropes (e.g., ethanol, propylene glycol), enzymes (e.g., protease, lipase, amylase), preservatives, perfumes (e.g., essential oils such as D-limonene), fluorescent whitening agents, dyes, additive polymers and mixtures thereof.
- the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 1 to 10 wt%; more preferably, 2 to 8 wt%; most preferably, 5 to 7.5 wt%), based on the weight of the fabric care composition, of a hydrotrope.
- the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 1 to 10 wt%; more preferably, 2 to 8 wt%; most preferably, 5 to 7.5 wt%), based on the weight of the fabric care composition, of a hydrotrope; wherein the hydrotrope is selected from the group consisting of alkyl hydroxides; glycols, urea; monoethanolamine; diethanolamine; triethanolamine; calcium, sodium, potassium, ammonium and alkanol ammonium salts of xylene sulfonic acid, toluene sulfonic acid, ethylbenzene sulfonic acid and cumene sulfonic acid; salts thereof and mixtures thereof.
- a hydrotrope is selected from the group consisting of alkyl hydroxides; glycols, urea; monoethanolamine; diethanolamine; triethanolamine; calcium, sodium, potassium, ammonium and alkanol ammonium salts of x
- the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 1 to 10 wt%; more preferably, 2 to 8 wt%; most preferably, 5 to 7.5 wt%), based on the weight of the fabric care composition, of a hydrotrope; wherein the hydrotrope is selected from the group consisting of ethanol, propylene glycol, sodium toluene sulfonate, potassium toluene sulfonate, sodium xylene sulfonate, ammonium xylene sulfonate, potassium xylene sulfonate, calcium xylene sulfonate, sodium cumene sulfonate, ammonium cumene sulfonate and mixtures thereof.
- a hydrotrope is selected from the group consisting of ethanol, propylene glycol, sodium toluene sulfonate, potassium toluene sulfonate, sodium xy
- the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 1 to 10 wt%; more preferably, 2 to 8 wt%; most preferably, 5 to 7.5 wt%), based on the weight of the fabric care composition, of a hydrotrope; wherein the hydrotrope includes at least one of ethanol, propylene glycol and sodium xylene sulfonate.
- the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 1 to 10 wt%; more preferably, 2 to 8 wt%; most preferably, 5 to 7.5 wt%), based on the weight of the fabric care composition, of a hydrotrope; wherein the hydrotrope is a mixture of ethanol, propylene glycol and sodium xylene sulfonate.
- the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 0.1 to 10 wt%), based on the weight of the fabric care composition, of a fragrance. More preferably, the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 0.1 to 10 wt%), based on the weight of the fabric care composition, of a fragrance; wherein the fragrance includes an essential oil.
- the fabric care composition of the present invention further comprises: 0 to 10 wt% (preferably, 0.1 to 10 wt%), based on the weight of the fabric care composition, of a fragrance; wherein the fragrance includes esters (e.g., geranyl acetate); terpenes (e.g., geranol, citronellol, linalool, limonene) and aromatic compounds (e.g., vanilla, eugenol).
- esters e.g., geranyl acetate
- terpenes e.g., geranol, citronellol, linalool, limonene
- aromatic compounds e.g., vanilla, eugenol
- the fabric care composition of the present invention further comprises: 0 to 30 wt% (preferably, 0.1 to 15 wt%; more preferably, 1 to 10 wt%), based on the weight of the fabric care composition, of a builder.
