[go: up one dir, main page]

WO2013004007A1 - Mechanism for enhancing power control in time division based communications - Google Patents

Mechanism for enhancing power control in time division based communications Download PDF

Info

Publication number
WO2013004007A1
WO2013004007A1 PCT/CN2011/076865 CN2011076865W WO2013004007A1 WO 2013004007 A1 WO2013004007 A1 WO 2013004007A1 CN 2011076865 W CN2011076865 W CN 2011076865W WO 2013004007 A1 WO2013004007 A1 WO 2013004007A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
power control
subframes
parameter
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2011/076865
Other languages
French (fr)
Inventor
Jing HAN
Chunyan Gao
Haiming Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Mobile Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Mobile Corp filed Critical Renesas Mobile Corp
Priority to PCT/CN2011/076865 priority Critical patent/WO2013004007A1/en
Priority to DE112011105358.4T priority patent/DE112011105358T5/en
Priority to US14/130,592 priority patent/US9143308B2/en
Publication of WO2013004007A1 publication Critical patent/WO2013004007A1/en
Anticipated expiration legal-status Critical
Priority to US14/858,817 priority patent/US10506527B2/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]
    • H04W52/30Transmission power control [TPC] using constraints in the total amount of available transmission power
    • H04W52/36Transmission power control [TPC] using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting

