WO2021046973A1 - 共光束扫描的视网膜成像系统 - Google Patents
共光束扫描的视网膜成像系统 Download PDFInfo
- Publication number
- WO2021046973A1 WO2021046973A1 PCT/CN2019/112521 CN2019112521W WO2021046973A1 WO 2021046973 A1 WO2021046973 A1 WO 2021046973A1 CN 2019112521 W CN2019112521 W CN 2019112521W WO 2021046973 A1 WO2021046973 A1 WO 2021046973A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- module
- beam splitter
- imaging
- scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1025—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for confocal scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0091—Fixation targets for viewing direction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1015—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/11—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
- A61B3/112—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils for measuring diameter of pupils
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/113—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/15—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
- A61B3/152—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/0012—Surgical microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0028—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0032—Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/008—Details of detection or image processing, including general computer control
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/18—Arrangements with more than one light path, e.g. for comparing two specimens
Definitions
- This application relates to the field of optical imaging technology, and in particular to a common beam scanning retinal imaging system.
- Patent number ZL201010197028.0 proposes a retinal imaging device based on adaptive optics technology.
- the device uses two independent scanning galvanometers to achieve two-dimensional synchronous scanning of the retinal plane to achieve confocal scanning imaging, which can achieve high resolution. Rate imaging function.
- this device can only achieve high-resolution imaging with a maximum field of view of 3 degrees of the human eye.
- the halo zone such as adaptive optics aberration correction, adaptive optics often compromises the imaging field of view while achieving high-resolution imaging, and can only achieve small field of view imaging within 3°.
- the existing laser confocal scanning ophthalmoscope has a large imaging field, but the resolution is not sufficient to observe the fine structure of the retina; the laser confocal scanning ophthalmoscope combined with adaptive optics can observe the fine structure of the retina, but the imaging vision The field is small, and it is impossible to observe the lesions with a larger field of view.
- the technical problem to be solved by this application is to provide a common beam scanning retinal imaging system in view of the above-mentioned shortcomings in the prior art.
- a common beam scanning retinal imaging system including: a light source module, an adaptive optics module, a beam scanning module, a small field of view relay module, and a large field of view relay module , Vision module, pupil monitoring module, detection module, control module and output module;
- the light source module can emit at least two parallel light beams of different wavelengths, and the parallel light beams pass through the adaptive optics module, the beam scanning module, the small field of view relay module or the large field of view relay module in turn to illuminate the human eyes, and the human eyes scatter
- the imaging light carrying human eye aberration information and light intensity information returns along the original path, and is transmitted to the adaptive optics module and the detection module;
- the adaptive optics module is used to receive imaging light containing human eye aberration information, so as to realize real-time measurement and correction of wavefront aberration;
- the beam scanning module includes a dual-axis scanning mirror, the incident end of which is along the optical path is connected to the adaptive optics module through a first transmissive or reflective telescope, and the exit end along the optical path is connected to the second transmissive or reflective telescope Connected with the small field of view relay module or the large field of view relay module to respectively realize small field of view high-resolution imaging and large field of view low-resolution imaging;
- the small field of view relay module is configured as a beam expanding telescope, and the large field of view relay module is configured as a beam reducing telescope;
- the optotype module is used to realize the optotype guidance and fixation of the human eye
- the pupil monitoring module is used to realize the alignment and monitoring of the pupil of the human eye
- the detection module is used to obtain the returned human eye imaging light, convert it into an electrical signal and transmit it to the control module;
- the output module is connected with the control module and is used for displaying and storing human eye imaging images.
- the system also includes a dichroic beam splitter module, which includes a first dichroic beam splitter, a second dichroic beam splitter, a third dichroic beam splitter, and a fourth dichroic beam splitter that are sequentially arranged along the incident light path.
- Dichroic beam splitter includes a first dichroic beam splitter, a second dichroic beam splitter, a third dichroic beam splitter, and a fourth dichroic beam splitter that are sequentially arranged along the incident light path.
- Dichroic beam splitter Dichroic beam splitter
- the light source module includes a light source, a collimator, and a first beam splitter arranged in sequence along the incident light path, which output parallel light beams to the adaptive optics module; the light emitted by the light source is partially transmitted through the collimator.
- the first beam splitter enters the adaptive optics module;
- the adaptive optics module includes a wavefront corrector, a second beam splitter, a filter, and a wavefront sensor that are sequentially arranged along the returning light path of the human eye imaging light, and are connected to the beam scanning module; the light source module outputs The parallel light beams of 1 are reflected to the beam scanning module by the wavefront corrector; the returned imaging light carrying human eye aberration information and light intensity information exits through the beam scanning module, and is reflected to the beam scanning module by the wavefront corrector In the first beam splitter, a part of the light reflected by the first beam splitter is then reflected by the second beam splitter, and reaches the wavefront sensor after passing through the filter to realize wavefront aberration measurement. A part of the second beam splitter is transmitted into the detection module;
- the wavefront sensor receives the imaging light beam containing human eye aberration information and transmits it to the control module for wavefront calculation to realize the detection of wavefront aberration, obtain the wavefront control voltage and output it to the wavefront correction
- the wavefront corrector realizes the correction of the wavefront aberration.
- the detection module includes a fifth dichroic beam splitter, a first detection light path, and a second detection light path, and the fifth dichroic beam splitter transmits the received light to the first detection light path, and at the same time Reflected to the second detection light path;
- the first detection light path includes a first collection lens, a first pinhole, and a first detector;
- the second detection light path includes a second collection lens, a second pinhole, and a second Detector;
- the returned imaging light beam carrying human eye light intensity information is transmitted through the fifth dichroic beam splitter and then output to the first collection lens, and reaches the first detector after passing through the first pinhole to obtain Retina imaging image;
- the returned imaging light beam carrying human eye light intensity information is reflected by the fifth dichroic beam splitter and output to the second collection lens, and reaches the second detector after passing through the second pinhole , Get retinal imaging image;
- the beam scanning module includes a first transmissive or reflective telescope, a biaxial scanning mirror, and a second transmissive or reflective telescope arranged in sequence along the incident light path, and the biaxial scanning mirror outputs a periodic voltage from the control module Drive to realize the horizontal and vertical two-dimensional scanning of the retinal plane.
- the optotype module includes an LED array, an optotype lens, and a first plane reflector, and the light emitted by any lamp bead in the LED array being lit by the control module propagates through the lens It is then reflected by the first plane mirror, and then reflected by the first dichroic beam splitter, and sequentially transmitted through the second dichroic beam splitter, the third dichroic beam splitter, and the fourth dichroic beam splitter Then it reaches the human eye, and the human eye looks at the luminous LED lamp bead to achieve fixation;
- the pupil monitoring module includes a ring-shaped LED array, an imaging lens, and an area array detector.
- the light emitted by the ring-shaped LED array illuminates the pupil of the human eye, and passes through the hollow part of the ring-shaped LED array after being reflected by the pupil of the human eye.
- the imaging lens is finally focused on the area array detector for pupil imaging, and the area array detector will receive the light
- the signal is converted into an electrical signal and then output to the control module.
- the control module obtains the pupil imaging image, and finally outputs it to the output module for display and storage.
- the small field of view relay module includes a transmissive telescope composed of a first lens and a second lens, or a reflective telescope composed of a first spherical reflector and a second spherical reflector, with a magnification greater than 1.
- the small field of view relay module also includes a first focusing mechanism arranged between the two lenses or spherical mirrors of the telescope, the first focusing mechanism includes two orthogonal plane mirrors, the The first focusing mechanism can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye;
- the large field of view relay module includes a transmissive telescope composed of a third lens and a fourth lens, or a reflective telescope composed of a third spherical reflector and a fourth spherical reflector, the magnification of which is less than 1;
- the large field of view relay module also includes a second focusing mechanism arranged between the two lenses or spherical mirrors of the telescope.
- the second focusing mechanism includes two orthogonal plane mirrors. The focusing mechanism can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye.
- the implementation method of the small field of view high-resolution imaging is:
- the light beam emitted by the light source module passes through the wavefront corrector of the adaptive optics module, the light beam scanning module, and the first dichroic beam splitter to be reflected and transmitted to the small field of view relay module before being emitted; Reflected by the second dichroic beam splitter, then transmitted by the third dichroic beam splitter and the fourth dichroic beam splitter, pass through the hollow part of the annular LED array to reach the human eye, and be
- the optical system is focused to a point on the fundus retina, the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the aberration information of the human eye and the light intensity information of the point of the fundus returns along the original path through the beam scanning module And then it is reflected by the wavefront corrector to the first beam splitter.
