WO2013039721A1 - Accumulator having operating fluid volume independent of external hydrostatic pressure - Google Patents
Accumulator having operating fluid volume independent of external hydrostatic pressure Download PDFInfo
- Publication number
- WO2013039721A1 WO2013039721A1 PCT/US2012/053432 US2012053432W WO2013039721A1 WO 2013039721 A1 WO2013039721 A1 WO 2013039721A1 US 2012053432 W US2012053432 W US 2012053432W WO 2013039721 A1 WO2013039721 A1 WO 2013039721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- piston
- accumulator
- hydraulic fluid
- chamber
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 76
- 230000002706 hydrostatic effect Effects 0.000 title claims abstract description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 26
- 230000008901 benefit Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/02—Surface sealing or packing
- E21B33/03—Well heads; Setting-up thereof
- E21B33/035—Well heads; Setting-up thereof specially adapted for underwater installations
- E21B33/0355—Control systems, e.g. hydraulic, pneumatic, electric, acoustic, for submerged well heads
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B41/00—Equipment or details not covered by groups E21B15/00 - E21B40/00
- E21B41/0007—Equipment or details not covered by groups E21B15/00 - E21B40/00 for underwater installations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/02—Installations or systems with accumulators
- F15B1/04—Accumulators
- F15B1/08—Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor
- F15B1/24—Accumulators using a gas cushion; Gas charging devices; Indicators or floats therefor with rigid separating means, e.g. pistons
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B33/00—Sealing or packing boreholes or wells
- E21B33/02—Surface sealing or packing
- E21B33/03—Well heads; Setting-up thereof
- E21B33/06—Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers
- E21B33/064—Blow-out preventers, i.e. apparatus closing around a drill pipe, e.g. annular blow-out preventers specially adapted for underwater well heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/20—Accumulator cushioning means
- F15B2201/205—Accumulator cushioning means using gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2201/00—Accumulators
- F15B2201/30—Accumulator separating means
- F15B2201/31—Accumulator separating means having rigid separating means, e.g. pistons
Definitions
- Accumulators are devices that provide a reserve of hydraulic fluid under pressure.
- Accumulators are used in, for example, hydraulically-operated systems where hydraulic fluid under pressure operates a piece of equipment or a device.
- the hydraulic fluid may be pressurized by a pump that maintains the high pressure required.
- accumulators can be used to provide the source of pressurized hydraulic fluid to enable the operation of the piece of equipment or device.
- Accumulators conventionally include a compressible fluid, e.g., gas such as nitrogen, helium, air, etc., on one side of a separating mechanism in a pressure resistant container, and a substantially incompressible fluid (e.g., hydraulic oil) on the other side of the separating mechanism.
- a compressible fluid e.g., gas such as nitrogen, helium, air, etc.
- a substantially incompressible fluid e.g., hydraulic oil
- the amount of gas pressure (called “precharge") must usually be selected for the operating depth in a body of water in order to optimize the available hydraulic fluid volume.
- precharge the amount of gas pressure
- the required gas precharge pressure may be higher than the hydraulic fluid pressure, rendering the accumulator useless when testing the hydraulic circuit from the surface.
- a conventional accumulator has the further shortcoming that it cannot be used at different depths; it must be used at the depth for which it is configured or the accumulator may still have a substantial amount of unusable hydraulic fluid.
- Pressure -balanced accumulators have been proposed to overcome the above- described shortcomings of a conventional accumulator.
- One type of pressure-balanced accumulator is disclosed for example, in U.S. Pat. No. 6,202,753 to Baugh.
- Other examples of pressure balanced accumulators are disclosed, for example, in U.S. Patent No. 7,628,207 issued to Leonardi et al. and assigned to the assignee of the present invention.
- One aspect of the invention is an accumulator for subsea wellbore operations including a generally cylindrical housing having a first and second longitudinal end each having a fluid port.
- the housing is divided into two sections by a bulkhead.
- a first piston is disposed on one side of the bulkhead and a second piston is disposed on the other side of the bulkhead.
- a connecting rod disposed between piston and defines an atmospheric pressure or vacuum chamber in a longitudinal end in contact with the second piston.