- the fabric care composition of the present invention further comprises: 0 to 30 wt% (preferably, 0.1 to 15 wt%; more preferably, 1 to 10 wt%), based on the weight of the fabric care composition, of a builder; wherein the builder is selected from the group consisting of inorganic builders (e.g., tripolyphosphate, pyrophosphate); alkali metal carbonates; borates; bicarbonates; hydroxides; zeolites; citrates (e.g., sodium citrate); polycarboxylates; monocarboxylates; aminotrismethylenephosphonic acid; salts of aminotrismethylenephosphonic acid; hydroxyethanediphosphonic acid; salts of hydroxy ethanediphosphonic acid; diethylenetriaminepenta(methylenephosphonic acid); salts of diethylenetriaminepenta(methylenephosphonic acid) ; ethylenediaminetetraethylene- phosphonic acid; salts of ethylenediaminetetraethylene- phospho
- the fabric care composition of the present invention further comprises: 0 to 30 wt% (preferably, 0.1 to 15 wt%; more preferably, 1 to 10 wt%), based on the weight of the fabric care composition, of a builder; wherein the builder includes a citrate (preferably, a sodium citrate).
- the fabric care composition is in a liquid form having a pH from 6 to 12.5; preferably at least 6.5, preferably at least 7, preferably at least 7.5; preferably no greater than 12.25, preferably no greater than 12, preferably no greater than 11.5.
- Suitable bases to adjust the pH of the formulation include mineral bases such as sodium hydroxide (including soda ash) and potassium hydroxide; sodium bicarbonate, sodium silicate, ammonium hydroxide; and organic bases such as mono-, di- or tri-ethanolamine; or 2-dimethylamino-2-methyl-l- propanol (DMAMP). Mixtures of bases may be used.
- Suitable acids to adjust the pH of the aqueous medium include mineral acid such as hydrochloric acid, phosphorus acid, and sulfuric acid; and organic acids such as acetic acid. Mixtures of acids may be used. The formulation may be adjusted to a higher pH with base and then back titrated to the ranges described above with acid.
- the present invention provides a method of treating an article of laundry, comprising: providing an article of laundry; providing a fabric care composition of the present invention; providing a bath water; and applying the bath water and the fabric care composition to the article of laundry to provide a treated article of laundry; wherein the fabric care benefit agent is associated with the treated article of laundry (preferably, wherein the fabric care benefit agent is not covalently bonded to the treated article of laundry).
- the present invention provides a method of treating an article of laundry, comprising: providing an article of laundry; providing a fabric care composition of the present invention; providing a bath water; and applying the bath water and the fabric care composition to the article of laundry to provide a treated article of laundry; wherein the fabric care benefit agent is associated with the treated article of laundry (preferably, wherein the fabric care benefit agent is not covalently bonded to the treated article of laundry) and wherein the deposition aid polymer improves the laundry delivery efficacy of the fabric care benefit agent (preferably, wherein the fabric care benefit agent is a fabric softening silicone).
- the modified carbohydrate polymers in the Examples were characterized as follows. [0038] The volatiles and ash content (measured as sodium chloride) were determined as described in ASTM method D-2364.
- TKN total Kjeldahl nitrogen content
- Example SI Synthesis of Branched Chain Cationic Dextran Polymer
- a 500 mL, four necked, round bottom flask fitted with a rubber serum cap, a nitrogen inlet, a pressure equalizing addition funnel, a stirring paddle and motor, a subsurface thermocouple connected to a J-KEM controller and a Friedrich condenser connected to a mineral oil bubbler was charged with dextran (30.33 g; Aldrich product #D4876) and deionized water (160.75 g).
- the weight average molecular weight of the dextran was 130,000 to 170,000 Daltons.
- the addition funnel was charged with a 70% aqueous solution of 2,3-epoxypropyltrimethylammonium chloride (27.13 g; QUAB ® 151 available from SKW QUAB Chemicals).
- the flask contents were allowed to stir until the dextran dissolved in the deionized water. While the contents were stirring, the apparatus was purged with nitrogen to displace any oxygen entrained in the system. The nitrogen flow rate was about 1 bubble per second.
- the mixture was purged with nitrogen while stirring for one hour. Using a plastic syringe, a 25% aqueous sodium hydroxide solution (4.76 g) was added over a period of a few minutes to the flask contents with stirring under nitrogen.
- the flask contents were then allowed to stir under nitrogen for 30 minutes.