- the wavefront sensor transmits the received human eye aberration information to the control module, which restores the wavefront aberration and calculates the aberration correction voltage, and then transmits the aberration correction voltage to the wavefront
- the corrector realizes real-time human eye aberration correction; at the same time, another part of the light is transmitted through the second dichroic mirror, and after being completely transmitted through the fifth dichroic dichroic mirror, it passes through the first collecting lens and the second A pinhole finally reaches the first detector, and the first detector converts the obtained fundus retinal light signal into an electrical signal, and outputs it to the control module.
- the control module performs signal synchronization processing and combines the The electrical signal is sampled and reconstructed to obtain a small field of view high-resolution imaging image of the retina, which is then displayed and stored by the output module;
- the light beam emitted from the light source module passes through the wavefront corrector of the adaptive optics module, the beam scanning module, the first dichroic beam splitter, and the second dichroic beam splitter, and then is transmitted by the
- the third dichroic beam splitter reflects into the large field of view relay module and then exits.
- the fourth dichroic beam splitter After being reflected by the fourth dichroic beam splitter, it passes through the hollow part of the annular LED array to reach the human eye, and is The optical system of the eye is focused to a point on the fundus retina, the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the light intensity information of the human eye fundus will return along the original path and exit through the beam scanning module, and then pass through the
- the wavefront corrector is reflected to the first beam splitter, and after the first beam splitter reflects and propagates the light beam to the second beam splitter, it is transmitted through the second beam splitter, and then passed through the fifth second direction.
- the color dichroic mirror is all reflected, and finally reaches the second detector through the second collecting lens and the second pinhole.
- the second detector converts the obtained fundus retinal light signal into an electrical signal, and then outputs it to the second detector.
- the control module the control module performs signal synchronization processing, and reconstructs the electrical signal sampling to obtain a low-resolution imaging image of the retina with a large field of view, which is then displayed and stored by the output module.
- the light source module includes at least two light sources, and multiple light sources may be coupled into a collimator through a fiber coupler to be collimated into parallel light beams; multiple light sources may also be collimated into parallel light beams by respective collimators. After the beam is combined by the dichroic beam splitter, it enters the optical path;
- the light emitted by the light source module includes light with a wavelength of ⁇ 1 and a wavelength of ⁇ 2 , where ⁇ 1 is 600 nm-850 nm, and the light with a wavelength of ⁇ 1 is used for small field of view high-resolution imaging; ⁇ 2 is 900 nm-1000 nm, Light with a wavelength of ⁇ 2 is used for low-resolution imaging with a large field of view;
- the ring-shaped LED array includes at least three LED lamp beads arranged in a ring at equal intervals, the hollow part has a light transmission aperture not less than the imaging beam aperture, and the wavelength of the light emitted by the LED lamp beads is ⁇ 3 , and ⁇ 3 is greater than 1000 nm ;
- the LED array of the visual target module is an equally spaced array of LED lamp beads, the light emitted by it has a wavelength ⁇ 4 , a visible light spectrum ranging from 380 nm to 760 nm, and ⁇ 4 is between ⁇ 1 and ⁇ 2 The difference between them is at least 50nm.
- the first dichroic beam splitter has a reflection effect on light with wavelengths ⁇ 1 and ⁇ 4 and a transmission effect on light with wavelength ⁇ 2;
- the third dichroic beam splitter has a reflection effect on light with wavelengths ⁇ 2 and ⁇ 3 , and has a transmission effect on light with wavelengths ⁇ 1 and ⁇ 4;
- the fourth-second wavelength of the light to the dichroic mirror 2 having a reflection [lambda], 1, ⁇ 3 and ⁇ 4 light has a transmission effect on the wavelength ⁇ .
- the wavefront sensor in the adaptive optics module is selected from a microprism array Hartmann wavefront sensor, a microlens array Hartmann wavefront sensor, a quadrangular pyramid sensor, and a curvature sensor.
- the wavefront corrector is selected from deformable mirrors, liquid crystal spatial light modulators, micro-machined thin-film deformable mirrors, micro-electromechanical deformable mirrors, bi-piezoelectric ceramic deformable mirrors, and liquid deformable mirrors;
- the second beam splitter splits the imaging beam reflected by the first beam splitter, and 5% of the light is reflected by the filter and then enters the wavefront sensor to achieve wavefront aberration measurement; the remaining 95% of the light is Transmitted to the fifth dichroic beam splitter;
- the filter may be a broadband filter, and the transmission wavelength band meets the selected wavelength ⁇ 1 for small field of view high-resolution imaging; it may also be a combination of multiple narrow-band filters, and the transmission wavelength meets the selected wavelength of small field of view high-resolution imaging.
- Wavelength ⁇ 1 the imaging beam of the selected wavelength ⁇ 2 for large-field low-resolution imaging is completely blocked by the filter and does not enter the wavefront sensor;
- the wavefront aberration detected by the wavefront sensor is processed by the control module to obtain the wavefront control voltage and output it to the wavefront corrector to realize the correction of the wavefront aberration.
- the dual-axis scanning mirror can be a two-dimensional scanning galvanometer to realize the horizontal and vertical scanning of the beam; it can also be a combination of two one-dimensional scanning galvanometers, and the scanning directions of the two scanning galvanometers are set to Orthogonal direction, respectively realize the horizontal and vertical scanning of the beam, and the two scanning galvanometers are connected through a transmissive telescope or a reflective telescope to achieve pupil matching;
- the first transmission type telescope or the reflection type telescope is used to connect the wavefront corrector and the biaxial scanning mirror to achieve pupil matching, and its magnification is the biaxial scanning mirror and the wavefront corrector The ratio of the aperture of the beam of light;
- the second transmission-type telescope or the reflection-type telescope is used for conjugate transfer of the output light of the biaxial scanning mirror to the first dichroic beam splitter.
- the common-beam scanning retinal imaging system provided by this application only uses one set of scanning mechanism, which can simultaneously acquire the large-field low-resolution imaging image of the fundus retina and the small-field high-resolution imaging image, and the two types of imaging images are structured by a common optical path. Acquisition and acquisition, so the two types of imaging images have the same center position and imaging speed, and the image characteristics are consistent, which is convenient for comparison processing and operation;
- this application uses adaptive optics technology to correct human eye aberrations in real time, through the common beam synchronous scanning setting, and combining the two relay optical path structures of the small field of view and the large field of view.
- the confocal scanning imaging function in the large field of view is greater than 20 degrees
- the adaptive optics high-resolution imaging function in the small field of view, single-shot small field of view adaptive optics is high
- the resolution imaging field of view is not more than 5 degrees.
- the system can not only observe the large-scale disease focus area of the retina with large field of view imaging, but also observe the fine structure of the focus with small field of view high-resolution imaging.
- a variety of imaging images are acquired through common optical path beam scanning to meet the needs of different application scenarios. Dadi expands the application range of existing confocal imaging equipment.
- Fig. 1 is a schematic block diagram of a common beam scanning retinal imaging system of this application
- FIG. 2 is a diagram of the optical path structure of the retinal imaging system for common beam scanning of the present application
- FIG. 3 is a schematic diagram of the optical path structure of a light source module in an embodiment of the application.
- FIG. 4 is a schematic diagram of the optical path structure of a light source module in another embodiment of the application.
- FIG. 5 is a schematic diagram of the imaging process of the common beam scanning retinal imaging system of this application.
- a common beam scanning retinal imaging system of this embodiment includes: a light source module 1, an adaptive optics module 2, a beam scanning module 3, a small field of view relay module 5, and a large field of view Following module 6, visual target module 9, pupil monitoring module 7, detection module 8, control module 10 and output module 11;
- the light source module 1 can emit at least two parallel light beams of different wavelengths.
- the parallel light beams pass through the adaptive optics module 2, the beam scanning module 3, the small field of view relay module 5, and the large field of view relay module 6 to illuminate the human eye 12.
- the imaging light scattered by the eye 12 and carrying human eye aberration information and light intensity information returns along the original path, and is transmitted to the adaptive optics module 2 and the detection module 8;
- the adaptive optics module 2 is used to receive imaging light containing human eye aberration information to realize real-time measurement and correction of wavefront aberration;
- the beam scanning module 3 includes a biaxial scanning mirror 302, the incident end of which along the optical path is connected to the adaptive optics module 2 through a first transmissive or reflective telescope 301, and the exit end along the optical path is connected to the adaptive optics module 2 through a second transmissive or reflective telescope.