Definitions

  • the present invention relates to a mechanism for enhancing power control in communication networks.
  • the present invention is related to apparatuses, methods and computer program products providing a mechanism by means of which an imporoved power control in time division based communication networks, such as a local area time division duplex network is provided for enabling more flexible and efficient transmission power settings for commnication network elements like UEs in the local area.
  • DwPTS downlink pilot time slot
  • eNB evolved node B
  • E-UTRAN evolved universal terrestrial radio access network
  • FDD frequency division duplex
  • LA local area
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • MCS modulation and codeing scheme
  • PDCCH physical downlink control channel
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH Physical Uplink Shared Channel
  • RNTI radio network temporary identifier
  • RRC radio resource control
  • TDD time division duplex
  • UpPTS uplink pilot time slot
  • UTRAN Universal Terrestrial Radio Access Network
  • communication networks e.g. of wire based communication networks, such as the Integrated Services Digital Network (ISDN), DSL, or wireless communication networks, such as the cdma2000 (code division multiple access) system, cellular 3rd generation (3G) communication networks like the Universal Mobile Telecommunications System (UMTS), enhanced communication networks based e.g. on LTE, cellular 2nd generation (2G) communication networks like the Global System for Mobile communications (GSM), the General Packet Radio System (GPRS), the Enhanced Data Rates for Global Evolutions (EDGE), or other wireless communication system, such as the Wireless Local Area Network (WLAN), Bluetooth or Worldwide Interoperability for Microwave Access (WiMAX), took place all over the world.
  • Various organizations such as the 3rd Generation Partnership Project (3GPP), Telecoms Ek Internet converged Services & Protocols for Advanced Networks (TISPAN), the International Telecommunication Union (ITU), 3rd
  • orthogonal frequency division multiple access is the multiple access method used in the DL direction while in the UL direction single-carrier frequency division multiple access (SD-FDMA) mode is used.
  • OFDMA orthogonal frequency division multiple access
  • SD-FDMA single-carrier frequency division multiple access
  • FDD frequency division duplex
  • TDD time division duplex
  • the downlink and uplink are transmitted using different frequencies.
  • the DL and UL are on the same frequency and the separation occurs in the time domain, so that each direction in a call is assigned to specific timeslots.
  • the TDD mode is used for transmissions in unpaired frequency bands.
  • Both the uplink and downlink for LTE are divided into radio frames of a specific length (e.g. 10 ms).
  • a frame consists of two "half-frames" of equal length, with each half-frame consisting of e.g. 10 slots, wherein two consecutive slots form one subframe.
  • TDD may uses the same frequency bands for the uplink and the downlink.
  • the transmission directions are separated by carrying the UL and DL data in different subframes.
  • the distribution of subframes between the transmission directions can be adapted to the data traffic and is done either symmetrically (equal number of DL and UL subframes) or asymmetrically.
  • Assymetric distribution of subframes may be employed, for example, in LTE- A systems, such as TDD systems in a LA scenario (LA TDD).
  • LTE- A systems such as TDD systems in a LA scenario (LA TDD).
  • LA TDD LA scenario
  • the asymmetric resource allocation in LTE TDD is realized by providing seven different semi-statically configured uplink-downlink configurations defining a respective number and order of UL subframes and DL subframes
  • the DL-UL interference in multi-cell scenarios is to be considered.
  • an interference level between different subframes of the same fram may be significantly different.
  • an apparatus comprising a classifying processing portion configured to classify subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe, a selecting processing portion configured to select separately for each of the at least two classification sets at least one power control related parameter, and a configuration processing portion configured to configure on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure.
  • a method comprising classifying subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe, selecting separately for each of the at least two classification sets at least one power control related parameter, and configuring on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure.
  • an apparatus comprising a receiver configured to receive a power control parameter set defining a power control setting for subframe of a frame structure of a time division based communication, a determining processing portion configured to determine from the power control parameter set at least one power control related parameter for each subframe, wherein the determination is based on a classification of the subframes into at least two different classification sets, each classification set comprising at least one subframe, and an applying processing portion configured to apply the determined power control related parameter in a power control for a communication in each subframe.
  • a method comprising receiving a power control parameter set defining a power control setting for subframe
  • a computer program product for a computer comprising software code portions for performing the steps of the above defined methods, when said product is run on the computer.
  • the computer program product may comprise a computer-readable medium on which said software code portions are stored.
  • the computer program product may be directly loadable into the internal memory of the computer and/or transmittable via a network by means of at least one of upload, download and push procedures.
  • a more flexible power control of subframes is provided for matching the different interference scenarios in a LA TDD network.
  • a power control procedure can be provided, which may be employed for example in an enhanced LA TDD network, which allows handling of hopping interference levels between different subframes, e.g. flexible subframes and fixed subframes, as well as among flexible subframes, i.e. which allows a suitable power control reacting on varying interferences.
  • the proposed mechanism can be easily implemented and has only a limited impact on current specifications.
  • Fig. 1 shows a diagram illustrating a frame structure comprising flexible and fixed subframes.
  • Fig. 2 shows a diagram illustrating interference scenarios in a network using a communication based on frames as shown in Fig, 1.
  • Fig. 3 shows a flowchart illustrating a processing executed in a communication network control element like a base station or eNB in a procedure according to an example of embodiments of the invention.
  • Fig. 4 shows a flowchart illustrating a processing executed in a communication network element like a UE in a procedure according to an example of embodiments of the invention.
  • Fig. 5 shows a block circuit diagram of a communication network control element including processing portions conducting functions according to examples of embodiments of the invention.
  • Fig. 6 shows a block circuit diagram of a communication network element including processing portions conducting functions according to examples of embodiments of the invention.
  • a basic system architecture of a communication network may comprise a commonly known architecture of a communication system comprising a wired or wireless access network subsystem and a core network.
  • Such an architecture may comprise one or more access network control elements, radio access network elements, access service network gateways or base transceiver stations, such as a base station (BS) or eNB, with which a communication network element or device such as a UE or another device having a similar function, such as a modem chipset, a chip, a module etc., which can also be part of a UE or attached as a separate element to a UE, or the like, is capable to communicate via one or more channels for transmitting several types of data.
  • core network elements such as gateway network elements, policy and charging control network elements, mobility management entities and the like are usually comprised.
  • network elements such as communication network elements like UEs or communication network control elements like base stations or eNBs, and the like, as well as corresponding functions as described herein may be implemented by software, e.g. by a computer program product for a computer, and/or by hardware. In any case, for
  • Such means may comprise, for example, one or more processor units including one or more processing portions for executing instructions, programs and for processing data, memory means for storing instructions, programs and data, for serving as a work area of the processor or processing portion and the like (e.g. ROM, RAM, EEPROM, and the like), input means for inputting data and instructions by software (e.g. floppy diskette, CD-ROM, EEPROM, and the like), user interface means for providing monitor and manipulation possibilities to a user (e.g.
  • processing portions should not be only considered to represent physical portions of one or more processors, but may also be considered as a logical division of the referred processing tasks performed by one or more processors.
  • processing portions should not be only considered to represent physical portions of one or more processors, but may also be considered as a logical division of the referred processing tasks performed by one or more processors.
  • a TDD configuration of an LA TDD network may be dynamically changed to match the current traffic situation of LA TDD UEs.
  • the TDD configuration may be dynamically changed.
  • there may be provided different TDD configurations.
  • these different TDD configurations there are basically two kinds of subframes in the frame structure: a fixed subframe which is fixedly preconfigured as one of a DL subframe or UL subframe, and a flexible subframe which is dynamically assigned to become an DL subframe at one time and an UL subframe at another time.
  • Fig. 1 shows a corresponding example of a frame structure in a TDD network.
  • reference sign 25 denotes a frame having 10 subframes (SF#0 to SF#9), wherein “D” means that DL data is transmitted in this subframe, “U” indicates UL data transmission and "S" specifies that special fields (i.e. DwPTS, GP and UpPTS) are transmitted in this subframe.
  • the frame 25 is configured according to a first TDD configuration A.
  • the frame structure is changed to another TDD configuration, for example to a second TDD configuration B shown at reference sign 35, which also comprises the ten subframes.
  • subframes SF#3, SF#4, SF #8 and SF#9 are flexible, i.e. they are changed from UL subframes in the old TDD configuration to DL subframes in the new TDD configuration.
  • SF#3, SF#4, SF #8 and SF#9 are flexible, i.e. they are changed from UL subframes in the old TDD configuration to DL subframes in the new TDD configuration.
  • basically more or less than these four subframes may be changed, i.e. represent flexible subframes, and the change may also be vice versa, i.e. from DL to UL.
  • Fig. 2 shows a diagram illustrating interference scenarios in a network using a communication based on frames as shown in Fig. 1.
  • Fig. 2 is related to a multi-cell scenario with plural cells served by eNBs 1 to 3, denoted with reference signs 10 to 12.
  • eNBs 1 to 3 For each of the cells, as one corresponding example, a frame structure being similar to that explained in connection with Fig. 1 is depicted illustrating the current setting of the subframes.
  • SF#3 and SF#4 are highlighted which represent flexible subframes.
  • a UEs 20 and 21 are shown which conduct communication in the multi-cell network.
  • the interference status of flexible subframe and fixed subframe may be very different.
  • a stable interference level can be expected (similar to a legacy LTE TDD network).
  • the interference level has to be expected significantly larger than for the fixed subframes.
  • the interference level is also different, since the interference could be DL-to-UL interference, or UL-to-DL interference, and the number of interference sources may be variable.
  • Fig. 2 illustrates this situation. As indicated in Fig. 2, when looking e.g. on eNB#l 10, SF#3 and SF#4 are flexible subframe.
  • the interference levels for SF#3 and SF#4 are different with that of other subframes for eNB#l, Furthermore, since SF#3 suffers interference from the DL subframe of eNB#3 12, and SF#4 suffers interference from UL subframe of eNB#2 11, the interference status of
  • SF#3 and the interference status of SF#4 are also different.
  • power control of UE is to be designed such that it can be adapted to the interference differences e.g. in an enhanced LA TDD network.
  • a mechanism is provided which enables flexible transmission power settings for the UEs so as to cope with the different and variable interferences caused by the flexible subframes, for example.
  • P CMAX ⁇ a configured UE transmitted power (maximum power); 1>USCH c (z) is the bandwidth of the PUSCH resource assignment expressed in number of resource blocks valid for subframe i; i3 ⁇ 4 PUSCH (/) IS A parameter composed of the sum of a cell specific nominal component p o NOMINAL. I' usa O) provided from higher layers and a component p o m_ ?
  • cnAj cnAj
  • PL C is the downlink pathloss estimate calculated in the UE in dB
  • a TF (0 is a further parameter representing a modulation and coding scheme (MCS) dependent component (delta value for different MCS)
  • the setting of the transmit power PUCC3 ⁇ 4C for the physical uplink control channel (PUCCH) transmission in subframe or for the transmit power P SRS e may be computed in a similar manner wherein other parameters are included. As there are many different ways of calculating these transmit powers, which are known to those skilled in the art, a further explanation thereof is omitted here.
  • TPC command that related to f c is adapted to adjust the UE transmission power in a predefined range according to configured PC mode: accumulated
  • the accumulated mode has smaller adjusted ranges of one TPC command but the adjusted transmission power could be accumulated to form a large range.
  • TPC commands with absolute mode could adjust transmission power in a larger range in one time, but the maximum adjusted transmission power is limited, for example, to 4dB, which is also illustrated in following table 1.
  • an absulute mode is not applicable for all types of channels, and even if it is applicable, the achievable adjustment is 4dB which may not be sufficient as the adjusted transmission power can not be accumulated.
  • a power control procedure is provided which is usable, for example, in an enhanced LA TDD network with a frame structure as discussed above, where it is possible to cope with hopping interference levels between flexible subframe and fixed subframe, as well as among flexible subframes.
  • P 0 _PUSCH and a c are semi-statically configured and they are same for all subframes. According to examples of
  • these power control parameters are set independently and dynamically for each subframe or group of subframe (classification set) so that the different interference levels on respective subframes can be coped with.
  • power control related parameters are configured based on subframe index. That is, when using as power control related parameters for an example one or more of PQ_UE_PUSCH in a PUSCH power control, and/or a parameter P 0 _UE_ P UCC H in PUCCH power control and/or a parameter PSRS_OFFSET for SRS power control (which basically correspond to PO_UE_PUSCH in the PUSCH power control according to equation (1)), and a parameter for enabling or disabling a processing mode for accumulating transmission power control command values, for example for enabling an accumulation of TPC commands (e.g.
  • these paramters are configured based on a subframe index (e.g. SF#0...SF#9, as indicated in Fig. 1).
  • a classification of subframes into several sets may be conducted, so that e.g. all subframes being fixed subframes are put into one set while each subframe being a flexible subframe is put into its own set.
  • power control related parameters are allocated, and the power control parameter set can be configured by sequence based RRC parameters.
  • power control related parameters are configured based on a predefined rule to devide the subframes into groups.
  • a predefined rule to devide the subframes into groups.
  • the parameters are divided by groups to be specified and configured by RRC, In other words, a classification of subframes into several sets may be conducted, wherein one set represent one group divided on the basis of the rule. For example,
  • EIE110144PCT groups may be divided according to an interference category (e.g. U-U interference group of subframes and and U-D interference group of subframes), or according to the kind of subframe (e.g. one group for all flexible subframes and one group for all fixed subframes). Then, to each of these sets or groups, power control related parameters are allocated, and the power control parameter set can be configured by sequence based R C parameters.
  • an interference category e.g. U-U interference group of subframes and and U-D interference group of subframes
  • the kind of subframe e.g. one group for all flexible subframes and one group for all fixed subframes.
  • a receiving UE when receiving a power control parameter set as configured according to one of the above examples, is configured to apply the power related parameters for each subframe i in an UL transmission (on PUSCH, PUCCH, SRS) according to the RRC subframe index/group based configuration.
  • the UE is able to determine from the sequence of the received power control parameter set the correct power control parameter value to be used for the specific subframe i, based on the classification thereof.
  • the TPC related parameter in the power control equation will be updated separately based on different subframe/group that is configured by RRC. For example, a TPC related parameter is updated for fixed subframe independently, and a TPC related parameter is updated for each flexible subframe e.g. with different configured P 0 value independently.
  • step S110 for allocating power control related parameters in a desired manner, the subframes of the frame structure of the TDD based network are classified into two or more sets (also referred to as classification sets), wherein each set comprises at least one subframe. That is, for example, the subframes are classified as fixed subframes to which the same power control related parameter is allocated, and as flexible subframes to which either a separate common power control related parameter or plural other power control related parameters is/are allocated.
  • step S120 for each set of subframes (e.g. flexible and fixed subframes), at least one power control related parameter is selected and assigned.
  • P 0 _UE_PUSCH in PUSCH power control, PO_UE_PUCCH in PUCCH power control, and PSR S _OFFSBT for SRS power control, as well as the parameter accumuiationenabled are correspondingly selected, e.g. based on interference calculations or the like so as to cope with the interference on the respective subframes.
  • step S130 on the basis of the selected power control related parameters, a power control parameter set is configured which defines a power control setting for each subframe of the frame structure. For example, a sequence defining the power control related parameters in an order corresponding to the classification sets is formed for configuring the power control parameter set.