- the contents of the addition funnel were then charged to the flask contents dropwise over a few minutes under nitrogen with continued stirring. After the contents of the addition funnel were transferred to the flask contents, the mixture was allowed to stir for 5 minutes. Then heat was applied to the flask contents with a heating mantle controlled using the J-KEM controller set at 55 °C.
- the flask contents were heated to and maintained at 55 °C for 90 minutes.
- the flask contents were then cooled to room temperature while maintaining a positive nitrogen pressure in the flask.
- acetic acid (2.50 g) was added dropwise to the flask contents via a syringe and the flask contents were stirred for 5 minutes.
- the polymer was recovered by non-solvent precipitation of the aqueous solution with an excess of methanol.
- the precipitated cationic dextran polymer was then recovered by filtration through a Buchner funnel and dried overnight in vacuo at 50 °C.
- the product branched chain cationic dextran polymer was an off-white solid (24.3 g), with a volatiles content of 3.65%, an ash content of 0.37% (as sodium chloride). The volatiles and ash were measured as described in ASTM method D-2364.
- the Kjeldahl nitrogen content was measured using a Buchi KjelMaster K- 375 automated analyzer, and was found to be 1.41% (corrected for volatiles and ash), which corresponds to a trimethylammonium degree of substitution, CS, of 0.19.
- the weight average molecular weight, Mw, of the product cationic dextran polymer was 1,820,000 Daltons.
- Comparative Examples CF1-CF2 and Examples F1-F4 Fabric Care Composition [0041] Fabric care compositions were prepared in each of Comparative Examples CF1- CF2 and Examples F1-F4 having the formulation as described in TABLE 1 and prepared by standard laundry formulation preparation procedure. TABLE 1
- the silicone in wash deposition of the silicone containing fabric care compositions was evaluated for each of the compositions of Comparative Examples CF1-CF2 and Examples F1-F4 on cotton.
- the cotton was laundered with the silicone containing fabric care compositions in a Terg-O-tometer under typical washing conditions (ambient wash temperatures, water hardness: 200 ppm Ca 2+ :Mg 2+ of 3:1 mole ratio, one 16 minute wash cycle and one three minute rinse) using a silicone containing fabric care composition dosage of 1.0 g/L of water.
- the soil anti-redeposition of the fabric care compositions was evaluated for each of the compositions of Comparative Examples CF1-CF2 and Example FI on four types of fabric (cotton interlock, cotton, polyester/cotton blend, cotton terry) by washing the fabrics in a Terg-O-tometer under typical washing conditions (ambient wash temperature, water hardness: 200 ppm Ca 2+ :Mg 2+ of 3:1 mole ratio, with a 60 minute wash and a 3 minute rinse, 1 L/wash) using a detergent dosage of 0.5 g/L.
- An orange (high iron content) clay slurry (0.63 g Red Art Clay) and dust sebum dispersion (2.5 g) was the added soil load.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
Claims
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA3172085A CA3172085A1 (en) | 2020-03-24 | 2021-03-17 | Fabric care composition |
| CN202180023107.6A CN115397964B (en) | 2020-03-24 | 2021-03-17 | Fabric care compositions |
| BR112022019070A BR112022019070A2 (en) | 2020-03-24 | 2021-03-17 | FABRIC CARE COMPOSITION AND METHOD FOR TREATMENT OF A LAUNDRY ARTICLE |
| JP2022557082A JP7720319B2 (en) | 2020-03-24 | 2021-03-17 | Fabric Care Composition |
| EP21718285.6A EP4127121B1 (en) | 2020-03-24 | 2021-03-17 | Fabric care composition |