- 303 is connected to the small field of view relay module 5 or the large field of view relay module 6 to realize small field of view high-resolution imaging and large field of view low-resolution imaging respectively;
- the small field of view relay module 5 is configured as a beam expanding telescope, and the large field of view relay module 6 is configured as a beam reducing telescope;
- the optotype module 9 is used to realize the optotype guidance and fixation of the human eye
- the pupil monitoring module 7 is used to realize the alignment and monitoring of the pupil of the human eye
- the detection module 8 is used to obtain the returned human eye imaging light, convert it into an electrical signal and transmit it to the control module 10;
- the output module 11 is connected to the control module 10, and is used for displaying and storing human eye imaging images.
- the light source module 1 includes a light source 101, a collimator 102, and a first beam splitter 103 arranged in sequence along the incident light path, which outputs a parallel beam to the adaptive optics module 2; the light emitted by the light source 101 is partially transmitted through the collimator 102 The first beam splitter 103 enters the adaptive optics module 2.
- the light source module 1 includes at least two light sources 101, and multiple light sources 101 can be coupled into a collimator 102 through a fiber coupler to be collimated into parallel beams; multiple light sources 101 can also be collimated by their respective collimators 102 After being a parallel beam, the beam is combined by a dichroic beam splitter and enters the optical path;
- the light emitted by the light source module 1 includes light with a wavelength of ⁇ 1 and a wavelength of ⁇ 2 , and ⁇ 1 is 600nm-850nm.
- Typical optional wavelengths are 670nm, 730nm, 795nm, 830nm, and more preferably Light of 670nm and 795nm, wavelength ⁇ 1 is used for small field of view high resolution imaging; ⁇ 2 is 900nm-1000nm, wavelength of ⁇ 2 light is used for large field of view high resolution imaging.
- the collimator 102 may be a single lens, or an achromatic lens, or an apochromatic lens, or a combination of lenses, or a parabolic mirror, used to collimate the light beam emitted by the light source 101 into parallel
- the reflective collimator RC12FC-P01 from Thorlabs is selected in this embodiment.
- the beam splitter is a wide-band beam splitter with a transmittance and reflectance ratio of 20:80.
- the pupil monitoring module 7 includes an annular LED array 701, an imaging lens 702 and an area detector 703.
- the light emitted by the annular LED array 701 illuminates the pupil of the human eye, and passes through the hollow part of the annular LED array 701 after being reflected by the pupil of the human eye. After passing through the fourth dichroic beam splitter 404, it is reflected by the third dichroic beam splitter 403, and finally is focused by the imaging lens 702 to the area array detector 703 for pupil imaging.
- the area array detector 703 converts the received light signal into After the electrical signal is output to the control module 10, the pupil imaging image is obtained, and finally output to the output module 11 for display and storage.
- the ring-shaped LED array 701 includes at least three LED lamp beads, which are arranged in a ring at equal intervals, the hollow part has a light transmission aperture not less than the imaging beam aperture, and the wavelength of the light emitted by the LED lamp beads is ⁇ 3 , And ⁇ 3 is greater than 1000nm; the typical optional wavelengths are 1020nm, 1310nm, etc. Preferably, the wavelength of 1020 nm is selected in this embodiment.
- the optotype module 9 includes an LED array 901, an optotype lens 902, and a first plane mirror 903.
- the light emitted by any lamp bead in the LED array 901 after being lit by the control module 10 passes through the optotype lens 902. It is reflected by the first plane mirror 903, and then reflected by the first dichroic dichroic mirror 401, and sequentially transmitted through the second dichroic dichroic mirror 402, the third dichroic dichroic mirror 403, and the fourth dichroic dichroic mirror 404, The hollow part of the annular LED array 701 then reaches the human eye 12, and the human eye looks at the luminous LED lamp bead to achieve fixation.
- the LED array 901 is an LED lamp bead arranged in an evenly spaced array, and the light emitted by it has a wavelength ⁇ 4 , and the difference between ⁇ 4 and ⁇ 1 , ⁇ 2 is at least 50 nm.
- the adaptive optics module 2 includes a wavefront corrector 201, a second beam splitter 202, a filter 203, and a wavefront sensor 204 arranged in sequence along the returning human eye imaging light path, which is connected to the beam scanning module 3;
- the parallel beam output by the module 1 is reflected by the wavefront corrector 201 to the beam scanning module 3;
- the returned imaging light carrying human eye aberration information and light intensity information is emitted from the beam scanning module 3, and is reflected by the wavefront corrector 201 to the first beam scanning module 3.
- a beam splitter 103 part of the light reflected by the first beam splitter 103 is reflected by the second beam splitter 202, and then reaches the wavefront sensor 204 after passing through the filter 203 to achieve wavefront aberration measurement, and the other part is transmitted through the second beam splitter 202 enter the detection module 8.
- the wavefront sensor 204 in the adaptive optics module 2 is selected from the microprism array Hartmann wavefront sensor 204, the microlens array Hartmann wavefront sensor 204, the quadrangular pyramid sensor, and the curvature sensor.
- the wavefront corrector 201 is selected from deformable mirrors, liquid crystal spatial light modulators, micro-machined thin film deformable mirrors, micro-electromechanical deformable mirrors, bi-piezoelectric ceramic deformable mirrors, and liquid deformable mirrors;
- the second beam splitter 202 is a wide-band beam splitter with a transmittance and reflectance ratio of 95:5.
- the second beam splitter 202 splits the imaging beam reflected by the first beam splitter 103, and 5% of the light is reflected by the filter 203 and then enters the wavefront sensor 204 to achieve wavefront aberration measurement; the remaining 95% of the light is transmitted to
- the filter 203 can be a broadband filter 203, and the transmission band meets the selected wavelength ⁇ 1 for small field of view high-resolution imaging; it can also be a combination of multiple narrow-band filters to pass the wavelength It satisfies the selected wavelength ⁇ 1 for small field of view high-resolution imaging ; the imaging light beam of the selected wavelength ⁇ 2 for large field of view low-resolution imaging is completely blocked by the filter 203 and does not enter the wavefront sensor 204;
- the wavefront sensor 204 receives the imaging light beam containing human eye aberration information and transmits it to the control module 10 for wavefront calculation.
- the wavefront sensor 204 realizes the measurement of the wavefront aberration, obtains the wavefront control voltage and outputs it to the wavefront corrector 201.
- the wavefront corrector 201 realizes the correction of the wavefront aberration.
- the beam scanning module 3 includes a first transmissive or reflective telescope 301, a biaxial scanning mirror 302, and a second transmissive or reflective telescope 303 arranged in sequence along the incident light path.
- the biaxial scanning mirror 302 is output periodically by the control module 10.
- the sexual voltage drive realizes the horizontal and vertical two-dimensional scanning of the retinal plane.
- the biaxial scanning mirror 302 can be a two-dimensional scanning galvanometer to realize the horizontal and vertical scanning of the beam; it can also be a combination of two one-dimensional scanning galvanometers, and the scanning direction of the two scanning galvanometers It is set to the orthogonal direction to realize the horizontal and vertical scanning of the beam, and the two scanning galvanometers are connected through a transmissive telescope or a reflective telescope to achieve pupil matching; in this embodiment, the biaxial scanning mirror 302 is a rapid Mirror MR-30-15-G-25 ⁇ 25D.
- the first transmissive telescope or reflective telescope is used to connect the wavefront corrector 201 with the biaxial scanning mirror 302 to achieve pupil matching, and its magnification is the biaxial scanning mirror 302 and the wavefront corrector.
- the second transmission type telescope or the reflection type telescope is used to conjugate the output light of the biaxial scanning mirror 302 to the first dichroic beam splitter 401, and its magnification is N 3 .
- the small field of view relay module 5 includes a transmissive telescope composed of a first lens and a second lens (501, 503), or a reflective telescope composed of a first spherical mirror and a second spherical mirror (501, 503).
- the telescope whose magnification is greater than 1, is denoted as N 5 ;
- the small field of view relay module 5 also includes a first focusing mechanism 502 arranged between the two lenses or spherical mirrors of the telescope.
- the first focusing mechanism 502 includes two Orthogonal plane mirror, the first focusing mechanism 502 can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye;
- the large field of view relay module 6 includes a transmissive telescope composed of a third lens and a fourth lens (601, 603), or a reflective telescope composed of a third spherical mirror and a fourth spherical mirror (601, 603) , Its magnification is less than 1, denoted as N 6 ; the large field of view relay module 6 also includes a second focusing mechanism 602 arranged between the two lenses or spherical mirrors of the telescope, the second focusing mechanism 602 includes two Orthogonal plane mirror, the second focusing mechanism 602 can reciprocate along the center of the optical axis of the telescope to compensate for the refractive error of the human eye.