- the first piston defines an hydraulic fluid chamber and a gas charge pressure chamber between it and the bulkhead.
- the second piston defines a hydrostatic pressure chamber between it and the second longitudinal end of the housing.
- the first and second pistons having substantially equal cross sectional areas on both sides thereof such that a pressure of fluid in the hydraulic fluid pressure chamber is substantially equal to a pressure of gas in the gas charge pressure chamber and a hydrostatic pressure applied to the hydrostatic pressure chamber.
- FIG. 1 is a schematic diagram of an example subsea wellbore with a test tree attached to the top thereof, and example accumulators according to the invention disposed in or about a riser pipe that extends to the water surface.
- FIG. 2 shows a cross section of an example pressure balanced accumulator according to the invention.
- FIG. 1 shows an example subsea wellbore 18 drilled through formations below the bottom 20 of a body of water 20.
- the wellbore 18 may have installed at its upper end a subsea test tree ("SSTT") 14, shown only schematically for clarity of the illustration.
- the SSTT 14 may include various valves and controls (not shown separately) for controlling flow of fluids from the wellbore 18 and other functions.
- Hydraulic lines 16 connect to one or more accumulators 10 which may be disposed inside a riser 12 coupled above the SSTT 14.
- the riser 12 may extend to the surface wherein test control equipment (not shown) may be located, for example, on a floating drilling or production platform (not shown).
- the one or more accumulators 10 may be disposed in an annular space between the riser 12 and a production tubing 13 disposed inside the riser 12. As will be appreciated by those skilled in the art, the one or more accumulators 10 may provide hydraulic fluid under pressure to operate the various valves and controls in the SSTT 14.
- the accumulator 10 may include a generally cylindrically shaped housing 30.
- the housing 30 may be made from stainless steel, titanium of other high strength material that can resist both internal pressure and the hydrostatic pressure of a body of water at the depth at which the accumulator 10 is disposed during use.
- the housing 30 may be separated into two sections by a suitably located bulkhead 32.
- the bulkhead 32 may have an opening 33 generally in the center thereof to enable passage of a connecting rod 34 through the opening 33.
- One end of the connecting rod 34 is in contact with a first piston 40.
- the left hand side of the first piston 40 defines a chamber 42 (“hydraulic fluid chamber") that is filled with hydraulic fluid such as silicone oil.
- An hydraulic port 48 may be located on a firsst longitudinal end of the housing 30 and may be configured to enable the hydraulic fluid, when discharged under pressure, to enter the lines (16 in FIG. 1) to operate certain components of the SSTT (14 in FIG. 1).
- the other end of the connecting rod 34 includes a chamber 36 (“atmospheric chamber”) that may be initially at surface atmospheric pressure or may have vacuum therein. Such atmospheric chamber 36 may be in pressure communication through ports 36A to a larger atmospheric chamber 37 defined between the interior wall of the housing 30 and the connecting rod 34 before any external pressure is applied to the second piston 38 through a hydrostatic pressure port
- the hydrostatic pressure port 46 may be disposed at the second longitudinal end of the housing 30 and is open to the fluid disposed in the riser (12 in FIG. 1).
- Such riser fluid in configurations such as shown in FIG. 1 will generally have a pressure related to the depth of the accumulator 10 and the density of the fluid in the riser (12 in FIG. 1).
- a second piston 38 may separate the atmospheric chamber 36 from a hydrostatic pressure chamber 44 defined between the second piston 38 and the second longitudinal end of the housing 30 (on the right hand side of the housing 30 as shown in FIG. 2).
- the hydrostatic pressure chamber 44 is open to external pressure of the riser fluid or the water (22 in FIG.
- a gas charge pressure chamber 50 is defined in the annular space between the connecting rod 34 and the housing 30 longitudinally disposed between the first piston 40 and the bulkhead 32.
- the gas charge pressure chamber 50 may be charged at the surface to a selected pressure (e.g., 3,000 pounds per square inch) through a port 30A in the bulkhead 32 (with a passage therethrough into the gas charge pressure chamber 50).
- annular supports 52 may be disposed at selected locations within the gas charge chamber 50 to support the housing 30 and to facilitate longitudinal movement of the connecting rod 34.