| KR1020227036127A KR20220158253A (en) | 2020-03-24 | 2021-03-17 | fabric care composition |
| US17/796,029 US12203053B2 (en) | 2020-03-24 | 2021-03-17 | Fabric care composition |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202062993769P | 2020-03-24 | 2020-03-24 | |
| US62/993,769 | 2020-03-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021194808A1 true WO2021194808A1 (en) | 2021-09-30 |
Family
ID=75478176
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2021/022654 Ceased WO2021194808A1 (en) | 2020-03-24 | 2021-03-17 | Fabric care composition |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US12203053B2 (en) |
| EP (1) | EP4127121B1 (en) |
| JP (1) | JP7720319B2 (en) |
| KR (1) | KR20220158253A (en) |
| CN (1) | CN115397964B (en) |
| BR (1) | BR112022019070A2 (en) |
| CA (1) | CA3172085A1 (en) |
| WO (1) | WO2021194808A1 (en) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023146784A1 (en) | 2022-01-28 | 2023-08-03 | Dow Global Technologies Llc | Fabric care composition |
| EP4321604A1 (en) | 2022-08-08 | 2024-02-14 | The Procter & Gamble Company | A fabric and home care composition comprising surfactant and a polyester |
| WO2024119298A1 (en) | 2022-12-05 | 2024-06-13 | The Procter & Gamble Company | Fabric and home care composition comprising a polyalkylenecarbonate compound |
| EP4386074A1 (en) | 2022-12-16 | 2024-06-19 | The Procter & Gamble Company | Fabric and home care composition |
| WO2024129520A1 (en) | 2022-12-12 | 2024-06-20 | The Procter & Gamble Company | Fabric and home care composition |
| EP4458932A1 (en) | 2023-05-04 | 2024-11-06 | The Procter & Gamble Company | A fabric and home care composition |
| EP4458933A1 (en) | 2023-05-05 | 2024-11-06 | The Procter & Gamble Company | A fabric and home care composition comprising a propoxylated polyol |
| EP4484536A1 (en) | 2023-06-26 | 2025-01-01 | The Procter & Gamble Company | Fabric and home care composition |
| WO2025064312A1 (en) * | 2023-09-18 | 2025-03-27 | Dow Global Technologies Llc | Laundry detergent formulation depositing silicone |
| EP4549540A1 (en) | 2023-11-02 | 2025-05-07 | The Procter & Gamble Company | Fabric and home care composition |
| EP4553137A1 (en) | 2023-11-08 | 2025-05-14 | The Procter & Gamble Company | A fabric and home care composition comprising a polyester |
| EP4570892A1 (en) | 2023-12-15 | 2025-06-18 | The Procter & Gamble Company | A laundry detergent composition |
| EP4570893A1 (en) | 2023-12-15 | 2025-06-18 | The Procter & Gamble Company | Fabric and home care composition |
| EP4610340A1 (en) | 2024-03-01 | 2025-09-03 | The Procter & Gamble Company | A laundry detergent composition comprising a polyester |
| EP4624555A1 (en) | 2024-03-26 | 2025-10-01 | The Procter & Gamble Company | Fabric and home care compositions |
| EP4624554A1 (en) | 2024-03-26 | 2025-10-01 | The Procter & Gamble Company | Fabric care compositions |
| EP4636063A1 (en) | 2024-04-19 | 2025-10-22 | The Procter & Gamble Company | A unit dose laundry detergent product |
| EP4660287A1 (en) | 2024-06-06 | 2025-12-10 | The Procter & Gamble Company | Use of a polysaccharide ester in a laundry detergent composition |
| EP4663732A1 (en) | 2024-06-10 | 2025-12-17 | The Procter & Gamble Company | Use of graft polymer in a laundry detergent composition |
| EP4663733A1 (en) | 2024-06-10 | 2025-12-17 | The Procter & Gamble Company | Use of a graft polymer in a laundering process |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115397964B (en) * | 2020-03-24 | 2025-08-15 | 罗门哈斯公司 | Fabric care compositions |