  • step S140 the power control parameter set configured in step S130 is sent to a communication network element, e.g. UE 20.
  • processing in the eNB 10 may comprise a step S150 where parameter related to the TPC command is updated for specific subframes, as discussed above, and the updated TPC commands are sent to the UE 20, for example.
  • step S210 the UE 20 receives the power control parameter set (as sent e.g. in step S140 in Fig. 3) which defines the power control setting for subframes of the frame structure.
  • step S220 the UE 20 determines from the received power control parameter set the power control related parameter for each subframe (e.g. PQ_UE_PUSCH for PUSCH power control, PO_UE_PUCCH for PUCCH power control, PSRS_OFFSET for SRS power control, value for accumulationenabled). In this determination, the power control related parameters selected for a subframe according its classification (e.g.
  • step S230 the determined power control related parameters are applied in a power control for a communication in each subframe.
  • the processing in the UE 20 may comprise a step S240 where updated TPC commands are received, for example, and where it is determined which of the received transmission power control command values is to be used for which subframe, that is a change amount for a transmission power of a respective subframe is calculated by using the TPC command on the basis of the classification of the subframes into the classification sets.
  • PC parameters that are conventionally semi-statical and thus not suitable to cope with the differing interferece scenarios, are configured based on a subframe index or goup, so that for example each subframe/group has one PC parameter settings wherein the subframe/group setting is defined via RRC signaling.
  • PO_UE_PUSCH, PQ_UB_PUCCH and P S RS_OFFSET may be configured based on subframe index/group, as described above. Due to the different interference levels between flexible subframes and fixed subframes, as well as different interference levels among flexible subframes, one set PC parameter could be configured for fixed subframes and one set PC parameter could be configured for each flexible subframe.
  • UplinkPo erControlDedicated :: SEQUENCE ⁇
  • UplinkPowerControlDedicated-rl 1 SEQUENCE ⁇
  • pO-UE-PUSCHList SEQUENCE (SIZE (1..7)) OF INTEGER (-S..7)
  • pO-UE-PUCCHList SEQUENCE (SIZE (1..7)) OF INTEGER (-8..7)
  • pSRS-OffsetList :: SEQUENCE (SIZE (1..7)) OF INTEGER (0..15)
  • this part is related to the parameter 0 UE PUSCH (1) according to equation (1) and has a unit [dB].
  • this part is applicable for non-persistent scheduling, only,
  • the power control parameters are configured on the basis of a subframe index, then it is possible to implement this in the above signaling design by using the first value of pO-UE-PUSCHList for subframes SF#0,
  • SF#1, SF#5, SF#6 fixed subframes in LA TDD
  • the second value thereof for subframe SF#2 by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9.
  • the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1
  • the size is not limit to value of 7.
  • TRUE corresponds to "enabled”
  • FALSE corresponds to "disabled”.
  • EIE110144PCT parameters are configured on the basis of a subframe index, then it is possible to implement this in the above signaling design by using the first value of accumulationEnabled for subframes SF#0, SF#1, SF#5, SF#6 (fixed subframes in LA TDD), by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9.
  • the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1 (e.g. fixed subframes), and the second value is used for group 2 (e.g. flexible subframes), etc. It is to be noted that the size is not limit to value of
  • the power control parameters are configured on the basis of a subframe index
  • it is possible to implement this in the above signaling design by using the first value of pO-UE-PUCCHList for subframes SF#0, SF#1, SF#5, SF#6 (fixed subframes in LA TDD), by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9.
  • the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1 (e.g. fixed
  • the second yalue is used for group 2 (e.g. flexible subframes), etc. It is to be noted that the size is not limit to value of 7.
  • this is related to a parameter P S RS_OFFSET used in an equation which may be similar to equation (1) but for SRS power control.
  • P S RS_OFFSET used in an equation which may be similar to equation (1) but for SRS power control.
  • a parameter Ks has a value of 1.25
  • the actual parameter value is pSRS- Offset value - 3.
  • the actual parameter value is -10.5 + 1.5*pSRS-Offset value.
  • the power control parameters are configured on the basis of a subframe index
  • it is possible to implement this in the above signaling design by using the first value of pSRS-OffsetList for subframes SF#0, SF#1, SF#5, SF#6 (fixed subframes in LA TDD), by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9.
  • the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1 (e.g. fixed subframes), and the second value is used for group 2 (e.g. flexible subframes), etc. It is to be noted that the size is not limit to value of 7.
  • an UE when an UE, such as UE 20 being an LA TDD UE receives the power control parameter set, it applies the PC parameters for each subframe.
  • the parameter PO_UE_PUSCH it is indicated in the RRC signaling of the power
  • EIE110144PCT control paramter set as indicated above (pO-UE-PUSCHList) that e.g. the following sequence is to be considered : (-8, -4, ⁇ 2, 3, 5, 6, 7).
  • the UE determines from the list the value (-2) for P 0 _UE_PUSCH and uses the determined value in the calculation of the PUSCH transmission power in subframe SF#3 by means of the equation (1), for example.
  • the accumulation mode for the adjustment of the transmission power (TPC commands) is enabled for specific subframes, and the TPC related parameter in the power control equation will be updated separately based on different subfra me/group that is configured by RRC, the following processing may be conducted.
  • the TPC command related parameter for PUSCH equation is f as described above in connection with equation (1).
  • the TPC command related parameter may be updated for example in the following manner:
  • s !usau (i-K TlJSCil ) is the TPC command in the related UL grant, which does not need to be changed.
  • EIE110144PCT ( ⁇ - ⁇ ) is the value in last subframe.
  • a block circuit diagram illustrating a configuration of a communication network control element such as the eNB 10, is shown, which is configured to implement functions of the power control procedure and thus of the processing as described in connection with the examples of embodiments of the invention according to Fig. 3, for example.
  • the communication network control element or eNB 10 shown in Fig . 5 may comprise several further elements or functions besides those described herein below, which are omitted herein for the sake of simplicity as they are not essential for understanding the invention .
  • the communication network element may be also another device having a similar function, such as a modem chipset, a chip, a module etc., which can also be part of a base station or attached as a separate element to a base station, or the like.
  • the communication network control element or eNB 10 may comprise a processing function or processor 11, such as a CPU or the like, which executes instructions given by programs or the like related to the power control.
  • the processor 11 may comprise one or more processing portions dedicated to specific processing as described below, or the processing may be run in a single processor. Portions for executing such specific processing may be also provided as discrete elements or within one or more further
  • Reference sign 12 denotes interface or transceiver or input/output (I/O) units connected to the processor 11.
  • the I/O units 12 may be used for communicating with elements of the cellular network, such as a communication network element like a UE.
  • the I/O units 12 may be a combined unit comprising communication equipment towards several network elements, or may comprise a distributed structure with a plurality of different interfaces for different network elements.
  • Reference sign 13 denotes a memory usable, for example, for storing data and programs to be executed by the processor
  • the processor 11 is configured to execute processing related to the above described power control procedure.
  • the processor 11 comprises a sub-portion 111 as a processing portion which is usable as a subframe classification element which classifies the subframes into the classification sets.
  • the portion 111 may be configured to perform processing according to step S110 according to Fig. 3, for example.
  • the processor 11 comprises a sub-portion 112 as a processing portion which is usable as a power control parameter selection element which is able to select in a suitable manner power control related parameters for the subframes in the classification sets.
  • the portion 112 may be configured, for example, to perform processing according to step S120 according to Fig. 3, for example.
  • the processor 11 comprises a sub-portion 113 as a processing portion which is usable as a power control parameter set configuration element which is able to configure a power control parameter set.
  • the portion 113 may be configured, for example, to perform processing according to step S130 according to Fig. 3, for example.
  • the processor 11 comprises a sub-portion 114 as a processing portion usable as a TPC updating and transmission element which is able to update TPC command values and to transmit them to the UE.
  • the portion 114 may be configured, for example, to perform processing according to step S140 according to Fig. 3, for example.
  • FIG. 6 a block circuit diagram illustrating a configuration of a communication network element, such as of UE 20, is shown, which is configured to implement the functions of the power control procedure and thus the processing as described in connection with the examples of embodiments of the invention according to Fig. 4, for example.
  • the communication network element or UE 20 shown in Fig. 6 may comprise several further elements or functions besides those described herein below, which are omitted herein for the sake of simplicity as they are not essential for understanding the invention.
  • the communication network element may be also another device having a similar function, such as a modem chipset, a chip, a module etc., which can also be part of a UE or attached as a separate element to a UE, or the like.
  • the communication network element or UE 20 may comprise a processing function or processor 21, such as a CPU or the like, which executes instructions given by programs or the like related to the power control.
  • the processor 21 may comprise one or more processing portions dedicated to specific processing as described below, or the processing may be run in a single processor. Portions for executing such specific processing may be also provided as discrete elements or within one or more further processors or processing portions, such as in one physical processor like a CPU or in several physical entities, for example.
  • Reference sign 22 denotes interfaces or transceivers or input/output (I/O) units connected to the processor 21.
  • the I/O units 22 may be used for communicating with elements of the communication network, such as a communication network control element like an eNB.
  • the I/O units 22 may be a combined unit comprising communication equipment towards several of the network element in question, or may comprise a distributed structure with a plurality of different interfaces for each network element in question.
  • Reference sign 23 denotes a memory usable, for example, for storing data and programs to be executed by the processor 21 and/or as a working storage of the processor 21.
  • the processor 21 is configured to execute processing related to the above described power control procedure.
  • the processor 21 comprises a sub-portion 211 as a processing portion which is usable for receiving a power control parameter set from the communication network control element.
  • the portion 211 may be configured to perform processing according to step S210 according to Fig. 4, for example.
  • the processor 21 comprises a sub-portion 212 as a processing portion for determining, for the subframes, power control related parameters from the power control parameter set in accordance with the classification sets of the subframes.
  • the portion 212 may be configured to perform processing according to step S220 according to Fig. 4, for example.
  • the processor 21 comprises a sub-portion 213 as a processing portion which is usable for conducting a power control procedure, i.e. for applying the determined power control related parameters for a power control on the respective subframes.
  • the portion 213 may be configured to perform processing according to step S230 according to Fig. 4, for example.
  • the processor 21 comprises a sub-portion 214 as a processing portion which is usable for updating a transmission power according to received TPC commands in respective subframes, again according to the classification sets of the subframes.
  • the portion 214 may be configured to perform processing according to step S240 according to Fig. 4, for example.
  • an apparatus comprising a classifying processing means for classifying subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe, a selecting processing means for selecting separately for each of the at least two classification sets at least one power control related parameter, and a configuration processing means for configuring on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure.
  • an apparatus comprising receiving means for receiving a power control parameter set defining a power control setting for subframe of a frame structure of a time division based communication, determining processing means for determining from the power control parameter set at least one power control related parameter for each subframe, wherein the determination is based on a classification of the subframes into at least two different classification sets, each classification set comprising at least one subframe, and an applying processing means for applying the determined power control related parameter in a power control for a communication in each subframe.
  • examples of embodiments of the invention concerning the feedback framework are described to be implemented in UEs and eNBs.
  • the invention is not limited to this.
  • examples of embodiments of the invention may be implemented in any wireless modems or the like.
  • an access technology via which signaling is transferred to and from a network element may be any technology by means of which a network element or sensor node can access another network element or node (e.g. via a base station or generally an access node).
  • Any present or future technology such as WLAN (Wireless Local Access Network), WiMAX (Worldwide Interoperability for Microwave Access), LTE, LTE-A, Bluetooth, Infrared, and the like may be used; although the above technologies are mostly wireless access technologies, e.g. in different radio spectra, access technology in the sense of the present invention implies also wired technologies, e.g. IP based access technologies like cable networks or fixed lines but also circuit switched access technologies; access technologies may be distinguishable in at least two categories or access domains such as packet switched and circuit switched, but the existence of more than two access domains does not impede the invention being applied thereto,
  • EIE110144PCT - usable communication networks and transmission nodes may be or comprise any device, apparatus, unit or means by which a station, entity or other user equipment may connect to and/or utilize services offered by the access network; such services include, among others, data and/or (audio-) visual communication, data download etc;
  • a user equipment or communication network element may be any device, apparatus, unit or means by which a system user or subscriber may experience services from an access network, such as a mobile phone, personal digital assistant PDA, or computer, or a device having a corresponding functionality, such as a modem chipset, a chip, a module etc., which can also be part of a UE or attached as a separate element to a UE, or the like;
  • an access network such as a mobile phone, personal digital assistant PDA, or computer, or a device having a corresponding functionality, such as a modem chipset, a chip, a module etc., which can also be part of a UE or attached as a separate element to a UE, or the like;
  • any method step is suitable to be implemented as software or by hardware without changing the idea of the invention in terms of the functionality implemented;
  • - method steps and/or devices, apparatuses, units or means likely to be implemented as hardware components at a terminal or network element, or any module(s) thereof are hardware independent and can be implemented using any known or future developed hardware technology or any hybrids of these, such as a microprocessor or CPU (Central Processing Unit), MOS (Metal Oxide Semiconductor), CMOS (Complementary MOS), BiMOS (Bipolar MOS), BiCMOS (Bipolar CMOS), ECL (Emitter Coupled Logic), TTL (Transistor-Transistor Logic), etc., using for example ASIC (Application
  • CPU Central Processing Unit
  • MOS Metal Oxide Semiconductor
  • CMOS Complementary MOS
  • BiMOS BiMOS
  • BiCMOS BiCMOS
  • ECL Emitter Coupled Logic
  • TTL Transistor-Transistor Logic
  • any method steps and/or devices, units or means likely to be implemented as software components may for example be based on any security
  • - devices, apparatuses, units or means can be implemented as individual devices, apparatuses, units or means, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device, apparatus, unit or means is preserved; for example, for executing operations and functions according to examples of embodiments of the invention, one or more processors may be used or shared in the processing, or one or more processing sections or processing portions may be used and shared in the processing, wherein one physical processor or more than one physical processor may be used for implementing one or more processing portions dedicated to specific processing as described,
  • an apparatus may be represented by a semiconductor chip, a chipset, or a (hardware) module comprising such chip or chipset; this, however, does not exclude the possibility that a functionality of an apparatus or module, instead of being hardware implemented, be implemented as software in a (software) module such as a computer program or a computer program product comprising executable software code portions for execution/being run on a processor;
  • a device may be regarded as an apparatus or as an assembly of more than one apparatus, whether functionally in cooperation with each other or functionally independently of each other but in a same device housing, for example.
  • a mechanism for conducting power control in a time division based communication Subframes of a frame structure of the time division based communication are classified into at two or more classification sets, each classification set comprising at least one subframe. For each of the classification sets, power control related parameters are selected in accordance with the interference on the respective subframes. On the basis of the selected power control related parameters, a power control parameter set is configured defining a power control setting for each subframe of the frame structure. A UE receiving the power control parameter set applies the power control related parameters in the power control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