- a dichroic beam splitter module which includes a first dichroic beam splitter 401, a second dichroic beam splitter 402, a third dichroic beam splitter 403, and a fourth dichroic beam splitter 401, a second dichroic beam splitter 402, a third dichroic beam splitter 403, and a To the color beam splitter 404.
- the first dichroic beam splitter 401 has a reflection effect on the light with the wavelengths ⁇ 1 and ⁇ 4 , and has a transmission effect on the light with the wavelength ⁇ 2;
- Two second dichroic beam splitter having a wavelength of 402 pairs of light reflection 1 ⁇ , having effect on the transmission light of the wavelength of [lambda] 2 and ⁇ 4;
- the third dichroic beam splitter 403 has a reflection effect on the light with the wavelengths ⁇ 2 and ⁇ 3 , and has a transmission effect on the light with the wavelengths ⁇ 1 and ⁇ 4;
- Two fourth dichroic beam splitter having a wavelength of 404 pairs of reflection light 2 ⁇ , 1, ⁇ 3 and ⁇ 4 light has a transmission effect on the wavelength ⁇ .
- the detection module 8 includes a fifth dichroic beam splitter 800, a first detection light path, and a second detection light path.
- the fifth dichroic beam splitter 800 transmits the received light to the first detection light path or reflects to the second detection light path.
- the first detection optical path includes a first collection lens 801, a first pinhole 802, and a first detector 803, and the second detection optical path includes a second collection lens 811, a second pinhole 812, and a second detector 813;
- the imaging light beam carrying human eye light intensity information is transmitted through the fifth dichroic beam splitter 800 and then output to the first collecting lens 801, passes through the first pinhole 802 and then reaches the first detector 803 to obtain the retinal imaging image; the returned human eye light
- the imaging beam with strong information is reflected by the fifth dichroic beam splitter 800 and output to the second collecting lens 811, and then reaches the second detector 813 after passing through the second pinhole 812 to obtain the retinal imaging image.
- the two fifth dichroic beam splitter 800 may be set to the transmission wavelength [lambda] 1, [lambda] 2 reflected wavelength; may be provided as a reflection wavelength [lambda], the transmittance of the wavelength ⁇ 2.
- the fifth dichroic beam splitter 800 is either of the two setting modes, and does not affect the actual operation effect of the system.
- the fifth dichroic beam splitter 800 When the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 , the light beam is transmitted into the collection lens 801 and the pinhole 802 to reach the detector 803; when the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 When 1 plays the role of reflection, the light beam is reflected into the collecting lens 811 and the pinhole 812 to reach the detector 813.
- the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 , the light beam is transmitted into the collecting lens 801 and the pinhole 802 to reach the detector 803, and the fundus obtained by the detector 803
- the retinal light signal is converted into an electrical signal and output to the control module 10.
- the control module 10 performs signal synchronization processing, and the electrical signal is sampled and reconstructed to obtain a small field of view high-resolution imaging image of the retina, which is output to the output module 11 through the control module 10 Display, storage, processing and other functions.
- the collection lenses 801 and 811 may be achromatic lenses, or apochromatic lenses, or a combination of lenses, and their focal lengths are not less than 100 mm.
- the pinholes 802 and 812 are 50 microns in size, and their size can be changed according to the light energy efficiency, and should not exceed 200 microns.
- the detectors 803 and 813 may be photomultiplier tubes, or avalanche diodes, or highly sensitive cameras.
- the light source module 1 emits a light beam with a wavelength of ⁇ 1 , which can be approximated as a point light source 101, collimated into a parallel beam by the collimator 102, and split by the first beam splitter 103, 20% of the light energy is transmitted through the wavefront correction
- the parallel beam continues to pass through the first transmissive or reflective telescope 301 to achieve pupil diameter matching, and reaches the biaxial scanning mirror 302.
- the biaxial scanning mirror 302 scans the beam horizontally and vertically, and passes through the second transmission Type or reflective telescope 303; reach the first dichroic beam splitter 401, reflected by the first dichroic beam splitter 401, and then transmitted to the second dichroic beam splitter 402 through the small field of view relay module 5 to form the
- a badal focusing mechanism 502 composed of a set of flat mirrors is arranged between the lens or spherical mirrors 501 and 503 of the small field of view relay module 5, and the badal focusing mechanism 502 reciprocates back and forth along the center of the optical axis to realize the correction of the refractive error of the human eye.
- the second dichroic beam splitter 402 reflects the light beam through the third dichroic beam splitter 403 and the fourth dichroic beam splitter 404, and then passes through the hollow part of the annular LED array 701 to reach the human eye, and is The optical system is focused to a point on the fundus retina;
- the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the aberration information of the human eye and the light intensity information of the point of the fundus returns along the original path and exits through the beam scanning module 3, and then is reflected by the wavefront corrector 201 to
- the first beam splitter 103 the first beam splitter 103 reflects 80% of the light to the second beam splitter 202 for splitting, and 5% of the light energy reaching the second beam splitter 202 is reflected into the filter 203 and the wavefront sensor 204 ;
- the remaining 95% of the light energy is transmitted to the fifth dichroic beam splitter 800 through transmission;
- the wavefront sensor 204 transmits the received human eye aberration information to the control module 10.
- the control module 10 restores the wavefront aberration and calculates the aberration correction voltage, and then transmits the difference correction voltage to the wavefront corrector 201, Real-time human eye aberration correction;
- the fifth dichroic beam splitter 800 is set to transmit the wavelength ⁇ 1 , and transmits the light of the second beam splitter 202, and then after being completely transmitted by the fifth dichroic beam splitter 800, it passes through the second beam splitter.
- a collecting lens 801 and a first pinhole 802 finally reach the first detector 803.
- the first detector 803 converts the obtained fundus retinal light signal into an electrical signal, and outputs it to the control module 10, which performs signal synchronization processing, and The electrical signal is sampled and reconstructed to obtain a high-resolution imaging image of the retina with a small field of view, which is then displayed and stored by the output module 11.
- the wavelength of the light source 101 is ⁇ 1 , which includes at least one or more of the laser light sources 101 with a characteristic wavelength in the range of 600nm-850nm.
- Multiple light sources 101 (101a, 101b, 101c) can be coupled through the fiber coupler 104
- the entering collimator 102 is collimated into a parallel beam, and then enters the first beam splitter 103, as shown in FIG. 3; multiple light sources 101 (101a, 101b, 101c) can also pass through their respective collimators 102 (102a, 102a, 101c).
- 102b, 102c are collimated into parallel beams and then transmitted or reflected by a number of beamsplitters (103b, 103c) and then coupled into the optical path, and then coupled into the optical path of the system by the first beamsplitter 103, as shown in FIG. 4.
- Typical selectable wavelengths are 670 nm, 730 nm, 795 nm, 830 nm, etc.
- ⁇ 1 selected in this embodiment as the small field of view high-resolution imaging wavelength is 670 nm and 795 nm.
- the filter 203 can be a broadband filter 203, the transmission wavelength band meets the selected wavelength ⁇ 1 for small field of view high-resolution imaging; it can also be a combination of multiple narrow-band filters, and the transmission wavelength meets the selection of small field of view high-resolution imaging The wavelength ⁇ 1 .
- the collimator 102 can be a single lens, or an achromatic lens, or an apochromatic lens, or a combination of lenses, or a parabolic mirror, used to collimate the light beam emitted by the light source 101 into a parallel light beam, which is selected in this embodiment Thorlabs' reflective collimator RC12FC-P01.
- the first beam splitter 103 is a wide-band beam splitter, and its transmittance and reflectance ratio is 20:80.
- the second beam splitter 202 is a wide-band beam splitter with a transmittance and reflectance ratio of 95:5.
- the biaxial scanning mirror 302 can be a two-dimensional scanning galvanometer to realize the horizontal and vertical scanning of the beam; it can also be a combination of two one-dimensional scanning galvanometers, and the scanning directions of the two scanning galvanometers are set to orthogonal directions, respectively
- two scanning galvanometers are connected through a transmissive telescope or a reflective telescope to achieve pupil matching.
- the biaxial scanning mirror 302 in this embodiment is a fast reflection mirror MR-30-15-G-25 ⁇ 25D from Optotune Company.
- the small field of view relay module 5 includes a transmissive telescope composed of lenses 501 and 503, or a reflective telescope composed of spherical mirrors 501 and 503, and the telescope magnification is N 5 and greater than 1.
- the beam diameter of the wavelength ⁇ 1 at the pupil of the human eye is 6-8 mm.
- Transmissive or reflective telescopes composed of lenses or spherical mirrors 301, 303 and lenses or spherical mirrors 501, 503.
- the magnification product of the two sets of telescopes is greater than 1, which is equal to the wavelength ⁇ 1 and the beam diameter and biaxial output from the pupil of the human eye.