| WO2022203868A1 (en) * | 2021-03-23 | 2022-09-29 | Dow Global Technologies Llc | Fabric care formulation |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000024856A1 (en) * | 1998-10-23 | 2000-05-04 | The Procter & Gamble Company | Fabric care composition and method |
| US6833347B1 (en) | 1997-12-23 | 2004-12-21 | The Proctor & Gamble Company | Laundry detergent compositions with cellulosic polymers to provide appearance and integrity benefits to fabrics laundered therewith |
| US20150232785A1 (en) * | 2014-02-14 | 2015-08-20 | E I Du Pont De Nemours And Company | Polysaccharides for viscosity modification |
| EP2922936A1 (en) * | 2012-11-20 | 2015-09-30 | Unilever PLC, a company registered in England and Wales under company no. 41424 of | Laundry compositions |
| WO2016160738A2 (en) * | 2015-04-03 | 2016-10-06 | E I Du Pont De Nemours And Company | Gelling dextran ethers |
| WO2017083228A1 (en) * | 2015-11-13 | 2017-05-18 | E. I. Du Pont De Nemours And Company | Glucan fiber compositions for use in laundry care and fabric care |
| US20170335242A1 (en) | 2014-11-11 | 2017-11-23 | Rohm And Haas Company | Cationic carbohydrate polymers for fabric care |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2484419B1 (en) | 1980-06-16 | 1985-10-04 | Meito Sangyo Kk | DEXTRANNE DERIVATIVES AND THEIR SALTS, THEIR PREPARATION AND COSMETIC PRODUCTS COMPRISING SUCH SUBSTANCES |
| US7341674B1 (en) * | 1998-12-09 | 2008-03-11 | The Procter & Gamble Company | Fabric wrinkle control composition and method |
| CN1357033A (en) * | 1999-01-11 | 2002-07-03 | 宝洁公司 | Fabric care compsn. for directly applying to fabrics |
| US7012053B1 (en) | 1999-10-22 | 2006-03-14 | The Procter & Gamble Company | Fabric care composition and method comprising a fabric care polysaccharide and wrinkle control agent |
| GB0313900D0 (en) | 2003-06-16 | 2003-07-23 | Unilever Plc | Laundry treatment compositions |
| US20050065055A1 (en) * | 2003-09-19 | 2005-03-24 | Jerry Barnes | Aqueous cleaning composition for hard surfaces |
| US7589051B2 (en) | 2004-04-08 | 2009-09-15 | Hercules Incorporated | Cationic, oxidized polysaccharides in conditioning applications |
| WO2006016870A1 (en) * | 2004-07-12 | 2006-02-16 | The Procter & Gamble Company | Liquid laundry detergent compositions with silicone fabric care agents |
| CA2682462A1 (en) | 2007-04-02 | 2008-10-09 | The Procter & Gamble Company | Fabric care composition |
| JP4954793B2 (en) | 2007-05-24 | 2012-06-20 | 花王株式会社 | Textile treatment composition |
| EP3374401B1 (en) | 2015-11-13 | 2022-04-06 | Nutrition & Biosciences USA 4, Inc. | Glucan fiber compositions for use in laundry care and fabric care |
| WO2020051049A1 (en) * | 2018-09-06 | 2020-03-12 | Dow Global Technologies Llc | Fabric care composition |
| US11814608B2 (en) * | 2018-10-29 | 2023-11-14 | Dow Global Technologies Llc | Fabric care composition comprising silicone and quaternary ammonium-functionalized carbohydrate polymer |
| CN115397964B (en) * | 2020-03-24 | 2025-08-15 | 罗门哈斯公司 | Fabric care compositions |
-
2021
- 2021-03-17 CN CN202180023107.6A patent/CN115397964B/en active Active
- 2021-03-17 CA CA3172085A patent/CA3172085A1/en active Pending
- 2021-03-17 WO PCT/US2021/022654 patent/WO2021194808A1/en not_active Ceased
- 2021-03-17 US US17/796,029 patent/US12203053B2/en active Active
- 2021-03-17 BR BR112022019070A patent/BR112022019070A2/en unknown
- 2021-03-17 JP JP2022557082A patent/JP7720319B2/en active Active
- 2021-03-17 KR KR1020227036127A patent/KR20220158253A/en not_active Withdrawn