There is provided a mechanism for conducting power control in a time division based communication. Subframes of a frame structure of the time division based communication are classified into at two or more classification sets, each classification set comprising at least one subframe. For each of the classification sets, power control related parameters are selected in accordance with the interference on the respective subframes. On the basis of the selected power control related parameters, a power control parameter set is configured defining a power control setting for each subframe of the frame structure. A UE receiving the power control parameter set applies the power control related parameters in the power control.

Description

MECHANISM FOR ENHANCING POWER CONTROL IN TIME DIVISION
BASED COMMUNICATIONS
DESCRIPTION
BACKGROUND OF THE INVENTION
Field of the invention
The present invention relates to a mechanism for enhancing power control in communication networks. In particular, the present invention is related to apparatuses, methods and computer program products providing a mechanism by means of which an imporoved power control in time division based communication networks, such as a local area time division duplex network is provided for enabling more flexible and efficient transmission power settings for commnication network elements like UEs in the local area.
Related background Art
Prior art which is related to this technical field can e.g. be found by the technical specification 3GPP TS 36.213, for example according to version 10.2.0.
The following meanings for the abbreviations used in this specification apply:
DL: downlink
DwPTS: downlink pilot time slot
eNB: evolved node B
E-UTRAN : evolved universal terrestrial radio access network
FDD: frequency division duplex
GP: guard period
LA: local area LTE: Long Term Evolution
LTE-A: LTE Advanced
MCS: modulation and codeing scheme
PC: power control
PDCCH : physical downlink control channel
PRACH: physical random access channel
P B: physical resource block
PUCCH : physical uplink control channel
PUSCH : Physical Uplink Shared Channel
RNTI: radio network temporary identifier
RRC: radio resource control
SF: subframe
SRS: sounding reference symbol
TDD: time division duplex
TPC: transmission power control
Tx: transmitter
UE: user equipment
UL: uplink
UpPTS : uplink pilot time slot
UTRAN : Universal Terrestrial Radio Access Network
In the last years, an increasing extension of communication networks, e.g. of wire based communication networks, such as the Integrated Services Digital Network (ISDN), DSL, or wireless communication networks, such as the cdma2000 (code division multiple access) system, cellular 3rd generation (3G) communication networks like the Universal Mobile Telecommunications System (UMTS), enhanced communication networks based e.g. on LTE, cellular 2nd generation (2G) communication networks like the Global System for Mobile communications (GSM), the General Packet Radio System (GPRS), the Enhanced Data Rates for Global Evolutions (EDGE), or other wireless communication system, such as the Wireless Local Area Network (WLAN), Bluetooth or Worldwide Interoperability for Microwave Access (WiMAX), took place all over the world. Various organizations, such as the 3rd Generation Partnership Project (3GPP), Telecoms Ek Internet converged Services & Protocols for Advanced Networks (TISPAN), the International Telecommunication Union (ITU), 3rd
2 EIE110144PCT Generation Partnership Project 2 (3GPP2), Internet Engineering Task Force (IETF), the IEEE (Institute of E!ectrica! and Electronics Engineers), the WiMAX Forum and the like are working on standards for telecommunication network and access environments. Examples for new communication technologies are for example LTE and LTE-A of 3GPP,
For example, in LTE represent is the next evolution of 3GPP based communication technology high data rates the DL and UL direction as well as reduced latency for packet transmissions is tried to be achieved. For this purpose, orthogonal frequency division multiple access (OFDMA) is the multiple access method used in the DL direction while in the UL direction single-carrier frequency division multiple access (SD-FDMA) mode is used. There are two different duplex modes for separating the transmission directions from the user to the base station and vice versa: on is frequency division duplex (FDD) and the other is time division duplex (TDD). In the case of FDD, the downlink and uplink are transmitted using different frequencies. In the TDD mode, the DL and UL are on the same frequency and the separation occurs in the time domain, so that each direction in a call is assigned to specific timeslots. The TDD mode is used for transmissions in unpaired frequency bands.
Both the uplink and downlink for LTE are divided into radio frames of a specific length (e.g. 10 ms). A frame consists of two "half-frames" of equal length, with each half-frame consisting of e.g. 10 slots, wherein two consecutive slots form one subframe. TDD may uses the same frequency bands for the uplink and the downlink. The transmission directions are separated by carrying the UL and DL data in different subframes. The distribution of subframes between the transmission directions can be adapted to the data traffic and is done either symmetrically (equal number of DL and UL subframes) or asymmetrically.
Assymetric distribution of subframes may be employed, for example, in LTE- A systems, such as TDD systems in a LA scenario (LA TDD). For example, the asymmetric resource allocation in LTE TDD is realized by providing seven different semi-statically configured uplink-downlink configurations defining a respective number and order of UL subframes and DL subframes
3 EIE110144PCT in the transmission frame. Due to these different configurations, it is possible to provide between 40% and 90% DL subframes which allows a certain flexibility in the resource allocation in the LA TDD network. For TDD deployments in general, interference between UL and DL including both basestation-to-basestation and UE-to-UE interference is typically handled by statically providing a guard period and adopting the same frame timing and uplink-downlink configuration practically in the entire network. However, in an LA network, the interference between UL and DL may occur again since it may be of interest to consider different UL/DL allocations in the neighbouring cells. This is because a same DL/UL configuration in different neighboring cells of the LA network may not match the traffic situation in the different LA ceils having generally a small number of users. However, in order to handle such an interference, it is necessary to conduct a suitable power control, so that this may have a heavy impact on the transmission power settings for a UE in the LA network.
Also the DL-UL interference in multi-cell scenarios is to be considered. As a result, an interference level between different subframes of the same fram may be significantly different.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an improved mechanism for conducting power control in a TDD based network so as to enable more flexible and efficient transmission power settings for the UEs. In particular, it is an object of the present invention to provide an apparatus, method and computer program product by means of which power control related parameters can be configured in such a manner that a more flexible power control of subframes is provided for matching the different interference scenarios in a LA TDD network.
These objects are achieved by the measures defined in the attached claims.
4 EIE110144PCT According to an example of an embodiment of the proposed solution, there is provided, for example, an apparatus comprising a classifying processing portion configured to classify subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe, a selecting processing portion configured to select separately for each of the at least two classification sets at least one power control related parameter, and a configuration processing portion configured to configure on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure.
Furthermore, according to an example of an embodiment of the proposed solution, there is provided, for example, a method comprising classifying subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe, selecting separately for each of the at least two classification sets at least one power control related parameter, and configuring on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure.
Moreover, according to a further example of an embodiment of the proposed solution, there is provided, for example, an apparatus comprising a receiver configured to receive a power control parameter set defining a power control setting for subframe of a frame structure of a time division based communication, a determining processing portion configured to determine from the power control parameter set at least one power control related parameter for each subframe, wherein the determination is based on a classification of the subframes into at least two different classification sets, each classification set comprising at least one subframe, and an applying processing portion configured to apply the determined power control related parameter in a power control for a communication in each subframe.
Furthermore, according to an example of an embodiment of the proposed solution, there is provided, for example, a method comprising receiving a power control parameter set defining a power control setting for subframe
5 EIE110144PCT of a frame structure of a time division based communication, determining from the power control parameter set at least one power control related parameter for each subframe, wherein the determination is based on a classification of the subframes into at least two different classification sets, each classification set comprising at least one subframe, and applying the determined power control related parameter in a power control for a communication in each subframe.
In addition, according to examples of the proposed solution, there is provided, for example, a computer program product for a computer, comprising software code portions for performing the steps of the above defined methods, when said product is run on the computer. The computer program product may comprise a computer-readable medium on which said software code portions are stored. Furthermore, the computer program product may be directly loadable into the internal memory of the computer and/or transmittable via a network by means of at least one of upload, download and push procedures.
By virtue of the proposed solutions, it is possible to provide an apparatus, method and computer program product by means of which a more flexible power control of subframes is provided for matching the different interference scenarios in a LA TDD network. For example, it is possible to cope with complex interference status in LA TDD networks (i.e. different interference levels between fixed subframe and flexible subframe, as well as among flexible subframes). Furthermore, a power control procedure can be provided, which may be employed for example in an enhanced LA TDD network, which allows handling of hopping interference levels between different subframes, e.g. flexible subframes and fixed subframes, as well as among flexible subframes, i.e. which allows a suitable power control reacting on varying interferences. Moreover, the proposed mechanism can be easily implemented and has only a limited impact on current specifications.
6 EIE110144PCT The above and still further objects, features and advantages of the invention wili become more apparent upon referring to the description and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a diagram illustrating a frame structure comprising flexible and fixed subframes.
Fig. 2 shows a diagram illustrating interference scenarios in a network using a communication based on frames as shown in Fig, 1.
Fig. 3 shows a flowchart illustrating a processing executed in a communication network control element like a base station or eNB in a procedure according to an example of embodiments of the invention.
Fig. 4 shows a flowchart illustrating a processing executed in a communication network element like a UE in a procedure according to an example of embodiments of the invention.
Fig. 5 shows a block circuit diagram of a communication network control element including processing portions conducting functions according to examples of embodiments of the invention.
Fig. 6 shows a block circuit diagram of a communication network element including processing portions conducting functions according to examples of embodiments of the invention.
DESCRIPTION OF PREFERRED EMBODIMENTS
In the following, examples and embodiments of the present invention are described with reference to the drawings. For illustrating the present invention, the examples and embodiments will be described in connection
7 EIE110144PCT with a cellular communication network based on a 3GPP LTE-A system, in particular a LTE-A LA TDD network. However, it is to be noted that the present invention is not limited to an application using such types of communication system, but is also applicable in other types of communication systems and the like.
A basic system architecture of a communication network may comprise a commonly known architecture of a communication system comprising a wired or wireless access network subsystem and a core network. Such an architecture may comprise one or more access network control elements, radio access network elements, access service network gateways or base transceiver stations, such as a base station (BS) or eNB, with which a communication network element or device such as a UE or another device having a similar function, such as a modem chipset, a chip, a module etc., which can also be part of a UE or attached as a separate element to a UE, or the like, is capable to communicate via one or more channels for transmitting several types of data. Furthermore, core network elements such as gateway network elements, policy and charging control network elements, mobility management entities and the like are usually comprised.
The general functions and interconnections of the described elements, depending on the actual network type, are known to those skilled in the art and described in corresponding specifications so that a detailed description thereof is omitted herein. However, it is to be noted that several additional network elements and signaling links may be employed for a communication connection to or from UEs or eNBs, besides those described in detail herein below.
Furthermore, the described network elements, such as communication network elements like UEs or communication network control elements like base stations or eNBs, and the like, as well as corresponding functions as described herein may be implemented by software, e.g. by a computer program product for a computer, and/or by hardware. In any case, for
8 EIE110144PCT executing their respective functions, correspondingly used devices, nodes or network elements may comprise several means and components (not shown) which are required for control, processing and communication/signaling functionality. Such means may comprise, for example, one or more processor units including one or more processing portions for executing instructions, programs and for processing data, memory means for storing instructions, programs and data, for serving as a work area of the processor or processing portion and the like (e.g. ROM, RAM, EEPROM, and the like), input means for inputting data and instructions by software (e.g. floppy diskette, CD-ROM, EEPROM, and the like), user interface means for providing monitor and manipulation possibilities to a user (e.g. a screen, a keyboard and the like), interface means for establishing links and/or connections under the control of the processor unit or portion (e.g. wired and wireless interface means, an antenna, etc.) and the like. It is to be noted that in the present specification processing portions should not be only considered to represent physical portions of one or more processors, but may also be considered as a logical division of the referred processing tasks performed by one or more processors. First, a principle configuration of a frame structure used in a communication of for example an LA TDD network in which examples of embodiments of the invention are implementabie is described in connection with Fig. 1.
As indicated above, a TDD configuration of an LA TDD network may be dynamically changed to match the current traffic situation of LA TDD UEs. In other words, in order to deal with changing UL or DL traffic, the TDD configuration may be dynamically changed. For this purpose, for example, there may be provided different TDD configurations. In these different TDD configurations, there are basically two kinds of subframes in the frame structure: a fixed subframe which is fixedly preconfigured as one of a DL subframe or UL subframe, and a flexible subframe which is dynamically assigned to become an DL subframe at one time and an UL subframe at another time.
9 EIE110144PCT Fig. 1 shows a corresponding example of a frame structure in a TDD network. Specifically, reference sign 25 denotes a frame having 10 subframes (SF#0 to SF#9), wherein "D" means that DL data is transmitted in this subframe, "U" indicates UL data transmission and "S" specifies that special fields (i.e. DwPTS, GP and UpPTS) are transmitted in this subframe. The frame 25 is configured according to a first TDD configuration A. When a change of the frame is required, e.g. due to a changing traffic load, the frame structure is changed to another TDD configuration, for example to a second TDD configuration B shown at reference sign 35, which also comprises the ten subframes. However, as indicated above, there are subframes which are fixed, i.e. which are never changed, and subframes which are flexible, i.e. which can be changed. In the example shown in Fig. 1, subframes SF#3, SF#4, SF #8 and SF#9 are flexible, i.e. they are changed from UL subframes in the old TDD configuration to DL subframes in the new TDD configuration. However, it is to be noted that basically more or less than these four subframes may be changed, i.e. represent flexible subframes, and the change may also be vice versa, i.e. from DL to UL.
Fig. 2 shows a diagram illustrating interference scenarios in a network using a communication based on frames as shown in Fig. 1. Specifically, Fig. 2 is related to a multi-cell scenario with plural cells served by eNBs 1 to 3, denoted with reference signs 10 to 12. For each of the cells, as one corresponding example, a frame structure being similar to that explained in connection with Fig. 1 is depicted illustrating the current setting of the subframes. In the figure, SF#3 and SF#4 are highlighted which represent flexible subframes. Furthermore, a UEs 20 and 21 are shown which conduct communication in the multi-cell network.