- the annular supports 52 may include passages 54 so that the gas in the pressure charge chamber 50 may move freely therethrough when the accumulator 10 is operated
- the first 40 and second 38 pistons preferably each have the same cross-sectional area on the faces thereof exposed, respectively to the hydraulic fluid chamber 42 and the hydrostatic chamber 44.
- the cross-sectional area of the connecting rod 34 occupies some of the cross sectional area of the interior of the housing 30.
- the pressure exerted on the hydraulic fluid in the hydraulic fluid chamber 42 is at a lower pressure than the gas charge pressure, such lower pressure being the product of the gas charge pressure and the ratio of cross sectional area the annular cross sectional area of the gas charge chamber 50 and hydraulic fluid chamber side of the first piston 40.
- the diameter of the connecting rod 34 may be selected to provide a selected hydraulic fluid pressure given a selected gas charge pressure.
- the ratio of cross sectional areas on the gas charge pressure chamber and the hydraulic fluid chamber side of the fist piston 40 thereof may be 3/5.
- a gas charge pressure of 5000 pounds per square inch will provide an hydraulic fluid pressure of 3000 pounds per square inch when there is no hydrostatic pressure applied to the second piston 38.
- the second piston 38 has the same cross sectional area as the first piston 40 on the face thereof exposed to the hydrostatic chamber 44, and on its other side side is exposed to the atmospheric chamber 36, 36A, 37 defined by the connecting rod 34, which has the same annular cross sectional area as the gas charge pressure chamber 50 as a result of some of the cross section being occupied by the connecting rod 34 (which may have a substantially constant diameter).
- the hydraulic fluid in the hydraulic fluid chamber 42 is maintained at a pressure equal to the gas charge pressure plus the hydrostatic pressure, i.e., at a constant pressure above the hydrostatic pressure.
- Such constant differential pressure may provide that a substantially constant volume of hydraulic fluid may be available to be discharged from the hydraulic fluid chamber 42 irrespective of the ambient hydrostatic pressure.
- a possible advantage of having the various chambers in the accumulator 10 arranged as shown in and explained with reference to FIG. 2 is that the operating ports (i.e., the hydrostatic port 46 and the hydraulic fluid port 48 are at the respective longitudinal ends of the accumulator. Thus, it is not necessary to have hydraulic or other lines exiting the side of the housing 30. Such configuration may enable the accumulator 10 to occupy less effective annular space between the riser (12 in FIG. 1) and the production tubing (13 in FIG. 1). It may thus be possible to fit a selected number of the present example accumulators within a particular diameter riser, or to use a smaller diameter riser for a given number of accumulators.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
Abstract
Description
Claims
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MX2014002929A MX2014002929A (en) | 2011-09-13 | 2012-08-31 | Accumulator having operating fluid volume independent of external hydrostatic pressure. |
| BR112014005713A BR112014005713A2 (en) | 2011-09-13 | 2012-08-31 | accumulator for subsea well drilling operations having hydraulic loading pressure maintained at a substantially constant pressure above hydrostatic pressure at any depth in a body of water, and method for maintaining pressure in an accumulator for subsea well drilling operations having pressure of hydraulic fluid maintained at a substantially constant pressure above hydrostatic pressure at any depth in a body of water |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/231,740 | 2011-09-13 | ||
| US13/231,740 US20130062069A1 (en) | 2011-09-13 | 2011-09-13 | Accumulator having operating fluid volume independent of external hydrostatic pressure |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013039721A1 true WO2013039721A1 (en) | 2013-03-21 |
Family
ID=47828792
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/053432 WO2013039721A1 (en) | 2011-09-13 | 2012-08-31 | Accumulator having operating fluid volume independent of external hydrostatic pressure |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20130062069A1 (en) |