- the product of N 3 and N 5 of the two sets of telescopes is 3-4; when the beam diameter of the biaxial scanning mirror 302 is 3 mm, the magnification of the two sets of telescopes The product of N 3 and N 5 is 2-3.
- the light source module 1 emits a beam with a wavelength of ⁇ 2 , which can be approximated as a point light source 101, collimated into a parallel beam by the collimator 102, and split by the first beam splitter 103, 20% of the light energy is transmitted through the wavefront correction
- the parallel beam continues to pass through the first transmissive or reflective telescope 301 to achieve pupil diameter matching, and reaches the biaxial scanning mirror 302.
- the biaxial scanning mirror 302 scans the beam horizontally and vertically, and passes through the second transmission
- the type or reflection type telescope 303 propagates; it reaches the first dichroic beam splitter 401, passes through the first dichroic beam splitter 401, the second dichroic beam splitter 402, and is reflected by the third dichroic beam splitter 403, Then it is transmitted to the fourth dichroic dichroic mirror 404 via the large field of view relay template 6, and a badal tone composed of a set of flat mirrors is arranged between the lenses or spherical mirrors 601 and 603 that make up the large field of view relay template 6.
- the focusing mechanism 602 and the badal focusing mechanism 602 move back and forth along the center of the optical axis to compensate for the refractive error of the human eye.
- the fourth dichroic beam splitter 404 After the light beam is reflected by the fourth dichroic beam splitter 404, it passes directly through the hollow part of the annular LED array 701 and finally Reach the human eye, and focus the light beam to a point on the fundus retina through the optical system of the human eye;
- the fundus retina scatters the incident light beam, and the scattered imaging light beam carrying the light intensity information of the human eye fundus returns along the original path and exits through the beam scanning module 3, and then is reflected by the wavefront corrector 201 to the first beam splitter 103.
- the first dichroic mirror 103 reflects 80% of the light to the second dichroic mirror 202 for splitting, and for the light reaching the second dichroic mirror 202, 95% of the light energy is transmitted to the fifth dichroic dichroic mirror 800;
- the fifth dichroic beam splitter 800 is set to play a reflection wavelength ⁇ 2 pair, the transmitted light of the second dichroic mirror 202, the dichroic mirror 800 and then by two fifth reflecting dichroic After all, through the first
- the second collecting lens 811 and the second pinhole 812 finally arrive at the second detector 813
- the second detector 813 converts the obtained fundus retinal light signal into an electrical signal, and outputs it to the control module 10, and the control module 10 performs signal synchronization processing, and
- the electrical signal is sampled and reconstructed to obtain a low-resolution imaging image of the retina with a large field of view, which is then displayed and stored by the output module 11.
- [Lambda] 2 wavelength light source 101 a characteristic for a wavelength in the range 900nm-1000nm, typically an optional wavelength by 904nm, 950nm and the like, preferably, selected [lambda] Example 2 of the present embodiment as a large field of view of the imaging wavelength resolution 950nm.
- the large field of view relay module 6 includes a transmissive telescope composed of lenses 601 and 603, or a reflective telescope composed of spherical mirrors 601, 603 , and the magnification of the telescope is N 5 and less than 1.
- the beam diameter of the wavelength ⁇ 2 at the pupil of the human eye 12 is 1-3 mm.
- the product of N 3 and N 5 of the two sets of telescopes is 0.5-1.5; when the beam diameter of the biaxial scanning mirror 302 is 3 mm, the magnification of the two sets of telescopes The product of N 3 and N 5 is 1/3-1.
- the subjects' related processes mainly include pupil alignment and monitoring, visual target guidance and fixation.
- the pupil monitoring module 7 includes a ring-shaped LED array 701, an imaging lens 702, and an area array detector 703.
- the ring-shaped LED array 701 includes at least three LED lamp beads arranged in a ring at equal intervals, and the hollow part has a light transmission aperture not less than the imaging beam aperture , an annular LED array 701 of light emission wavelength ⁇ 3 reaches the pupil of the eye, the pupil of the eye of the light beam reflected back through the hollow portion of annular LED array 701, the dichroic mirror 404 through the fourth dichroic transmissive second, third dichroic After the spectroscope 403 is reflected, it is focused by the imaging lens 702 to the area array detector 703.
- the area array detector 703 converts the optical signal into an electrical signal, outputs it to the control module 10 to obtain the pupil imaging image, and outputs it to the output module 11 for display, Storage, processing and other functions.
- the subject’s head is located on the headrest, which has a three-dimensional translation adjustment function, which can be adjusted manually through the guide rail, or can be configured as a motor-driven guide rail.
- the control module 1010 drives the motor to achieve automatic adjustment. Make the pupil imaging in the middle area of the field of view.
- the LED lamp beads of the annular LED array 701 select a certain characteristic wavelength ⁇ 3 in the wavelength range above 1000 nm, and typical selectable wavelengths are 1020 nm, 1310 nm, and so on.
- the wavelength of 1020 nm is selected in this embodiment.
- the visual target module 9 includes an LED array 901, a visual target lens 902, and a first plane reflector 903.
- an LED lamp bead in the LED array 901 is lit, and the LED lamp bead emits light with a wavelength of ⁇ 4 through the visual target.
- the lens 902 propagates, it is reflected by the first plane mirror 903, reflected by the first dichroic dichroic mirror 401, and then transmitted by the second, third, and fourth dichroic dichroic mirrors 402, 403, 404 and then passes through the ring
- the hollow part of the LED array 701 finally enters the human eye 12, and the human eye looks at the luminous LED lamp bead to achieve fixation.
- control module 10 to light up the lamp beads at different positions on the LED array 901, different areas of the fundus retina will be guided into imaging areas.
- the LED array 901 is an even-spaced array of LED lamp beads. Typical arrangements are 3 ⁇ 3, 4 ⁇ 4, etc.
- the selected wavelength is a characteristic wavelength ⁇ 4 in the visible light band, and is the same as the wavelength included in the light source 101 ⁇ 1 and ⁇ 2 maintain a bandwidth difference of at least 50 nm. In this embodiment, the wavelength ⁇ 4 is selected to be 550 nm.
- step (5) and step (6) have no sequence requirements, and the operations can be selected according to actual needs.
- this application proposes a common beam scanning retinal imaging system based on the basic principles of confocal scanning technology, which uses adaptive optics technology to correct human eye aberrations in real time.
- confocal scanning imaging in a large field of view can be realized at the same time, a single large field of view imaging range is greater than 20 degrees, and a small field of view
- the adaptive optics high-resolution imaging function within the field range, a single small field of view adaptive optics high-resolution imaging field of view range is not more than 5 degrees.
- the system can not only observe the large-scale disease focus area of the retina with a large field of view imaging, but also observe the fine structure of the focus with high-resolution imaging with a small field of view, which greatly expands the application range of existing confocal imaging equipment.
- the common beam scanning retinal imaging system of the present application uses only one set of scanning mirrors and adopts a common optical path structure, which can simultaneously obtain large-field low-resolution imaging images and small-field high-resolution imaging images of the fundus retina, two imaging images Fully synchronized, with the same center position and imaging speed.
- the system realizes the coupling and separation of different imaging beams of the common optical path through two separate relay transition optical paths, and simultaneously performs retinal illumination and imaging detection of the fundus.
- the system is simple in structure, simple in control, and rich in functions.
- the system is also equipped with an optotype module.
- the common-beam scanning retinal imaging system can simultaneously acquire large-field low-resolution imaging images and small-field high-resolution imaging images of the fundus retina, and the two types of imaging images are acquired by the common optical path structure, so the two types of imaging The images have the same center position and imaging speed, and the image characteristics are consistent, which is convenient for comparison processing and operation.
- the system has a simple structure, and the common optical path structure can simultaneously obtain high and low resolution retinal imaging images: large field of view low resolution imaging images can observe the characteristics of the structure and lesions in a large area of the retina, and small field of view high resolution imaging images You can observe the fine structure of the area, such as cells, capillaries, nerve fibers, etc.