- 2021-03-17 EP EP21718285.6A patent/EP4127121B1/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6833347B1 (en) | 1997-12-23 | 2004-12-21 | The Proctor & Gamble Company | Laundry detergent compositions with cellulosic polymers to provide appearance and integrity benefits to fabrics laundered therewith |
| WO2000024856A1 (en) * | 1998-10-23 | 2000-05-04 | The Procter & Gamble Company | Fabric care composition and method |
| EP2922936A1 (en) * | 2012-11-20 | 2015-09-30 | Unilever PLC, a company registered in England and Wales under company no. 41424 of | Laundry compositions |
| US20150232785A1 (en) * | 2014-02-14 | 2015-08-20 | E I Du Pont De Nemours And Company | Polysaccharides for viscosity modification |
| US20170335242A1 (en) | 2014-11-11 | 2017-11-23 | Rohm And Haas Company | Cationic carbohydrate polymers for fabric care |
| WO2016160738A2 (en) * | 2015-04-03 | 2016-10-06 | E I Du Pont De Nemours And Company | Gelling dextran ethers |
| WO2017083228A1 (en) * | 2015-11-13 | 2017-05-18 | E. I. Du Pont De Nemours And Company | Glucan fiber compositions for use in laundry care and fabric care |
Non-Patent Citations (3)
| Title |
|---|
| J. P. SIBILIA: "A Guide to Materials Characterization and Chemical Analysis", 1988, VCH, pages: 81 - 84 |
| THE ENCYCLOPEDIA OF POLYMER SCIENCE, vol. 11, pages 765 |
| W. W. YAUJ. J. KIRKLANDD. D. BLY: "Modem Size Exclusion Chromatography", 1979, WILEY-LNTERSCIENCE |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023146784A1 (en) | 2022-01-28 | 2023-08-03 | Dow Global Technologies Llc | Fabric care composition |
| EP4321604A1 (en) | 2022-08-08 | 2024-02-14 | The Procter & Gamble Company | A fabric and home care composition comprising surfactant and a polyester |
| WO2024036126A1 (en) | 2022-08-08 | 2024-02-15 | The Procter & Gamble Company | A fabric and home care composition comprising surfactant and a polyester |
| WO2024119298A1 (en) | 2022-12-05 | 2024-06-13 | The Procter & Gamble Company | Fabric and home care composition comprising a polyalkylenecarbonate compound |
| WO2024129520A1 (en) | 2022-12-12 | 2024-06-20 | The Procter & Gamble Company | Fabric and home care composition |
| EP4386074A1 (en) | 2022-12-16 | 2024-06-19 | The Procter & Gamble Company | Fabric and home care composition |
| EP4458932A1 (en) | 2023-05-04 | 2024-11-06 | The Procter & Gamble Company | A fabric and home care composition |
| EP4458933A1 (en) | 2023-05-05 | 2024-11-06 | The Procter & Gamble Company | A fabric and home care composition comprising a propoxylated polyol |
| WO2024233240A1 (en) | 2023-05-05 | 2024-11-14 | The Procter & Gamble Company | A fabric and home care composition comprising a propoxylated polyol |
| EP4484536A1 (en) | 2023-06-26 | 2025-01-01 | The Procter & Gamble Company | Fabric and home care composition |
| WO2025006207A1 (en) | 2023-06-26 | 2025-01-02 | The Procter & Gamble Company | Fabric and home care composition |
| WO2025064312A1 (en) * | 2023-09-18 | 2025-03-27 | Dow Global Technologies Llc | Laundry detergent formulation depositing silicone |
| EP4549540A1 (en) | 2023-11-02 | 2025-05-07 | The Procter & Gamble Company | Fabric and home care composition |
| WO2025096273A1 (en) | 2023-11-02 | 2025-05-08 | The Procter & Gamble Company | Fabric and home care composition |
| EP4553137A1 (en) | 2023-11-08 | 2025-05-14 | The Procter & Gamble Company | A fabric and home care composition comprising a polyester |
| WO2025101680A1 (en) | 2023-11-08 | 2025-05-15 | The Procter & Gamble Company | A fabric and home care composition comprising a polyester |
| EP4570892A1 (en) | 2023-12-15 | 2025-06-18 | The Procter & Gamble Company | A laundry detergent composition |