| BR (1) | BR112014005713A2 (en) |
| MX (1) | MX2014002929A (en) |
| WO (1) | WO2013039721A1 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014197560A1 (en) * | 2013-06-06 | 2014-12-11 | Shell Oil Company | Propellant driven accumulator |
| EP3063247A4 (en) * | 2013-10-30 | 2017-10-25 | Transocean Sedco Forex Ventures Limited | Prevention of gas hydrates formation in bop fluids in deep water operations |
| US10370925B2 (en) | 2013-11-05 | 2019-08-06 | Nicholas Veldhuisen | Rod annular blowout preventer hydraulic supply system |
| WO2015164314A1 (en) * | 2014-04-23 | 2015-10-29 | Shell Oil Company | Subsea accumulator |
| US10316603B2 (en) | 2016-06-22 | 2019-06-11 | Schlumberger Technology Corporation | Failsafe valve system |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6202753B1 (en) * | 1998-12-21 | 2001-03-20 | Benton F. Baugh | Subsea accumulator and method of operation of same |
| US20080104951A1 (en) * | 2006-11-07 | 2008-05-08 | Springett Frank B | Subsea pressure accumulator systems |
| US7628207B2 (en) * | 2006-04-18 | 2009-12-08 | Schlumberger Technology Corporation | Accumulator for subsea equipment |
| US20110155388A1 (en) * | 2008-06-20 | 2011-06-30 | Norocean As | Slip Connection with Adjustable Pre-Tensioning |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050217845A1 (en) * | 2004-03-30 | 2005-10-06 | Mcguire Lindell V | Tubing hanger running tool and subsea test tree control system |
-
2011
- 2011-09-13 US US13/231,740 patent/US20130062069A1/en not_active Abandoned
-
2012
- 2012-08-31 WO PCT/US2012/053432 patent/WO2013039721A1/en active Application Filing
- 2012-08-31 MX MX2014002929A patent/MX2014002929A/en not_active Application Discontinuation
- 2012-08-31 BR BR112014005713A patent/BR112014005713A2/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6202753B1 (en) * | 1998-12-21 | 2001-03-20 | Benton F. Baugh | Subsea accumulator and method of operation of same |
| US7628207B2 (en) * | 2006-04-18 | 2009-12-08 | Schlumberger Technology Corporation | Accumulator for subsea equipment |
| US20080104951A1 (en) * | 2006-11-07 | 2008-05-08 | Springett Frank B | Subsea pressure accumulator systems |
| US20110155388A1 (en) * | 2008-06-20 | 2011-06-30 | Norocean As | Slip Connection with Adjustable Pre-Tensioning |
Also Published As
| Publication number | Publication date |
|---|---|
| BR112014005713A2 (en) | 2017-04-04 |
| US20130062069A1 (en) | 2013-03-14 |
| MX2014002929A (en) | 2014-04-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6418970B1 (en) | Accumulator apparatus, system and method | |
| EP2082114B1 (en) | An underwater apparatus for operating underwater equipment | |
| US7926501B2 (en) | Subsea pressure systems for fluid recovery | |
| US6102673A (en) | Subsea mud pump with reduced pulsation | |
| EP1082515B1 (en) | Offshore drilling system | |
| US9500053B2 (en) | Drilling system and method of operating a drilling system | |
| US9957768B2 (en) | Subsea pressure reduction system | |
| US8322435B2 (en) | Pressure driven system | |
| US20130062069A1 (en) | Accumulator having operating fluid volume independent of external hydrostatic pressure | |
| CA2326358A1 (en) | Rotating subsea diverter | |
| US20130019980A1 (en) | Accumulator with single direction seal | |
| NO347470B1 (en) | METHOD FOR PRESSURIZING A HYDRAULIC ACCUMULATOR, SUBSEA WELL SYSTEM AND METHOD FOR RECHARGING HYDRAULIC POWER IN A SUBSEA WELL SYSTEM | |
| CN103890314A (en) | Subsea accumulator system | |
| NO345540B1 (en) | Assembly including one or more intervention-free hydraulic set systems and methods for setting them | |
| US8978766B2 (en) | Temperature compensated accumulator | |
| RU2425955C1 (en) | Garipov hydraulic reusable packer, installation and method for its implementation | |
| WO2015128217A1 (en) | Compact compensating cylinder | |
| WO2017062040A1 (en) | Accumulator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12831689 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2014/002929 Country of ref document: MX |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 12831689 Country of ref document: EP Kind code of ref document: A1 |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014005713 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112014005713 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140312 |