- a variety of imaging images are acquired through common optical path beam scanning to meet the needs of different application scenarios and greatly increase the application range of retinal imaging.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Analytical Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Radiology & Medical Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Description
Claims (10)
- 一种共光束扫描的视网膜成像系统,其特征在于,包括:光源模块、自适应光学模块、光束扫描模块、小视场中继模块、大视场中继模块、视标模块、瞳孔监测模块、探测模块、控制模块和输出模块;所述光源模块可出射至少两种不同波长的平行光束,平行光束依次经过所述自适应光学模块、光束扫描模块、小视场中继模块或大视场中继模块照射到人眼,人眼散射的携带人眼像差信息和光强信息的成像光沿原路返回,并传输到所述自适应光学模块和探测模块;所述自适应光学模块用于接收含人眼像差信息的成像光,实现波前像差的实时测量和校正;所述光束扫描模块包括双轴扫描镜,其沿光路的入射端通过第一透射式或反射式望远镜与所述自适应光学模块连接,其沿光路的出射端通过第二透射式或反射式望远镜与所述小视场中继模块或大视场中继模块连接,以分别实现小视场高分辨率成像和大视场低分辨率成像;所述小视场中继模块配置为扩束望远镜,所述大视场中继模块配置为缩束望远镜;所述视标模块用于实现对人眼的视标引导与固视;所述瞳孔监测模块用于实现对人眼瞳孔的对准与监测;所述探测模块用于获取返回的人眼成像光,并转换为电信号后传输至所述控制模块;所述输出模块与所述控制模块连接,用于对人眼成像图像进行显示和存储。
- 根据权利要求1所述的共光束扫描的视网膜成像系统,其特征在于,还包括二向色分光镜组模块,其包括沿入射光路依次设置的第一二向色分光镜、第二二向色分光镜、第三二向色分光镜、第四二向色分光镜;所述光源模块包括沿入射光路依次设置的光源、准直器以及第一分光镜,其输出平行光束至所述自适应光学模块;所述光源发出的光经所述准直器后部分透射所述第一分光镜,进入所述自适应光学模块;所述自适应光学模块包括沿返回的人眼成像光光路依次设置的波前校正器、第二分光镜、滤光片以及波前传感器,其与所述光束扫描模块连接;所述光源模块输出的平行光束经所述波前校正器反射至所述光束扫描模块;返回的携带人眼像差信息和光强信息的成像光经过所述光束扫描模块出射,由所述波前校正器反射至所述第一分光镜,所述第一分 光镜反射的光中一部分再由所述第二分光镜反射,经过所述滤光片后到达所述波前传感器,实现波前像差测量,另一部分透射所述第二分光镜进入所述探测模块;所述波前传感器接受到含有人眼像差信息的成像光束后传输至所述控制模块进行波前计算,实现对波前像差的探测,得到波前控制电压并输出给所述波前校正器,所述波前校正器实现对波前像差的校正。
- 根据权利要求2所述的共光束扫描的视网膜成像系统,其特征在于,所述探测模块包括第五二向色分光镜、第一探测光路和第二探测光路,所述第五二向色分光镜将接收的光透射至所述第一探测光路,同时反射至所述第二探测光路;所述第一探测光路包括第一收集透镜、第一针孔、第一探测器,所述第二探测光路包括第二收集透镜、第二针孔、第二探测器;返回的携带人眼光强信息的成像光束透射所述第五二向色分光镜后输出至所述第一收集透镜,经过所述第一针孔后到达所述第一探测器,得到视网膜成像图像;返回的携带人眼光强信息的成像光束由所述第五二向色分光镜反射后输出至所述第二收集透镜,经过所述第二针孔后到达所述第二探测器,得到视网膜成像图像;所述光束扫描模块包括沿入射光路依次设置的第一透射式或反射式望远镜、双轴扫描镜、第二透射式或反射式望远镜,所述双轴扫描镜由所述控制模块输出周期性电压驱动实现对视网膜平面的横向和纵向二维扫描。
- 根据权利要求3所述的共光束扫描的视网膜成像系统,其特征在于,所述视标模块包括LED阵列、视标透镜和第一平面反射镜,所述LED阵列中的任意一个灯珠被所述控制模块点亮后发出的光,经过所述透镜传播后由所述第一平面反射镜反射,再被所述第一二向色分光镜反射,依次透射所述第二二向色分光镜、第三二向色分光镜、第四二向色分光镜,然后到达人眼,人眼注视该发光的LED灯珠,实现固视;所述瞳孔监测模块包括环形LED阵列、成像透镜和面阵探测器,所述环形LED阵列发出的光照明人眼瞳孔,经人眼瞳孔反射后穿过所述环形LED阵列的中空部位,透射所述第四二向色分光镜后被所述第三二向色分光镜反射,最后由所述成像透镜聚焦到所述面阵探测器进行瞳孔成像,所述面阵探测器将接收到的光信号转换成电信号后输出至所述控制模块,所述控制模块得到瞳孔成像图像,最后输出至所述输出模块进行显示、存储。
- 根据权利要求4所述的共光束扫描的视网膜成像系统,其特征在于,所述小视场中继模块包括由第一透镜和第二透镜组成的透射式望远镜,或者由第一球面反射镜、第二球面反射镜组成的反射式望远镜,其放大倍率大于1;所述小视场中继模块还包括设置在所 述望远镜两片透镜或球面反射镜之间的第一调焦机构,所述第一调焦机构包括两片正交的平面反射镜,所述第一调焦机构可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正;所述大视场中继模块包括由第三透镜和第四透镜组成的透射式望远镜,或者由第三球面反射镜、第四球面反射镜组成的反射式望远镜,其放大倍率小于1;所述大视场中继模块还包括设置在所述望远镜两片透镜或球面反射镜之间的第二调焦机构,所述第二调焦机构包括两片正交的平面反射镜,所述第二调焦机构可以沿望远镜光轴中心往复移动,用于补偿人眼的屈光不正。
- 根据权利要求5所述的共光束扫描的视网膜成像系统,其特征在于,所述小视场高分辨率成像的实现方法为:所述光源模块出射的光束经过所述自适应光学模块的所述波前校正器、所述光束扫描模块、所述第一二向色分光镜反射传递至所述小视场中继模块后出射,经所述第二二向色分光镜反射,然后经所述第三二向色分光镜、第四二向色分光镜透射后穿过所述环形LED阵列的中空部位到达人眼,被人眼的光学系统聚焦到眼底视网膜上一点,眼底视网膜对入射光束进行散射,散射的携带着人眼的像差信息和眼底该点的光强信息的成像光束,沿原路返回经所述光束扫描模块出射,再经所述波前校正器反射至所述第一分光镜,所述第一分光镜将光束反射传播至所述第二分光镜后,一部分反射光进入所述波前传感器,所述波前传感器将接收到的人眼像差信息传递到所述控制模块,所述控制模块对波前像差进行复原并计算得到像差校正电压,然后将像差校正电压传给所述波前校正器,实现实时人眼像差校正;同时,另一部分光透射所述第二分光镜,再经所述第五二向色分光镜全部透射后,经过所述第一收集透镜和所述第一针孔最终到达所述第一探测器,所述第一探测器将获得的眼底视网膜光信号转换为电信号,输出至所述控制模块,所述控制模块进行信号同步处理,并将所述电信号采样重构得到视网膜小视场高分辨率成像图像,再通过所述输出模块进行显示、存储;所述大视场低分辨率成像的实现方法为:所述光源模块出射的光束经过所述自适应光学模块的所述波前校正器、所述光束扫描模块、所述第一二向色分光镜、第二二向色分光镜透射,再由所述第三二向色分光镜反射进入至所述大视场中继模块后出射,经所述第四二向色分光镜反射后穿过所述环形LED阵列的中空部位到达人眼,被人眼的光学系统聚焦到眼底视网膜上一点,眼底视网膜对入 射光束进行散射,散射的携带着人眼眼底该点光强信息的成像光束,沿原路返回经所述光束扫描模块出射,再经所述波前校正器反射至所述第一分光镜,所述第一分光镜将光束反射传播至所述第二分光镜后,经所述第二分光镜透射,再经所述第五二向色分光镜全部反射,经过所述第二收集透镜和所述第二针孔最终到达所述第二探测器,所述第二探测器将获得的眼底视网膜光信号转换为电信号,输出至所述控制模块,所述控制模块进行信号同步处理,并将所述电信号采样重构得到视网膜大视场低分辨率成像图像,再通过所述输出模块进行显示、存储。
- 根据权利要求6所述的共光束扫描的视网膜成像系统,其特征在于,所述光源模块包括至少两个光源,多个光源可以通过光纤耦合器耦合进入准直器被准直为平行光束;多个光源也可以分别经各自的准直器准直为平行光束后经二向色分光镜合束进入光路中;所述光源模块出射的光包括波长为λ 1和波长为λ 2的光,λ 1为600nm-850nm,波长为λ 1的光用于进行小视场高分辨率成像;λ 2为900nm-1000nm,波长为λ 2的光用于进行大视场低分辨率成像;所述环形LED阵列包含至少三颗LED灯珠,为环形等间距排布,中空部位透光口径不小于成像光束口径,其中的LED灯珠发出的光的波长为λ 3,且λ 3大于1000nm;所述视标模块的所述LED阵列为等间距阵列排布的LED灯珠,其发出的光的波长λ 4,波长范围为380nm-760nm的可见光光谱,且λ 4与λ 1、λ 2之间的差值至少为50nm。
- 根据权利要求7所述的共光束扫描的视网膜成像系统,其特征在于,所述第一二向色分光镜对波长为λ 1和λ 4的光具有反射作用,对波长为λ 2的光具有透射作用;所述第二二向色分光镜对波长为λ 1的光具有反射作用,对波长为λ 2和λ 4的光具有透射作用;所述第三二向色分光镜对波长为λ 2和λ 3的光具有反射作用,对波长为λ 1和λ 4的光具有透射作用;所述第四二向色分光镜对波长为λ 2的光具有反射作用,对波长λ 1、λ 3和λ 4的光具有透射作用。
- 根据权利要求6所述的共光束扫描的视网膜成像系统,其特征在于,所述自适应光学模块中的所述波前传感器是从微棱镜阵列哈特曼波前传感器、微透镜阵列哈特曼波前传感器、四棱锥传感器和曲率传感器中选择的,所述波前校正器是从变形反射镜、液晶空间光调制器、微加工薄膜变形镜、微机电变形镜、双压电陶瓷变形镜、液体变形镜中选择的;所述第二分光镜将第一分光镜反射来的成像光束分光,5%的光被反射经所述滤光片后进入所述波前传感器,实现波前像差测量;其余95%光被透射至所述第五二向色分光镜;所述滤光片可以是宽带滤光片,透过波段满足小视场高分辨率成像所选波长λ 1;也可以是多个窄带滤波片组合,透过波长满足小视场高分辨率成像所选波长λ 1;大视场低分辨率成像所选波长λ 2的成像光束被所述滤光片全部阻挡,不进入波前传感器;所述波前传感器探测得到的波前像差经控制模块处理,得到波前控制电压并输出给波前校正器,实现对波前像差的校正。
- 根据权利要求6所述的共光束扫描的视网膜成像系统,其特征在于,所述双轴扫描镜可以是一片二维扫描振镜,实现对光束的横向和纵向扫描;也可以是两片一维扫描振镜组合,两片扫描振镜的扫描方向设置为正交方向,分别实现对光束的横向和纵向扫描,并且两片扫描振镜通过透射式望远镜或反射式望远镜连接实现光瞳匹配;所述第一透射式望远镜或反射式望远镜用于将所述波前校正器与所述双轴扫描镜连接实现光瞳匹配,其放大倍率为所述双轴扫描镜与所述波前校正器的光束通光口径之比;所述第二透射式望远镜或反射式望远镜用于将所述双轴扫描镜的出射光共轭传递至所述第一二向色分光镜。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP19915588.8A EP3811851B1 (en) | 2019-09-09 | 2019-10-22 | Common beam scanning retina imaging system |