| EP4570893A1 (en) | 2023-12-15 | 2025-06-18 | The Procter & Gamble Company | Fabric and home care composition |
| WO2025128415A1 (en) | 2023-12-15 | 2025-06-19 | The Procter & Gamble Company | A laundry detergent composition |
| WO2025128416A1 (en) | 2023-12-15 | 2025-06-19 | The Procter & Gamble Company | Fabric and home care composition |
| EP4610340A1 (en) | 2024-03-01 | 2025-09-03 | The Procter & Gamble Company | A laundry detergent composition comprising a polyester |
| EP4624555A1 (en) | 2024-03-26 | 2025-10-01 | The Procter & Gamble Company | Fabric and home care compositions |
| EP4624554A1 (en) | 2024-03-26 | 2025-10-01 | The Procter & Gamble Company | Fabric care compositions |
| WO2025207301A1 (en) | 2024-03-26 | 2025-10-02 | The Procter & Gamble Company | Fabric and home care compositions |
| WO2025207550A1 (en) | 2024-03-26 | 2025-10-02 | The Procter & Gamble Company | Fabric care compositions |
| EP4636063A1 (en) | 2024-04-19 | 2025-10-22 | The Procter & Gamble Company | A unit dose laundry detergent product |
| WO2025221588A1 (en) | 2024-04-19 | 2025-10-23 | The Procter & Gamble Company | A unit dose laundry detergent product |
| EP4660287A1 (en) | 2024-06-06 | 2025-12-10 | The Procter & Gamble Company | Use of a polysaccharide ester in a laundry detergent composition |
| WO2025255062A1 (en) | 2024-06-06 | 2025-12-11 | The Procter & Gamble Company | Use of a polysaccharide ester in a laundry detergent composition |
| EP4663732A1 (en) | 2024-06-10 | 2025-12-17 | The Procter & Gamble Company | Use of graft polymer in a laundry detergent composition |
| EP4663733A1 (en) | 2024-06-10 | 2025-12-17 | The Procter & Gamble Company | Use of a graft polymer in a laundering process |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115397964B (en) | 2025-08-15 |
| US20230100700A1 (en) | 2023-03-30 |
| US12203053B2 (en) | 2025-01-21 |
| BR112022019070A2 (en) | 2022-11-08 |
| EP4127121A1 (en) | 2023-02-08 |
| JP7720319B2 (en) | 2025-08-07 |
| CN115397964A (en) | 2022-11-25 |
| JP2023520756A (en) | 2023-05-19 |
| EP4127121B1 (en) | 2025-07-30 |
| CA3172085A1 (en) | 2021-09-30 |
| KR20220158253A (en) | 2022-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12203053B2 (en) | Fabric care composition | |
| AU2013298898B2 (en) | Concentrated liquid detergent compositions | |
| CN104508000B (en) | Alkaline liquid laundry detergent composition comprising polyester | |
| WO2020091988A1 (en) | Fabric care composition with silicone | |
| EP4469546A1 (en) | Fabric care composition | |
| WO2022203868A1 (en) | Fabric care formulation | |
| EP4314221A1 (en) | Fabric care composition | |
| WO2021118774A1 (en) | Fabric care composition | |
| WO2023183225A1 (en) | Fabric care composition | |
| WO2023076190A1 (en) | Laundry detergent formulation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21718285 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 3172085 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 202217053868 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 2022557082 Country of ref document: JP Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022019070 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 20227036127 Country of ref document: KR Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2021718285 Country of ref document: EP Effective date: 20221024 |
|
| ENP | Entry into the national phase |
Ref document number: 112022019070 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220922 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2021718285 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 202180023107.6 Country of ref document: CN |