Due to the dynamic changing of the flexible subframes and and the different TDD configurations being possible present in neighboring cells, the interference status of flexible subframe and fixed subframe may be very different. For fixed subframes, since the subframe direction (UL/DL) of
10 EIE110144PCT neighboring ce!!s are all the same, a stable interference level can be expected (similar to a legacy LTE TDD network). However, for the flexible subframe, there may be a possible UL-DL interference between neighboring cells, and the interference level has to be expected significantly larger than for the fixed subframes. In addition, when considering the flexible subframes alone, the interference level is also different, since the interference could be DL-to-UL interference, or UL-to-DL interference, and the number of interference sources may be variable. Fig. 2 illustrates this situation. As indicated in Fig. 2, when looking e.g. on eNB#l 10, SF#3 and SF#4 are flexible subframe. Due to the DL-UL interference, the interference levels for SF#3 and SF#4 are different with that of other subframes for eNB#l, Furthermore, since SF#3 suffers interference from the DL subframe of eNB#3 12, and SF#4 suffers interference from UL subframe of eNB#2 11, the interference status of
SF#3 and the interference status of SF#4 are also different.
Thus, due to the variable interference differences between flexible subframe and fixed subframes, and even among flexible subframes, power control of UE is to be designed such that it can be adapted to the interference differences e.g. in an enhanced LA TDD network. According to examples of embodiments of the invention, a mechanism is provided which enables flexible transmission power settings for the UEs so as to cope with the different and variable interferences caused by the flexible subframes, for example.
Conventionally, in a PC scheme, only one set of PC parameters is serni- staticaily configured which is sufficient when the interference level of all subframes is same.
For example, in an LTE-A based network, it is assumed in the following that a transmission power calculation based on the 3GPP LTE E-UT AN principles is used, for example according to specification 3GPP TS 36.213, version
11 EIE110144PCT 10.2.0 (which represent only one of piura! possible example algorithms applicable in connection with examples of embodiments of the invention). Then, a transmission power for a subframe i where PUSCH/PUCCH/SRS transmission should happen may be calculated according to the following formulas.
Figure imgf000013_0001
In this equation (1), PCMAX^,. s a configured UE transmitted power (maximum power); 1>USCH c (z) is the bandwidth of the PUSCH resource assignment expressed in number of resource blocks valid for subframe i; i¾ PUSCH (/) IS A parameter composed of the sum of a cell specific nominal component po NOMINAL. I'usa O) provided from higher layers and a component po m_? cnAj) provided by higher layers; for j =0 or 1, c€ {0, 0.4, .5, 0.6, 0.7, 0.8, 0.9, l} is a 3-bit cell specific parameter provided by higher layers (for j=2, a(/') = l ); PLC is the downlink pathloss estimate calculated in the UE in dB; ATF(0 is a further parameter representing a modulation and coding scheme (MCS) dependent component (delta value for different MCS) ; and fc(i) represents a current power control adjustment state accumulated from received TPC commands (e-9- fc(fy = fc (i ~ fy ÷ 3puscH,c (i ~KpuscH if accumulation is enabled, wherein <5pUSCH c is a correction value, also referred to as a TPC command, and ^PUSCH is a constant depending on the transmission type).
The setting of the transmit power PUCC¾C for the physical uplink control channel (PUCCH) transmission in subframe or for the transmit power PSRS e may be computed in a similar manner wherein other parameters are included. As there are many different ways of calculating these transmit powers, which are known to those skilled in the art, a further explanation thereof is omitted here.
TPC command that related to fc is adapted to adjust the UE transmission power in a predefined range according to configured PC mode: accumulated
12 EIE110144PCT mode or absolute mode. The accumulated mode has smaller adjusted ranges of one TPC command but the adjusted transmission power could be accumulated to form a large range. However, using conventional TPC command with accumulated mode to change the transmission power to another level is a slow procedure, and a "jump" to different interference level between flexible subframe and fixed subframe is difficult to be achieved. On the other hand, TPC commands with absolute mode could adjust transmission power in a larger range in one time, but the maximum adjusted transmission power is limited, for example, to 4dB, which is also illustrated in following table 1.
Table 1 TPC command value of accumulated mode and absolute mode
Figure imgf000014_0001
However, an absulute mode is not applicable for all types of channels, and even if it is applicable, the achievable adjustment is 4dB which may not be sufficient as the adjusted transmission power can not be accumulated.
Thus, according to examples of embodiments of the invention, a power control procedure is provided which is usable, for example, in an enhanced LA TDD network with a frame structure as discussed above, where it is possible to cope with hopping interference levels between flexible subframe and fixed subframe, as well as among flexible subframes.
For example, referring back to the calculation of the transmission power for PUSCH described above, conventionally, P0_PUSCH and ac are semi-statically configured and they are same for all subframes. According to examples of
13 EIE110144PCT embodiments of the invention, these power control parameters (and also other parameters) are set independently and dynamically for each subframe or group of subframe (classification set) so that the different interference levels on respective subframes can be coped with.
For achieving this, according to one example of embodiments of the invention, in order to set power control parameters to cope with the differing interference scenarios, power control related parameters are configured based on subframe index. That is, when using as power control related parameters for an example one or more of PQ_UE_PUSCH in a PUSCH power control, and/or a parameter P0_UE_PUCCH in PUCCH power control and/or a parameter PSRS_OFFSET for SRS power control (which basically correspond to PO_UE_PUSCH in the PUSCH power control according to equation (1)), and a parameter for enabling or disabling a processing mode for accumulating transmission power control command values, for example for enabling an accumulation of TPC commands (e.g. a parameter accumulationenabled), then these paramters are configured based on a subframe index (e.g. SF#0...SF#9, as indicated in Fig. 1). In other words, a classification of subframes into several sets may be conducted, so that e.g. all subframes being fixed subframes are put into one set while each subframe being a flexible subframe is put into its own set. Then, to each of these sets, power control related parameters are allocated, and the power control parameter set can be configured by sequence based RRC parameters.
Alternatively or additionally, according to another example of embodiments of the invention, in order to set power control parameters to cope with the differing interference scenarios, power control related parameters are configured based on a predefined rule to devide the subframes into groups. For example, when using again the parameters PO_UE_PUSCH in PUSCH power control, P0_UE_PUCCH in PUCCH power control, and PSRS_OFFSET for SRS power control, as well as the parameter accumulationenabled , the parameters are divided by groups to be specified and configured by RRC, In other words, a classification of subframes into several sets may be conducted, wherein one set represent one group divided on the basis of the rule. For example,
14 EIE110144PCT groups may be divided according to an interference category (e.g. U-U interference group of subframes and and U-D interference group of subframes), or according to the kind of subframe (e.g. one group for all flexible subframes and one group for all fixed subframes). Then, to each of these sets or groups, power control related parameters are allocated, and the power control parameter set can be configured by sequence based R C parameters.
According to a further example of embodiments of the invention, when receiving a power control parameter set as configured according to one of the above examples, a receiving UE is configured to apply the power related parameters for each subframe i in an UL transmission (on PUSCH, PUCCH, SRS) according to the RRC subframe index/group based configuration. In other words, the UE is able to determine from the sequence of the received power control parameter set the correct power control parameter value to be used for the specific subframe i, based on the classification thereof.
According to a still further example of embodiments of the invention, when accumulation mode for the adjustment of the transmission power (TPC commands) is enabled for specific subframes, the TPC related parameter in the power control equation will be updated separately based on different subframe/group that is configured by RRC. For example, a TPC related parameter is updated for fixed subframe independently, and a TPC related parameter is updated for each flexible subframe e.g. with different configured P0 value independently.
Next, a processing for implementing the above described examples of embodiments of the invention, which is conducted by the communication network control element (eNB 10, for example) and the communicaton network element (UE 20, for example), respectivel, is described with reference to Figs. 3 and 4.
Specifically, in Fig. 3, the processing executed by the eNB 10 is described.
15 EIE110144PCT In step S110, for allocating power control related parameters in a desired manner, the subframes of the frame structure of the TDD based network are classified into two or more sets (also referred to as classification sets), wherein each set comprises at least one subframe. That is, for example, the subframes are classified as fixed subframes to which the same power control related parameter is allocated, and as flexible subframes to which either a separate common power control related parameter or plural other power control related parameters is/are allocated.
Then, in step S120, for each set of subframes (e.g. flexible and fixed subframes), at least one power control related parameter is selected and assigned. For example, values for P0_UE_PUSCH in PUSCH power control, PO_UE_PUCCH in PUCCH power control, and PSRS_OFFSBT for SRS power control, as well as the parameter accumuiationenabled are correspondingly selected, e.g. based on interference calculations or the like so as to cope with the interference on the respective subframes.
Then, in step S130, on the basis of the selected power control related parameters, a power control parameter set is configured which defines a power control setting for each subframe of the frame structure. For example, a sequence defining the power control related parameters in an order corresponding to the classification sets is formed for configuring the power control parameter set. In step S140, the power control parameter set configured in step S130 is sent to a communication network element, e.g. UE 20.
Furthermore, the processing in the eNB 10 may comprise a step S150 where parameter related to the TPC command is updated for specific subframes, as discussed above, and the updated TPC commands are sent to the UE 20, for example.
On the other hand, in Fig. 4, the processing executed by the UE 20 is described.
16 EIE110144PCT In step S210, the UE 20 receives the power control parameter set (as sent e.g. in step S140 in Fig. 3) which defines the power control setting for subframes of the frame structure. In step S220, the UE 20 determines from the received power control parameter set the power control related parameter for each subframe (e.g. PQ_UE_PUSCH for PUSCH power control, PO_UE_PUCCH for PUCCH power control, PSRS_OFFSET for SRS power control, value for accumulationenabled). In this determination, the power control related parameters selected for a subframe according its classification (e.g. for fixed subframes, for flexible subframe(s), etc.) are excised from the power control parameter set accordingly, for example on the basis of the sequence order of parameters and a corresponding mapping to the correct subframe (or subframe type). In step S230, the determined power control related parameters are applied in a power control for a communication in each subframe.
Furthermore, the processing in the UE 20 may comprise a step S240 where updated TPC commands are received, for example, and where it is determined which of the received transmission power control command values is to be used for which subframe, that is a change amount for a transmission power of a respective subframe is calculated by using the TPC command on the basis of the classification of the subframes into the classification sets.
In the following, an implementation of examples of embodiments of the invention is described, wherein the basic system architecture may correspond to that shown in Fig. 2, for example. As described above, according to examples of embodiments of the invention, instead of using only one set of PC parameters in the power control, there are provided multiple sets of PC parameters which can be utilized for respective subframes according to a classification thereof, for example.
17 EIE110144PCT More specifically, according to examples of embodiments of the invention, PC parameters that are conventionally semi-statical and thus not suitable to cope with the differing interferece scenarios, are configured based on a subframe index or goup, so that for example each subframe/group has one PC parameter settings wherein the subframe/group setting is defined via RRC signaling.
For example, PO_UE_PUSCH, PQ_UB_PUCCH and PSRS_OFFSET may be configured based on subframe index/group, as described above. Due to the different interference levels between flexible subframes and fixed subframes, as well as different interference levels among flexible subframes, one set PC parameter could be configured for fixed subframes and one set PC parameter could be configured for each flexible subframe.
In the following, an implementation example for an RRC signaling design in a pseudo-code manner is provided :
- ASN1 START
UplinkPo erControlDedicated ::= SEQUENCE {
pO-UE-PUSCH INTEGER (-8.-7),
deltaMCS-Enabled ENUMERATED {enO, enl}, accumulationEnabled BOOLEAN,
pO-UE-PUCCH INTEGER (-8..7),
pSRS-Offset INTEGER (0..15),
filterCoefficient FilterCoefficient DEFAULT fc4
}
UplinkPowerControlDedicated-rl 1 SEQUENCE {
pO-UE-PUSCHList pO-UE-PUSCHList,
deltaMCS-Enabled ENUMERATED {enO, enl}, accumulationEnabled BIT STRING (SIZE(7)),
pO-UE-PUCCHList pO-UE-PUCCHList,
pSRS-OffsetList pSRS-OffsetList
filterCoefficient FilterCoefficient DEFAULT fc4
}
pO-UE-PUSCHList SEQUENCE (SIZE (1..7)) OF INTEGER (-S..7) pO-UE-PUCCHList ::= SEQUENCE (SIZE (1..7)) OF INTEGER (-8..7) pSRS-OffsetList ::= SEQUENCE (SIZE (1..7)) OF INTEGER (0..15)
-- ASN1STOP
18 EIE110144PCT For explaining the implementation of the examples of embodiments of the invention, the foiiowing parts are further explained :
- pO-UE-PUSCHList
- accumulationEnabled
- pO-UE-PUCCHList
- pSRS-OffsetList
Regarding the part pO-UE-PUSCHList, this is related to the parameter 0 UE PUSCH(1) according to equation (1) and has a unit [dB]. For example, this part is applicable for non-persistent scheduling, only,
When, according to one of the above examples of embodiments of the invention, the power control parameters are configured on the basis of a subframe index, then it is possible to implement this in the above signaling design by using the first value of pO-UE-PUSCHList for subframes SF#0,
SF#1, SF#5, SF#6 (fixed subframes in LA TDD), by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9.
On the other hand, when, according to one of the above examples of embodiments of the invention, the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1
(e.g. fixed subframes), and the second value is used for group 2 (e.g. flexible subframes), etc. It is to be noted that the size is not limit to value of 7. Regarding the part accumulationEnabled, this is related to the setting parameter for enabling or disabling the accumulation mode. A value of TRUE corresponds to "enabled" whereas a value of FALSE corresponds to "disabled".
Similar to the above part pO-UE-PUSCHList, when, according to one of the above examples of embodiments of the invention, the power control
19 EIE110144PCT parameters are configured on the basis of a subframe index, then it is possible to implement this in the above signaling design by using the first value of accumulationEnabled for subframes SF#0, SF#1, SF#5, SF#6 (fixed subframes in LA TDD), by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9. On the other hand, when, according to one of the above examples of embodiments of the invention, the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1 (e.g. fixed subframes), and the second value is used for group 2 (e.g. flexible subframes), etc. It is to be noted that the size is not limit to value of
7.
Regarding the part pO-UE-PUCCHList, this is related to a parameter po UE FuccH used in an equation which may be similar to equation (1) but for PUCCH power control, and which has a unit [dB],
Similar to the above part pO-UE-PUSCHList, when, according to one of the above examples of embodiments of the invention, the power control parameters are configured on the basis of a subframe index, then it is possible to implement this in the above signaling design by using the first value of pO-UE-PUCCHList for subframes SF#0, SF#1, SF#5, SF#6 (fixed subframes in LA TDD), by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9. On the other hand, when, according to one of the above examples of embodiments of the invention, the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1 (e.g. fixed
20 EIE110144PCT subframes), and the second yalue is used for group 2 (e.g. flexible subframes), etc. It is to be noted that the size is not limit to value of 7.
Regarding the part pSRS-OffsetList, this is related to a parameter PSRS_OFFSET used in an equation which may be similar to equation (1) but for SRS power control. For example, according to 3GPP TS 36.213 v.10.2.0 (rel. 11), when a parameter Ks has a value of 1.25, the actual parameter value is pSRS- Offset value - 3. For Ks=0, the actual parameter value is -10.5 + 1.5*pSRS-Offset value.