| KR1020207026776A KR102403875B1 (ko) | 2019-09-09 | 2019-10-22 | 공초점 광빔으로 스캐닝하는 망막 이미징 시스템 |
| US16/971,570 US11896309B2 (en) | 2019-09-09 | 2019-10-22 | Retina imaging system based on the common beam scanning |
| JP2020544628A JP7098855B2 (ja) | 2019-09-09 | 2019-10-22 | 共ビーム走査型網膜結像システム |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910865740.4 | 2019-09-09 | ||
| CN201910865740.4A CN110584593B (zh) | 2019-09-09 | 2019-09-09 | 共光束扫描的视网膜成像系统 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021046973A1 true WO2021046973A1 (zh) | 2021-03-18 |
Family
ID=68859210
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2019/112521 Ceased WO2021046973A1 (zh) | 2019-09-09 | 2019-10-22 | 共光束扫描的视网膜成像系统 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US11896309B2 (zh) |
| EP (1) | EP3811851B1 (zh) |
| JP (1) | JP7098855B2 (zh) |
| KR (1) | KR102403875B1 (zh) |
| CN (1) | CN110584593B (zh) |
| WO (1) | WO2021046973A1 (zh) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113229777A (zh) * | 2021-04-07 | 2021-08-10 | 上海美沃精密仪器股份有限公司 | 一种视觉质量分析仪 |
| CN113324540A (zh) * | 2021-06-03 | 2021-08-31 | 合肥工业大学 | 一种基于扫描振镜的拼接镜位姿测试系统及方法 |
| CN115420691A (zh) * | 2022-11-03 | 2022-12-02 | 北京云端光科技术有限公司 | 遥测收发装置的校正系统、方法、装置、设备及存储介质 |
| CN116942076A (zh) * | 2023-07-24 | 2023-10-27 | 南开大学 | 一种测量人眼全视场波前像差的自动化测量系统 |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102020200214A1 (de) * | 2020-01-09 | 2021-07-15 | Hochschule für angewandte Wissenschaften Kempten Körperschaft des öffentlichen Rechts | Konfokale Messvorrichtung zur 3D-Vermessung einer Objektoberfläche |
| CN111951174B (zh) * | 2020-06-16 | 2023-09-29 | 中国科学院苏州生物医学工程技术研究所 | 自适应光学线光束扫描成像的非等晕像差校正方法与装置 |
| CN111700587B (zh) * | 2020-07-29 | 2025-04-22 | 宁波大学 | 一种基于透射光学元件的自适应光学扫描激光眼底成像系统 |
| WO2022065658A1 (en) | 2020-09-22 | 2022-03-31 | Samsung Electronics Co., Ltd. | Holographic waveguide, method of producing the same, and display device including the holographic waveguide |
| DE102020213713A1 (de) | 2020-11-01 | 2022-05-05 | Carl Zeiss Microscopy Gmbh | Vorrichtung und Verfahren zur Erfassung von Bilddaten |
| CN113017569B (zh) * | 2021-03-09 | 2022-06-03 | 四川大学华西医院 | 基于光谱子带时域自相关的皮肤伤口愈合情况检查系统 |
| CN113974965B (zh) * | 2021-12-28 | 2022-04-22 | 广东麦特维逊医学研究发展有限公司 | 一种激光撕囊装置 |
| CN114063275A (zh) * | 2022-01-17 | 2022-02-18 | 北京九辰智能医疗设备有限公司 | 角膜内皮细胞成像系统、方法、设备和存储介质 |
| CN116077008B (zh) * | 2023-02-22 | 2025-09-12 | 中国科学院苏州生物医学工程技术研究所 | 一种共光路扫描成像系统 |
| KR102834369B1 (ko) * | 2023-03-02 | 2025-07-17 | 한국기초과학지원연구원 | 샘플의 수평 이미지와 수직 이미지를 획득하는 이미징 장치 및 이의 동작 방법 |
| CN121080900A (zh) * | 2024-06-06 | 2025-12-09 | 南京博视医疗科技有限公司 | 视网膜成像装置及其方法 |
| CN119355977B (zh) * | 2024-11-22 | 2025-10-24 | 中国科学院西安光学精密机械研究所 | 一种用于中继光学模块与精密转台模块的可视化对接方法 |
| CN120436562B (zh) * | 2025-07-11 | 2025-11-21 | 深圳盛达同泽科技有限公司 | 旋转式眼底像差测量装置 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070252951A1 (en) * | 2006-04-24 | 2007-11-01 | Hammer Daniel X | Stabilized retinal imaging with adaptive optics |
| US20100277692A1 (en) * | 2009-04-30 | 2010-11-04 | Hideo Mukai | Fundus photographing apparatus |
| CN103054550A (zh) * | 2013-01-17 | 2013-04-24 | 中国科学院光电技术研究所 | 一种基于自适应光学的线扫描共焦检眼镜系统 |
| US20130215385A1 (en) * | 2012-02-21 | 2013-08-22 | Canon Kabushiki Kaisha | Imaging apparatus |
| US20150077710A1 (en) * | 2013-09-19 | 2015-03-19 | Canon Kabushiki Kaisha | Apparatus, method, and non-transitory medium for optical stabilization and digital image registration in scanning light ophthalmoscopy |
| CN104783755A (zh) * | 2015-04-29 | 2015-07-22 | 中国科学院光电技术研究所 | 自适应光学视网膜成像装置和方法 |
| WO2018197288A1 (fr) * | 2017-04-25 | 2018-11-01 | Imagine Eyes | Systeme et méthode d'imagerie rétinienne multi-echelle |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101862178B (zh) | 2010-06-02 | 2012-07-11 | 中国科学院光电技术研究所 | 一种基于自适应光学的反射式共焦扫描视网膜成像系统 |
| CN101904735B (zh) * | 2010-07-20 | 2013-05-08 | 苏州微清医疗器械有限公司 | 基于快速倾斜镜的宽视场共焦扫描显微镜 |
| CN101884524B (zh) * | 2010-07-20 | 2012-01-25 | 李超宏 | 基于自适应光学技术的宽视场光学相干层析仪 |
| CN202104907U (zh) * | 2010-12-08 | 2012-01-11 | 苏州六六宏医疗器械有限公司 | 基于自动寻优算法的像差补偿眼底显微镜 |
| CN102429636B (zh) * | 2011-09-30 | 2013-07-03 | 中国科学院长春光学精密机械与物理研究所 | 大视场液晶自适应光学眼底成像的系统 |
| CN102499633B (zh) * | 2011-09-30 | 2013-09-25 | 中国科学院长春光学精密机械与物理研究所 | 大视场液晶自适应光学眼底成像的方法 |
| US8936364B2 (en) * | 2011-10-20 | 2015-01-20 | University Of Houston System | Wavefront sensorless adaptive correction of the wave aberration for an eye |
| CN102429638B (zh) * | 2011-10-26 | 2013-11-20 | 中国科学院光电技术研究所 | 一种基于图像相关的视网膜抖动校正装置和方法 |
| JP6049310B2 (ja) * | 2012-06-01 | 2016-12-21 | キヤノン株式会社 | 撮影装置、制御方法及びプログラム |
| CN102860815B (zh) * | 2012-09-11 | 2014-10-08 | 中国科学院光电技术研究所 | 基于线扫描共焦成像图像引导的自适应共焦扫描视网膜成像方法及装置 |
| CN102908119A (zh) * | 2012-09-26 | 2013-02-06 | 温州医学院眼视光研究院 | 一种共焦扫描成像系统及其像差控制方法 |