Similar to the above part pO-UE-PUSCHList, when, according to one of the above examples of embodiments of the invention, the power control parameters are configured on the basis of a subframe index, then it is possible to implement this in the above signaling design by using the first value of pSRS-OffsetList for subframes SF#0, SF#1, SF#5, SF#6 (fixed subframes in LA TDD), by using the second value thereof for subframe SF#2; by using the third value thereof for subframe SF#3, by using the fourth value thereof for subframe SF#4, by using the fifth value thereof for subframe SF#7, by using the sixth value thereof for subframe SF#8, and by using the seventh value thereof for subframe SF#9. On the other hand, when, according to one of the above examples of embodiments of the invention, the power control parameters are configured on the basis of a predefined rule (grouping of subframes), then it is possible to implement this in the above signaling design by using the size of the sequence as the group number, wherein the first value is used for group 1 (e.g. fixed subframes), and the second value is used for group 2 (e.g. flexible subframes), etc. It is to be noted that the size is not limit to value of 7.
In this way, it is possible to cofigure parameters P0_UE_PUSCH, PO_UE_PUCCH and PsRs_oFFSET etc. for different subframes/groups.
According to examples of embodiments of the invention, when an UE, such as UE 20 being an LA TDD UE receives the power control parameter set, it applies the PC parameters for each subframe. For example, with regard to the parameter PO_UE_PUSCH, it is indicated in the RRC signaling of the power
21 EIE110144PCT control paramter set as indicated above (pO-UE-PUSCHList) that e.g. the following sequence is to be considered : (-8, -4, ~2, 3, 5, 6, 7). When there is a PUSCH transmission in subframe SF#3, for example, then the UE determines from the list the value (-2) for P0_UE_PUSCH and uses the determined value in the calculation of the PUSCH transmission power in subframe SF#3 by means of the equation (1), for example.
In an alternative example, it is assumed that for example groups of subframes are formed on the basis of a predefined rule, e.g groups according to different kinds of subframe (that is a group 1 for subframes
SF#0, SF#1, SF#5, SF#6 which are fixed subframes, and a group 2 for subframes SF#2, SF#3, SF#4, SF#7, SF#8, SF#9 which are flexible subframes). When
Figure imgf000023_0001
is indicated as (-8, 6) in the RRC singaling, and when there is a PUSCH transmission to be conducted in subframe SF#3, then the UE applies (6) for P0_ ,uE_puscH when calculating the PUSCH transmission power in subframe SF#3 by means of the equation (1), for example.
According to further examples of embodiments of the invention, when the accumulation mode for the adjustment of the transmission power (TPC commands) is enabled for specific subframes, and the TPC related parameter in the power control equation will be updated separately based on different subfra me/group that is configured by RRC, the following processing may be conducted.
When considering, for example, the PUSCH power control with accumulation mode enabled, the TPC command related parameter for PUSCH equation is f as described above in connection with equation (1). The TPC command related parameter may be updated for example in the following manner:
( = (' -1) ÷ PUSCHJS ('' - PUSCH) (2)
when TPC command is included in UL grant, otherwise
Λ(0 = Λ(' - 1) (3 .
In the equation, s!usau(i-KTlJSCil) is the TPC command in the related UL grant, which does not need to be changed.
22 EIE110144PCT (ί-ΐ) is the value in last subframe. According to examles of embodiments, this fc(i-l) is changed into fc(i-n), where i-n is the last subframe of a specific kind of subframe with the same P0 value in the RC configuration (when the power control parameters are configured e.g. on the basis of a predefined rule (grouping of subframes)), or the last subframe of subframes in the same group. For example, if fixed subframes are subframes SF#0, SF# 1, SF#5, SF#6, then if 1=5 r i-n=l . For another example, if flexible subframe with the same P0 value is subframe SF#4, then if 1=4, i~n=4 in last radio frame. For the third example, if subframes SF#2, SF#3, SF#4, SF#7, SF#8,
SF#9 (which are flexible subframes) are allocated to the same group, then if i=7, i-n =4.
In Fig. 5, a block circuit diagram illustrating a configuration of a communication network control element, such as the eNB 10, is shown, which is configured to implement functions of the power control procedure and thus of the processing as described in connection with the examples of embodiments of the invention according to Fig. 3, for example. It is to be noted that the communication network control element or eNB 10 shown in Fig . 5 may comprise several further elements or functions besides those described herein below, which are omitted herein for the sake of simplicity as they are not essential for understanding the invention . Furthermore, even though reference is made to an eNB, the communication network element may be also another device having a similar function, such as a modem chipset, a chip, a module etc., which can also be part of a base station or attached as a separate element to a base station, or the like.
The communication network control element or eNB 10 may comprise a processing function or processor 11, such as a CPU or the like, which executes instructions given by programs or the like related to the power control. The processor 11 may comprise one or more processing portions dedicated to specific processing as described below, or the processing may be run in a single processor. Portions for executing such specific processing may be also provided as discrete elements or within one or more further
23 EIE110144PCT processors or processing portions, such as in one physical processor like a CPU or in several physical entities, for example. Reference sign 12 denotes interface or transceiver or input/output (I/O) units connected to the processor 11. The I/O units 12 may be used for communicating with elements of the cellular network, such as a communication network element like a UE. The I/O units 12 may be a combined unit comprising communication equipment towards several network elements, or may comprise a distributed structure with a plurality of different interfaces for different network elements. Reference sign 13 denotes a memory usable, for example, for storing data and programs to be executed by the processor
11 and/or as a working storage of the processor 11.
The processor 11 is configured to execute processing related to the above described power control procedure. In particular, the processor 11 comprises a sub-portion 111 as a processing portion which is usable as a subframe classification element which classifies the subframes into the classification sets. The portion 111 may be configured to perform processing according to step S110 according to Fig. 3, for example. Furthermore, the processor 11 comprises a sub-portion 112 as a processing portion which is usable as a power control parameter selection element which is able to select in a suitable manner power control related parameters for the subframes in the classification sets. The portion 112 may be configured, for example, to perform processing according to step S120 according to Fig. 3, for example. Moreover, the processor 11 comprises a sub-portion 113 as a processing portion which is usable as a power control parameter set configuration element which is able to configure a power control parameter set. The portion 113 may be configured, for example, to perform processing according to step S130 according to Fig. 3, for example. In addition, the processor 11 comprises a sub-portion 114 as a processing portion usable as a TPC updating and transmission element which is able to update TPC command values and to transmit them to the UE. The portion 114 may be configured, for example, to perform processing according to step S140 according to Fig. 3, for example.
24 EIE110144PCT In Fig. 6, a block circuit diagram illustrating a configuration of a communication network element, such as of UE 20, is shown, which is configured to implement the functions of the power control procedure and thus the processing as described in connection with the examples of embodiments of the invention according to Fig. 4, for example. It is to be noted that the communication network element or UE 20 shown in Fig. 6 may comprise several further elements or functions besides those described herein below, which are omitted herein for the sake of simplicity as they are not essential for understanding the invention. Furthermore, even though reference is made to a UE, the communication network element may be also another device having a similar function, such as a modem chipset, a chip, a module etc., which can also be part of a UE or attached as a separate element to a UE, or the like.
The communication network element or UE 20 may comprise a processing function or processor 21, such as a CPU or the like, which executes instructions given by programs or the like related to the power control. The processor 21 may comprise one or more processing portions dedicated to specific processing as described below, or the processing may be run in a single processor. Portions for executing such specific processing may be also provided as discrete elements or within one or more further processors or processing portions, such as in one physical processor like a CPU or in several physical entities, for example. Reference sign 22 denotes interfaces or transceivers or input/output (I/O) units connected to the processor 21.
The I/O units 22 may be used for communicating with elements of the communication network, such as a communication network control element like an eNB. The I/O units 22 may be a combined unit comprising communication equipment towards several of the network element in question, or may comprise a distributed structure with a plurality of different interfaces for each network element in question. Reference sign 23 denotes a memory usable, for example, for storing data and programs to be executed by the processor 21 and/or as a working storage of the processor 21.
25 EIE110144PCT The processor 21 is configured to execute processing related to the above described power control procedure. In particular, the processor 21 comprises a sub-portion 211 as a processing portion which is usable for receiving a power control parameter set from the communication network control element. The portion 211 may be configured to perform processing according to step S210 according to Fig. 4, for example. Furthermore, the processor 21 comprises a sub-portion 212 as a processing portion for determining, for the subframes, power control related parameters from the power control parameter set in accordance with the classification sets of the subframes. The portion 212 may be configured to perform processing according to step S220 according to Fig. 4, for example. Moreover, the processor 21 comprises a sub-portion 213 as a processing portion which is usable for conducting a power control procedure, i.e. for applying the determined power control related parameters for a power control on the respective subframes. The portion 213 may be configured to perform processing according to step S230 according to Fig. 4, for example. In addition, the processor 21 comprises a sub-portion 214 as a processing portion which is usable for updating a transmission power according to received TPC commands in respective subframes, again according to the classification sets of the subframes. The portion 214 may be configured to perform processing according to step S240 according to Fig. 4, for example.
According to further examples of embodiments of the invention, there is provided an apparatus comprising a classifying processing means for classifying subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe, a selecting processing means for selecting separately for each of the at least two classification sets at least one power control related parameter, and a configuration processing means for configuring on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure.
26 EIE110144PCT Furthermore, according to a further examples of embodiments of the invention, there is provided an apparatus comprising receiving means for receiving a power control parameter set defining a power control setting for subframe of a frame structure of a time division based communication, determining processing means for determining from the power control parameter set at least one power control related parameter for each subframe, wherein the determination is based on a classification of the subframes into at least two different classification sets, each classification set comprising at least one subframe, and an applying processing means for applying the determined power control related parameter in a power control for a communication in each subframe.
As described above, examples of embodiments of the invention concerning the feedback framework are described to be implemented in UEs and eNBs. However, the invention is not limited to this. For example, examples of embodiments of the invention may be implemented in any wireless modems or the like.
For the purpose of the present invention as described herein above, it should be noted that
- an access technology via which signaling is transferred to and from a network element may be any technology by means of which a network element or sensor node can access another network element or node (e.g. via a base station or generally an access node). Any present or future technology, such as WLAN (Wireless Local Access Network), WiMAX (Worldwide Interoperability for Microwave Access), LTE, LTE-A, Bluetooth, Infrared, and the like may be used; although the above technologies are mostly wireless access technologies, e.g. in different radio spectra, access technology in the sense of the present invention implies also wired technologies, e.g. IP based access technologies like cable networks or fixed lines but also circuit switched access technologies; access technologies may be distinguishable in at least two categories or access domains such as packet switched and circuit switched, but the existence of more than two access domains does not impede the invention being applied thereto,
27 EIE110144PCT - usable communication networks and transmission nodes may be or comprise any device, apparatus, unit or means by which a station, entity or other user equipment may connect to and/or utilize services offered by the access network; such services include, among others, data and/or (audio-) visual communication, data download etc;
- a user equipment or communication network element may be any device, apparatus, unit or means by which a system user or subscriber may experience services from an access network, such as a mobile phone, personal digital assistant PDA, or computer, or a device having a corresponding functionality, such as a modem chipset, a chip, a module etc., which can also be part of a UE or attached as a separate element to a UE, or the like;
- method steps likely to be implemented as software code portions and being run using a processor at a network element or terminal (as examples of devices, apparatuses and/or modules thereof, or as examples of entities including apparatuses and/or modules for it), are software code independent and can be specified using any known or future developed programming language as long as the functionality defined by the method steps is preserved;
- generally, any method step is suitable to be implemented as software or by hardware without changing the idea of the invention in terms of the functionality implemented;
- method steps and/or devices, apparatuses, units or means likely to be implemented as hardware components at a terminal or network element, or any module(s) thereof, are hardware independent and can be implemented using any known or future developed hardware technology or any hybrids of these, such as a microprocessor or CPU (Central Processing Unit), MOS (Metal Oxide Semiconductor), CMOS (Complementary MOS), BiMOS (Bipolar MOS), BiCMOS (Bipolar CMOS), ECL (Emitter Coupled Logic), TTL (Transistor-Transistor Logic), etc., using for example ASIC (Application
Specific IC (Integrated Circuit)) components, FPGA (Field-programmable Gate Arrays) components, CPLD (Complex Programmable Logic Device) components or DSP (Digital Signal Processor) components; in addition, any method steps and/or devices, units or means likely to be implemented as software components may for example be based on any security
28 EIE110144PCT architecture capable e.g. of authentication, authorization, keying and/or traffic protection;
- devices, apparatuses, units or means can be implemented as individual devices, apparatuses, units or means, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device, apparatus, unit or means is preserved; for example, for executing operations and functions according to examples of embodiments of the invention, one or more processors may be used or shared in the processing, or one or more processing sections or processing portions may be used and shared in the processing, wherein one physical processor or more than one physical processor may be used for implementing one or more processing portions dedicated to specific processing as described,
- an apparatus may be represented by a semiconductor chip, a chipset, or a (hardware) module comprising such chip or chipset; this, however, does not exclude the possibility that a functionality of an apparatus or module, instead of being hardware implemented, be implemented as software in a (software) module such as a computer program or a computer program product comprising executable software code portions for execution/being run on a processor;
- a device may be regarded as an apparatus or as an assembly of more than one apparatus, whether functionally in cooperation with each other or functionally independently of each other but in a same device housing, for example.
As described above, there is provided a mechanism for conducting power control in a time division based communication. Subframes of a frame structure of the time division based communication are classified into at two or more classification sets, each classification set comprising at least one subframe. For each of the classification sets, power control related parameters are selected in accordance with the interference on the respective subframes. On the basis of the selected power control related parameters, a power control parameter set is configured defining a power control setting for each subframe of the frame structure. A UE receiving the power control parameter set applies the power control related parameters in the power control.
29 EIE110144PCT Although the present invention has been described herein before with reference to particular embodiments thereof, the present invention is not limited thereto and various modifications can be made thereto.
30 EIE110144PCT

Claims

WHAT IS CLAIMED IS:
1. An apparatus comprising
a classifying processing portion configured to classify subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe,
a selecting processing portion configured to select separately for each of the at least two classification sets at least one power control related parameter, and
a configuration processing portion configured to configure on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure.
2. The apparatus according to claim 1, wherein the classifying processing portion is further configured to classify the subframes on the basis of a subframe index, wherein subframes representing a fixed subframe which is fixedly preconfigured as one of a downlink subframe or an uplink subframe are allocated to one classification set, and wherein each subframe representing a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time is allocated to an own classification set.
3. The apparatus according to claim 1, wherein the classifying processing portion is further configured to classify the subframes on the basis of a predefined rule for grouping the subframes,
wherein the predefined rule defines a group according to one of
a kind of a subframe being a fixed subframe which is fixedly preconfigured as one of a downlink subframe or an uplink subframe and a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time, or
a type of interference relation with regard to uplink and downlink communication of a respective subframe,
wherein each group corresponds to a classification set.
31 EIE110144PCT
4. The apparatus according to any of claims 1 to 3, wherein the selecting processing portion is configured to select the at least one power control related parameter from at least one of
a parameter related to a power control for an uplink shared channel, a parameter related to a power control for an uplink control channel, a parameter related to a power control for a sounding reference signaling, and
a setting parameter for enabling or disabling a processing mode for accumulating transmission power control command values.
5. The apparatus according to any of claims 1 to 4, wherein the selecting processing portion is further configured to select the at least one power control related parameter on the basis of an interference level in a communication in a respective subframe.
6. The apparatus according to any of claims 1 to 5, wherein the configuration processing portion is further configured to sequence the power control related parameters in an order corresponding to the at least two classification sets for configuring the power control parameter set.
7. The apparatus according to any of claims 1 to 6, further comprising
a sending processing portion configured to initiate a transmission of the power control parameter set to a communication network element.
8. The apparatus according to any of claims 1 to 7, further comprising
an updating processing portion configured to update a transmission power control command value according to the classification sets.
9. The apparatus according to any of claims 1 to 8, wherein the apparatus is comprised in a communication network control element.
10. A method comprising
classifying subframes of a frame structure of a time division based communication into at least two different classification sets, each classification set comprising at least one subframe,
32 EIE110144PCT selecting separately for each of the at least two classification sets at least one power control related parameter, and
configuring on the basis of the selected power control related parameters a power control parameter set defining a power control setting for each subframe of the frame structure,
11. The method according to claim 10, further comprising classifying the subframes on the basis of a subframe index, wherein subframes representing a fixed subframe which is fixedly preconfigured as one of a downlink subframe or an uplink subframe are allocated to one classification set, and wherein each subframe representing a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time is allocated to an own classification set.
12. The method according to claim 10, further comprising classifying the subframes on the basis of a predefined rule for grouping the subframes, wherein the predefined rule defines a group according to one of
a kind of a subframe being a fixed subframe which is fixedly preconfigured as one of a downlink subframe or an uplink subframe and a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time, or
a type of interference relation with regard to uplink and downlink communication of a respective subframe,
wherein each group corresponds to a classification set.
13. The method according to any of claims 10 to 12, further comprising selecting the at least one power control related parameter from at least one of
a parameter related to a power control for an uplink shared channel, a parameter related to a power control for an uplink control channel, a parameter related to a power control for a sounding reference signaling, and
a setting parameter for enabling or disabling a processing mode for accumulating transmission power control command values.
33 EIE110144PCT
14. The method according to any of claims 10 to 13, further comprising selecting the at least one power control related parameter on the basis of an interference level in a communication in a respective subframe.
15. The method according to any of claims 10 to 14, further comprising sequencing the power control related parameters in an order corresponding to the at least two classification sets for configuring the power control parameter set.
16. The method according to any of claims 10 to 15, further comprising
sending the power control parameter set to a communication network element.
17. The method according to any of claims 10 to 16, further comprising
updating a transmission power control command value according to the classification sets.
18. The method according to any of claims 10 to 17, wherein the method is implemented in a communication network control element.
19. An apparatus comprising
a receiver configured to receive a power control parameter set defining a power control setting for subframe of a frame structure of a time division based communication,
a determining processing portion configured to determine from the power control parameter set at least one power control related parameter for each subframe, wherein the determination is based on a classification of the subframes into at least two different classification sets, each classification set comprising at least one subframe, and
an applying processing portion configured to apply the determined power control related parameter in a power control for a communication in each subframe.
20. The apparatus according to claim 19, wherein the classification of the subframes is based on a subframe index, wherein subframes representing a fixed subframe which is fixedly preconftgured as one of a downlink subframe
34 EIE110144PCT or an up!ink subframe are allocated to one classification set, and wherein each subframe representing a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time is allocated to an own classification set.
21. The apparatus according to claim 19, wherein the classification of the subframes Is based on a predefined rule for grouping the subframes,
wherein the predefined rule defines a group according to one of
a kind of a subframe being a fixed subframe which is fixedly preconfigured as one of a downlink subframe or an uplink subframe and a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time, or
a type of interference relation with regard to uplink and downlink communication of a respective subframe,
wherein each group corresponds to a classification set.
22. The apparatus according to any of claims 19 to 21, wherein the at least one power control related parameter is at least one of
a parameter related to a power control for an uplink shared channel, a parameter related to a power control for an uplink control channel, a parameter related to a power control for a sounding reference signaling, and
a setting parameter for enabling or disabling a processing mode for accumulating transmission power control command values.
23. The apparatus according to any of claims 19 to 22, wherein the at least one power control related parameter is set on the basis of an interference level in a communication in a respective subframe.
24. The apparatus according to any of claims 19 to 23, wherein the determination processing portion is further configured to determine the at least one power control related parameter from the power control parameter set on the basis of a sequence comprising the power control related parameters in an order corresponding to the at least two classification sets.
35 EIE110144PCT
25. The apparatus according to any of claims 19 to 24, further comprising a transmission power control receiving portion configured to receive an update for a transmission power control command value according to the classification sets, wherein the determining processing portion is further configured to determine from the received update for the transmission power control command value a change amount for a transmission power of a respective subframe on the basis of the classification of the subframes into the at least two different classification sets.
26. The apparatus according to any of claims 19 to 25, wherein the apparatus is comprised in a communication network element.
27. A method comprising
receiving a power control parameter set defining a power contro! setting for subframe of a frame structure of a time division based communication,
determining from the power control parameter set at least one power control related parameter for each subframe, wherein the determination is based on a classification of the subframes into at least two different classification sets, each classification set comprising at ieast one subframe, and
applying the determined power control related parameter in a power control for a communication in each subframe.
28. The method according to claim 27, wherein the classification of the subframes is based on a subframe index, wherein subframes representing a fixed subframe which is fixedly preconfigured as one of a downlink subframe or an uplink subframe are allocated to one classification set, and wherein each subframe representing a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time is allocated to an own classification set.
29. The method according to claim 27, wherein the classification of th subframes is based on a predefined rule for grouping the subframes,
wherein the predefined rule defines a group according to one of
36 EIE110144PCT a kind of a subframe being a fixed subframe which is fixedly preconfigured as one of a downlink subframe or an uplink subframe and a flexible subframe which is dynamically assigned to represent an uplink subframe at one time and a downlink subframe at another time, or
a type of interference relation with regard to upiink and downlink communication of a respective subframe,
wherein each group corresponds to a classification set.
30. The method according to any of claims 27 to 29, wherein the at least one power control related parameter is at least one of
a parameter related to a power control for an uplink shared channel, a parameter related to a power control for an uplink control channel, a parameter related to a power control for a sounding reference signaling, and
a setting parameter for enabling or disabling a processing mode for accumulating transmission power control command values.
31. The method according to any of claims 27 to 30, wherein the at least one power control related parameter is set on the basis of an interference level in a communication in a respective subframe.
32. The method according to any of claims 27 to 30, further comprising determining the at least one power control related parameter from the power control parameter set on the basis of a sequence comprising the power control related parameters in an order corresponding to the at least two classification sets.
33. The method according to any of claims 27 to 32, further comprising
receiving an update for a transmission power control command value according to the classification sets, and
determining from the received update for the transmission power control command value a change amount for a transmission power of a respective subframe on the basis of the classification of the subframes into the at least two different classification sets.
37 EIE110144PCT
34. The method according to any of claims 27 to 33, wherein the method is implemented in a communication network element.
35. A computer program product for a computer, comprising software code portions for performing the steps of any of claims 10 to 18 or any of claims 27 to 33 when said product is run on the computer.
36. The computer program product according to claim 35, wherein
the computer program product comprises a computer-readable medium on which said software code portions are stored, and/or
the computer program product is directly loadable into the internal memory of the computer and/or transmittab!e via a network by means of at least one of upload, download and push procedures.
38 EIE110144PCT
PCT/CN2011/076865 2011-07-05 2011-07-05 Mechanism for enhancing power control in time division based communications Ceased WO2013004007A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/076865 WO2013004007A1 (en) 2011-07-05 2011-07-05 Mechanism for enhancing power control in time division based communications
DE112011105358.4T DE112011105358T5 (en) 2011-07-05 2011-07-05 MECHANISM FOR IMPROVING PERFORMANCE CONTROL IN TIME-MULTIPLEX-BASED COMMUNICATIONS
US14/130,592 US9143308B2 (en) 2011-07-05 2011-07-05 Mechanism for enhancing power control in time division based communications
US14/858,817 US10506527B2 (en) 2011-07-05 2015-09-18 Mechanism for enhancing power control in time division based communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076865 WO2013004007A1 (en) 2011-07-05 2011-07-05 Mechanism for enhancing power control in time division based communications

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/130,592 A-371-Of-International US9143308B2 (en) 2011-07-05 2011-07-05 Mechanism for enhancing power control in time division based communications
US14/858,817 Continuation US10506527B2 (en) 2011-07-05 2015-09-18 Mechanism for enhancing power control in time division based communications

Publications (1)

Publication Number Publication Date
WO2013004007A1 true WO2013004007A1 (en) 2013-01-10

Family

ID=47436454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076865 Ceased WO2013004007A1 (en) 2011-07-05 2011-07-05 Mechanism for enhancing power control in time division based communications

Country Status (3)

Country Link
US (2) US9143308B2 (en)
DE (1) DE112011105358T5 (en)
WO (1) WO2013004007A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2787778A1 (en) * 2013-04-03 2014-10-08 Nokia Solutions and Networks Oy Uplink power control enhancement for dynamic time division duplex uplink-downlink reconfiguration
WO2014179979A1 (en) * 2013-05-10 2014-11-13 Qualcomm Incorporated SIGNALING OF ENHANCED POWER CONTROL FOR eIMTA INTERFERENCE MITIGATION
US20150003272A1 (en) * 2012-01-29 2015-01-01 Alcatel Lucent Uplink overload indicator for time division duplex wireless communication systems
WO2015020127A1 (en) * 2013-08-08 2015-02-12 シャープ株式会社 Terminal device, base station device, integrated circuit, and wireless communication method
WO2015026113A1 (en) * 2013-08-17 2015-02-26 엘지전자 주식회사 Transmission power control method for sounding reference signal in wireless communication system and apparatus therefor
CN104937860A (en) * 2013-06-24 2015-09-23 Lg电子株式会社 Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
CN105027602A (en) * 2013-03-07 2015-11-04 株式会社Ntt都科摩 Wireless base station, user terminal, and wireless communication method
TWI514796B (en) * 2013-04-05 2015-12-21 英特爾股份有限公司 Techniques for adjacent channel interference mitigation
CN105210430A (en) * 2013-03-04 2015-12-30 Lg电子株式会社 Method for controlling uplink power in wireless communication system and device therefor
CN105340337A (en) * 2013-07-09 2016-02-17 夏普株式会社 Terminal device, base station device, communication method, and integrated circuit
CN105379368A (en) * 2013-08-08 2016-03-02 联发科技股份有限公司 State Accumulation of UE Transmit Power Adjustment in Adaptive TDD System
EP2999278A4 (en) * 2013-06-24 2016-05-11 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM FOR RADIO COMMUNICATIONS
EP3017635A4 (en) * 2013-08-08 2016-06-22 Mediatek Inc Separate accumulation of ue transmit power adjustment in adaptive tdd systems
EP2983423A4 (en) * 2013-04-04 2016-11-16 Sharp Kk TERMINAL APPARATUS, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
EP3021622A4 (en) * 2013-07-09 2017-02-15 Sharp Kabushiki Kaisha Terminal device, base station device, communication method and integrated circuit
EP3021619A4 (en) * 2013-07-12 2017-03-08 Sharp Kabushiki Kaisha Terminal device, method, and integrated circuit
CN109450586A (en) * 2013-08-09 2019-03-08 瑞典爱立信有限公司 BS and UE and interference elimination method used in it
US20200154370A1 (en) * 2012-09-07 2020-05-14 Lg Electronics Inc. Method and device for controlling transmission power for uplink control channel in carrier aggregation system
EP3621365A4 (en) * 2017-05-02 2020-12-02 NTT DoCoMo, Inc. USER DEVICE

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771550B1 (en) * 2010-10-15 2017-08-29 주식회사 골드피크이노베이션즈 Method of Transmitting and Receiving Ack/Nack Signal and Apparatus Thereof
WO2013004007A1 (en) * 2011-07-05 2013-01-10 Renesas Mobile Corporation Mechanism for enhancing power control in time division based communications
JP5927801B2 (en) * 2011-08-02 2016-06-01 シャープ株式会社 Base station, terminal and communication method
JP5927802B2 (en) * 2011-08-02 2016-06-01 シャープ株式会社 Base station, terminal and communication method
JP2013034111A (en) 2011-08-02 2013-02-14 Sharp Corp Base station, terminal, communication system, and communication method
US10615931B2 (en) * 2011-12-22 2020-04-07 Lg Electronics Inc. Method for measuring a wireless communication state in a wireless access system, and apparatus therefor
CN103379604B (en) * 2012-04-20 2018-04-27 北京三星通信技术研究有限公司 Ascending power control method in dynamic TDD cell
WO2013159304A1 (en) * 2012-04-26 2013-10-31 Nokia Siemens Networks Oy Switching between downlink and uplink
JP5781016B2 (en) * 2012-06-04 2015-09-16 株式会社Nttドコモ Wireless base station, wireless communication system, and wireless communication method
KR20150023777A (en) * 2012-06-17 2015-03-05 엘지전자 주식회사 An apparatus for transceiving signals in accordance with a frame structure supportive of a plurlaity of carriers in a wireless communication system and method thereof
EP2903374A4 (en) * 2012-09-27 2016-06-08 Sharp Kk Terminal, communication method, and integrated circuit
CN103944668B (en) * 2013-01-18 2019-05-10 北京三星通信技术研究有限公司 A method and device for processing uplink and downlink transmission of flexible subframes
WO2014208951A1 (en) * 2013-06-24 2014-12-31 엘지전자 주식회사 Method for controlling transmission power of sounding reference signal and apparatus for same
EP3021623B1 (en) * 2013-07-09 2018-10-10 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication method
EP3127267B1 (en) * 2014-04-04 2017-12-27 British Telecommunications Public Limited Company Power based frame timing synchronisation for a time-division duplexing network
US10015790B2 (en) * 2014-04-25 2018-07-03 Lg Electronics Inc. Method and device for transmitting/receiving radio signal in wireless communication system
US20150372772A1 (en) * 2014-06-18 2015-12-24 Lg Electronics Inc. Method and apparatus for receiving signal in wireless communication system
CN106664688B (en) * 2014-08-26 2020-03-20 华为技术有限公司 Wireless communication method, device and system
US10499342B2 (en) * 2016-07-05 2019-12-03 Lg Electronics Inc. Method of controlling transmit power of uplink channel in wireless communication system and apparatus therefor
KR102336792B1 (en) * 2016-09-14 2021-12-08 가부시키가이샤 엔티티 도코모 User terminal and wireless communication method
CN113498154B (en) * 2020-04-06 2024-10-25 瑞昱半导体股份有限公司 Method and related system for WiFi module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567713A (en) * 2008-04-25 2009-10-28 大唐移动通信设备有限公司 Method, system and device for determining uplink transmission power in time division duplex system
WO2010104313A2 (en) * 2009-03-09 2010-09-16 엘지전자 주식회사 Method for controlling transmission power in a multi-antenna wireless communication system
CN101873686A (en) * 2009-04-23 2010-10-27 上海无线通信研究中心 A kind of TD-LTE system power control method
CN102064879A (en) * 2010-11-30 2011-05-18 大唐移动通信设备有限公司 Method, system and equipment for time division duplex communication