| CN102860817A (zh) * | 2012-10-12 | 2013-01-09 | 中国科学院光电技术研究所 | 一种基于双波前校正器的激光扫描共焦检眼镜装置 |
| JP2014108212A (ja) * | 2012-11-30 | 2014-06-12 | Canon Inc | 撮像装置 |
| EP2749204B1 (en) * | 2012-12-28 | 2016-03-16 | Canon Kabushiki Kaisha | Image processing apparatus and image processing method |
| US10226173B2 (en) * | 2014-07-07 | 2019-03-12 | University Of Rochester | System and method for real-time montaging from live moving retina |
| JP6686296B2 (ja) * | 2015-05-18 | 2020-04-22 | 株式会社ニデック | 眼科測定装置 |
| US9867538B2 (en) * | 2016-03-21 | 2018-01-16 | Canon Kabushiki Kaisha | Method for robust eye tracking and ophthalmologic apparatus therefor |
| CN107928624A (zh) * | 2017-12-22 | 2018-04-20 | 温州医科大学附属眼视光医院 | 一种基于瞳孔自动定位对焦的自适应光学扫描激光眼底成像系统及其成像方法 |
| CN108784644A (zh) * | 2018-07-12 | 2018-11-13 | 东北大学秦皇岛分校 | 一种眼科光学参数测量系统 |
-
2019
- 2019-09-09 CN CN201910865740.4A patent/CN110584593B/zh active Active
- 2019-10-22 WO PCT/CN2019/112521 patent/WO2021046973A1/zh not_active Ceased
- 2019-10-22 KR KR1020207026776A patent/KR102403875B1/ko active Active
- 2019-10-22 EP EP19915588.8A patent/EP3811851B1/en active Active
- 2019-10-22 JP JP2020544628A patent/JP7098855B2/ja active Active
- 2019-10-22 US US16/971,570 patent/US11896309B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070252951A1 (en) * | 2006-04-24 | 2007-11-01 | Hammer Daniel X | Stabilized retinal imaging with adaptive optics |
| US20100277692A1 (en) * | 2009-04-30 | 2010-11-04 | Hideo Mukai | Fundus photographing apparatus |
| US20130215385A1 (en) * | 2012-02-21 | 2013-08-22 | Canon Kabushiki Kaisha | Imaging apparatus |
| CN103054550A (zh) * | 2013-01-17 | 2013-04-24 | 中国科学院光电技术研究所 | 一种基于自适应光学的线扫描共焦检眼镜系统 |
| US20150077710A1 (en) * | 2013-09-19 | 2015-03-19 | Canon Kabushiki Kaisha | Apparatus, method, and non-transitory medium for optical stabilization and digital image registration in scanning light ophthalmoscopy |
| CN104783755A (zh) * | 2015-04-29 | 2015-07-22 | 中国科学院光电技术研究所 | 自适应光学视网膜成像装置和方法 |
| WO2018197288A1 (fr) * | 2017-04-25 | 2018-11-01 | Imagine Eyes | Systeme et méthode d'imagerie rétinienne multi-echelle |
Non-Patent Citations (2)
| Title |
|---|
| See also references of EP3811851A4 |
| WEBB RHUGHES GDELORI F: "Confocal scanning laser ophthalmoscope", APPLIED OPTICS, vol. 26, no. 8, 1987, pages 1492 - 9, XP000579927, DOI: 10.1364/AO.26.001492 |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113229777A (zh) * | 2021-04-07 | 2021-08-10 | 上海美沃精密仪器股份有限公司 | 一种视觉质量分析仪 |
| CN113229777B (zh) * | 2021-04-07 | 2022-09-23 | 上海美沃精密仪器股份有限公司 | 一种视觉质量分析仪 |
| CN113324540A (zh) * | 2021-06-03 | 2021-08-31 | 合肥工业大学 | 一种基于扫描振镜的拼接镜位姿测试系统及方法 |
| CN113324540B (zh) * | 2021-06-03 | 2023-07-07 | 合肥工业大学 | 一种基于扫描振镜的拼接镜位姿测试系统及方法 |
| CN115420691A (zh) * | 2022-11-03 | 2022-12-02 | 北京云端光科技术有限公司 | 遥测收发装置的校正系统、方法、装置、设备及存储介质 |
| CN115420691B (zh) * | 2022-11-03 | 2023-01-31 | 北京云端光科技术有限公司 | 遥测收发装置的校正系统、方法、装置、设备及存储介质 |
| CN116942076A (zh) * | 2023-07-24 | 2023-10-27 | 南开大学 | 一种测量人眼全视场波前像差的自动化测量系统 |
| CN116942076B (zh) * | 2023-07-24 | 2024-05-24 | 南开大学 | 一种测量人眼全视场波前像差的自动化测量系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110584593A (zh) | 2019-12-20 |
| CN110584593B (zh) | 2021-06-22 |
| EP3811851A4 (en) | 2021-07-14 |
| EP3811851B1 (en) | 2025-09-03 |
| EP3811851A8 (en) | 2021-06-16 |
| KR20210032926A (ko) | 2021-03-25 |
| JP2022503315A (ja) | 2022-01-12 |
| EP3811851A1 (en) | 2021-04-28 |
| US20230094588A1 (en) | 2023-03-30 |
| JP7098855B2 (ja) | 2022-07-12 |
| KR102403875B1 (ko) | 2022-05-31 |
| US11896309B2 (en) | 2024-02-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11896309B2 (en) | Retina imaging system based on the common beam scanning | |
| EP3818923B1 (en) | Large-field-of-view self-adaptive optical retinal imaging system and method with common-path light beam scanning | |
| US11583180B2 (en) | Optical component for retinal imaging and retina imaging device | |
| CN101862178B (zh) | 一种基于自适应光学的反射式共焦扫描视网膜成像系统 | |
| CN102429636B (zh) | 大视场液晶自适应光学眼底成像的系统 | |
| CN113440099B (zh) | 一种人眼视光综合检查装置和方法 | |
| CN102860815B (zh) | 基于线扫描共焦成像图像引导的自适应共焦扫描视网膜成像方法及装置 | |
| CN113520299B (zh) | 一种眼部多模态成像系统 | |
| JP7642115B2 (ja) | 眼科装置及び断層画像生成装置 | |
| US11684257B2 (en) | System and method for multi-scale retinal imaging | |
| WO2022057402A1 (zh) | 基于近红外光的高速功能性眼底三维检测系统 | |
| CN107157439A (zh) | 一种共焦激光扫描眼底成像与投影系统 | |
| CN113703151B (zh) | 一种低照度可调焦间接检眼镜 | |
| WO2008000008A2 (en) | Achromatising triplet for the human eye | |
| CN214906733U (zh) | 一种免散瞳眼底相机光学系统 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| ENP | Entry into the national phase |
Ref document number: 2020544628 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2019915588 Country of ref document: EP Effective date: 20200828 |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19915588 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2019915588 Country of ref document: EP |