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559343B2 (en) * 2009-12-23 2013-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Flexible subframes
US20110176461A1 (en) * 2009-12-23 2011-07-21 Telefonakatiebolaget Lm Ericsson (Publ) Determining configuration of subframes in a radio communications system
US20110235582A1 (en) * 2010-03-25 2011-09-29 Qualcomm Incorporated Subframe dependent transmission power control for interference management
US20130329612A1 (en) * 2011-03-11 2013-12-12 Lg Electronics Inc. Method and device for controlling interference between cells in wireless communication system
US20120282970A1 (en) * 2011-05-03 2012-11-08 Renesas Mobile Corporation Uplink transmission power control mechanism
WO2013004007A1 (en) * 2011-07-05 2013-01-10 Renesas Mobile Corporation Mechanism for enhancing power control in time division based communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567713A (en) * 2008-04-25 2009-10-28 大唐移动通信设备有限公司 Method, system and device for determining uplink transmission power in time division duplex system
WO2010104313A2 (en) * 2009-03-09 2010-09-16 엘지전자 주식회사 Method for controlling transmission power in a multi-antenna wireless communication system
CN101873686A (en) * 2009-04-23 2010-10-27 上海无线通信研究中心 A kind of TD-LTE system power control method
CN102064879A (en) * 2010-11-30 2011-05-18 大唐移动通信设备有限公司 Method, system and equipment for time division duplex communication

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150003272A1 (en) * 2012-01-29 2015-01-01 Alcatel Lucent Uplink overload indicator for time division duplex wireless communication systems
US20200154370A1 (en) * 2012-09-07 2020-05-14 Lg Electronics Inc. Method and device for controlling transmission power for uplink control channel in carrier aggregation system
CN105210430A (en) * 2013-03-04 2015-12-30 Lg电子株式会社 Method for controlling uplink power in wireless communication system and device therefor
US9907058B2 (en) 2013-03-04 2018-02-27 Lg Electronics Inc. Method for controlling uplink power in wireless communication system and device therefor
CN105210430B (en) * 2013-03-04 2019-04-19 Lg电子株式会社 Method and apparatus for controlling uplink power in wireless communication system
EP3249980A1 (en) * 2013-03-04 2017-11-29 LG Electronics Inc. Method for controlling uplink power in wireless communication system and device therefor
US10314019B2 (en) 2013-03-04 2019-06-04 Lg Electronics Inc. Method for controlling uplink power in wireless communication system and device therefor
EP2966893A4 (en) * 2013-03-07 2016-10-12 Ntt Docomo Inc WIRELESS BASE STATION, USER TERMINAL, AND WIRELESS COMMUNICATION METHOD
US9839029B2 (en) 2013-03-07 2017-12-05 Ntt Docomo, Inc. Radio base station, user terminal and radio communication method
CN105027602A (en) * 2013-03-07 2015-11-04 株式会社Ntt都科摩 Wireless base station, user terminal, and wireless communication method
EP2787778A1 (en) * 2013-04-03 2014-10-08 Nokia Solutions and Networks Oy Uplink power control enhancement for dynamic time division duplex uplink-downlink reconfiguration
JPWO2014163163A1 (en) * 2013-04-04 2017-02-16 シャープ株式会社 Terminal device, communication method, and integrated circuit
EP2983423A4 (en) * 2013-04-04 2016-11-16 Sharp Kk TERMINAL APPARATUS, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
US10548137B2 (en) 2013-04-04 2020-01-28 Sharpp Kabushiki Kaisha Terminal device, communication method, and integrated circuit
US10827301B2 (en) 2013-04-05 2020-11-03 Apple Inc. Techniques for adjacent channel interference mitigation
CN105191442A (en) * 2013-04-05 2015-12-23 英特尔公司 Adjacent channel interference suppression technology
EP3079389B1 (en) * 2013-04-05 2020-07-15 Intel Corporation Techniques for adjacent channel interference mitigation
CN105191442B (en) * 2013-04-05 2019-04-23 英特尔公司 Adjacent Channel Interference Suppression Technology
TWI514796B (en) * 2013-04-05 2015-12-21 英特爾股份有限公司 Techniques for adjacent channel interference mitigation
JP2016521512A (en) * 2013-05-10 2016-07-21 クゥアルコム・インコーポレイテッドQualcomm Incorporated Enhanced power control signaling for eIMTA interference mitigation
CN105191440B (en) * 2013-05-10 2020-03-24 高通股份有限公司 Signaling method and apparatus for enhanced power control for eIMTA interference mitigation
KR102235805B1 (en) * 2013-05-10 2021-04-02 퀄컴 인코포레이티드 SIGNALING OF ENHANCED POWER CONTROL FOR eIMTA INTERFERENCE MITIGATION
EP2995137B1 (en) * 2013-05-10 2020-04-22 Qualcomm Incorporated Signaling of enhanced power control for eimta interference mitigation
WO2014180344A1 (en) * 2013-05-10 2014-11-13 Qualcomm Incorporated SIGNALING OF ENHANCED POWER CONTROL FOR eIMTA INTERFERENCE MITIGATION
US10111188B2 (en) 2013-05-10 2018-10-23 Qualcomm Incorporated Signaling of enhanced power control for eIMTA interference mitigation
KR20160008567A (en) * 2013-05-10 2016-01-22 퀄컴 인코포레이티드 SIGNALING OF ENHANCED POWER CONTROL FOR eIMTA INTERFERENCE MITIGATION
WO2014179979A1 (en) * 2013-05-10 2014-11-13 Qualcomm Incorporated SIGNALING OF ENHANCED POWER CONTROL FOR eIMTA INTERFERENCE MITIGATION
CN105191440A (en) * 2013-05-10 2015-12-23 高通股份有限公司 Signaling of enhanced power control for eimta interference mitigation
US10433265B2 (en) 2013-06-24 2019-10-01 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
CN104937860B (en) * 2013-06-24 2019-08-20 Lg电子株式会社 The method and its equipment of the transimission power of detection reference signal are controlled in a wireless communication system
US9872259B2 (en) 2013-06-24 2018-01-16 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
CN104937860A (en) * 2013-06-24 2015-09-23 Lg电子株式会社 Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
US9674791B2 (en) 2013-06-24 2017-06-06 Huawei Technologies Co., Ltd. Wireless communication method, apparatus, and system
EP2999278A4 (en) * 2013-06-24 2016-05-11 Huawei Tech Co Ltd METHOD, DEVICE AND SYSTEM FOR RADIO COMMUNICATIONS
EP3016301A4 (en) * 2013-06-24 2017-01-25 LG Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
JP2016527767A (en) * 2013-06-24 2016-09-08 エルジー エレクトロニクス インコーポレイティド Method and apparatus for controlling transmission power of sounding reference signal in wireless communication system
JP2016525293A (en) * 2013-06-24 2016-08-22 華為技術有限公司Huawei Technologies Co.,Ltd. Wireless communication method, apparatus, and system
EP3021622A4 (en) * 2013-07-09 2017-02-15 Sharp Kabushiki Kaisha Terminal device, base station device, communication method and integrated circuit
CN105340337B (en) * 2013-07-09 2020-02-04 夏普株式会社 Terminal device, base station device, and communication method
CN105340337A (en) * 2013-07-09 2016-02-17 夏普株式会社 Terminal device, base station device, communication method, and integrated circuit
EP3021619A4 (en) * 2013-07-12 2017-03-08 Sharp Kabushiki Kaisha Terminal device, method, and integrated circuit
EP3017635A4 (en) * 2013-08-08 2016-06-22 Mediatek Inc Separate accumulation of ue transmit power adjustment in adaptive tdd systems
WO2015020127A1 (en) * 2013-08-08 2015-02-12 シャープ株式会社 Terminal device, base station device, integrated circuit, and wireless communication method
CN105379368A (en) * 2013-08-08 2016-03-02 联发科技股份有限公司 State Accumulation of UE Transmit Power Adjustment in Adaptive TDD System
US10575313B2 (en) 2013-08-09 2020-02-25 Telefonaktiebolaget Lm Ericsson (Publ) Interference cancellation methods used in base stations and user equipments
CN109450586A (en) * 2013-08-09 2019-03-08 瑞典爱立信有限公司 BS and UE and interference elimination method used in it
CN109450586B (en) * 2013-08-09 2021-09-21 瑞典爱立信有限公司 BS and UE and interference cancellation method used therein
US11324012B2 (en) 2013-08-09 2022-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Interference Cancellation methods used in Base Stations and User Equipments
KR20160045060A (en) * 2013-08-17 2016-04-26 엘지전자 주식회사 Transmission power control method for sounding reference signal in wireless communication system and apparatus therefor
WO2015026113A1 (en) * 2013-08-17 2015-02-26 엘지전자 주식회사 Transmission power control method for sounding reference signal in wireless communication system and apparatus therefor
KR102322507B1 (en) * 2013-08-17 2021-11-05 엘지전자 주식회사 Transmission power control method for sounding reference signal in wireless communication system and apparatus therefor
KR20210136147A (en) * 2013-08-17 2021-11-16 엘지전자 주식회사 Transmission power control method for sounding reference signal in wireless communication system and apparatus therefor
KR102364695B1 (en) * 2013-08-17 2022-02-18 엘지전자 주식회사 Transmission power control method for sounding reference signal in wireless communication system and apparatus therefor
EP3621365A4 (en) * 2017-05-02 2020-12-02 NTT DoCoMo, Inc. USER DEVICE
EP4325975A3 (en) * 2017-05-02 2024-05-01 Ntt Docomo, Inc. User equipment

Also Published As

Publication number Publication date
DE112011105358T5 (en) 2014-03-13
US20140161003A1 (en) 2014-06-12
US10506527B2 (en) 2019-12-10
US9143308B2 (en) 2015-09-22
US20160044603A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
US10506527B2 (en) Mechanism for enhancing power control in time division based communications
JP7634742B2 (en) Power control of sounding reference signals for multiple-input multiple-output wireless systems - Patents.com
TWI594649B (en) Method and arrangement for uplink power control
CN115553008B (en) Spatial Relationship and Path Loss Reference Signals for Multi-TRP Operation
JP2017508397A (en) Method and apparatus for setting interference measurement resource in wireless communication system
TWI749056B (en) Communication method, terminal equipment and network device
US9847860B2 (en) Communication mechanism using demodulation reference signal based communication mode
CN114128399A (en) Terminal and communication method
KR20230047398A (en) Method for transmitting and receiving data in a wireless communication system supporting full-duplex communication and apparatus therefor
US12150097B2 (en) Method and apparatus for measuring CBR related to partial sensing in NR V2X
TWI545982B (en) Communication control method, communication system, and management server
JP2020519205A (en) Method of D2D (device to device) operation of terminal in wireless communication system and terminal using the method
US10225109B2 (en) Method and apparatus for transmitting and receiving information related to SRS transmission in FDR mode
CN108024346A (en) A kind of resource indicating method, equipment and system
US12185376B2 (en) Spectrum extension for initial access
EP4037423A1 (en) Method and device for processing sidelink operation, and storage medium
CN114128400A (en) Terminal and communication method
CN116171608A (en) SRS conflict handling
CN116998129A (en) UE feedback for non-preferred time-frequency resources
WO2018133126A1 (en) Radio communication method, terminal device, and network device
EP3267710A1 (en) Method and apparatus for allocating network resources, and base station
US20250358089A1 (en) Flexible duplex signaling for indicating duplex support
US20250039910A1 (en) Power allocation for psfch in multi-carrier communication
WO2024168834A1 (en) Device and method for performing an enhanced power headroom report (phr) for a waveform switching
CN120499799A (en) Communication method, device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14130592

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111053584

Country of ref document: DE

Ref document number: 112011105358

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868943

Country of ref document: EP

Kind code of ref document: A1