WO2010014032A1 - A nanostructured LED - Google Patents
A nanostructured LED Download PDFInfo
- Publication number
- WO2010014032A1 WO2010014032A1 PCT/SE2009/050878 SE2009050878W WO2010014032A1 WO 2010014032 A1 WO2010014032 A1 WO 2010014032A1 SE 2009050878 W SE2009050878 W SE 2009050878W WO 2010014032 A1 WO2010014032 A1 WO 2010014032A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact
- nanowires
- group
- light
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
- F21S41/151—Light emitting diodes [LED] arranged in one or more lines
- F21S41/153—Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/813—Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/821—Bodies characterised by their shape, e.g. curved or truncated substrates of the light-emitting regions, e.g. non-planar junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8316—Multi-layer electrodes comprising at least one discontinuous layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
- H10H20/856—Reflecting means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/60—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
- F21S41/65—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
- F21S41/663—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/817—Bodies characterised by the crystal structures or orientations, e.g. polycrystalline, amorphous or porous
- H10H20/818—Bodies characterised by the crystal structures or orientations, e.g. polycrystalline, amorphous or porous within the light-emitting regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
- H10H29/142—Two-dimensional arrangements, e.g. asymmetric LED layout
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/762—Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/949—Radiation emitter using nanostructure
- Y10S977/95—Electromagnetic energy
Definitions
- the present invention relates to LEDs.
- the invention relates to nanostructured LEDs.
- Nanowire based LEDs are comprised of semiconductor nanowires or arrays of semiconductor nanowires grown on a substrate, like for example silicon or GaN. Typically on such substrate a planar buffer layer is grown first and subsequently an array of nanowires is grown on the surface of the buffer layer.
- the buffer layer is used as the base layer for growing the nanowires. Additionally, it can serve for electrical current transport.
- the buffer layer is usually transparent for the light emitted by the LED.
- Each nanowire protrudes from the buffer layer and contains multiple regions of materials forming p-i-njunctions around the nanowire core or along the nanowire axis.
- charge carriers When charge carriers are injected into the respective p- and n-regions, they recombine in the i-region, and this recombination generates light.
- the light is generated inside each nanowire randomly and emitted in all directions.
- One problem with such a structure is that a substantial fraction of the generated light is wasted, as only a portion is directed in a desired direction.
- nanowire based LEDs Another problem associated with nanowire based LEDs is that this structure relies on the conductivity of the buffer layer for current transport into the active region, the p-i-n-junction. For large devices the distance between the contact and the nanowires within the LED can be considerable, causing voltage drop and resistive losses over the buffer layer. Carrier recombination and light generation will happen predominantly near the contact pad on the n-contact side causing current crowding and non-uniform luminance. This problem remains when mounting the LED device onto a carrier supplying the LED device with current for light generation.
- a pn-junction and a p-i-n-junction has a wider active region.
- the wider active region allows for a higher probability of recombination in the i-region, thus generation of light, although both pn- and p-i-n- junctions can be used for light generation in LED devices.
- the object of the present invention is to overcome at least some of the drawbacks of the prior art. This is achieved by devices as defined in claim 1.
- a device comprises a nanostructured LED with at least one nanowire and contacting means.
- Each nanowire protrudes from a buffer layer on a substrate and comprises a pn- or p-i-n-junction and a top portion of each nanowire or at least one selection of nanowires is covered with a light-reflecting or transparent contact layer.
- the contacting means is in electrical contact with the bottom portion of each nanowire, the light-reflecting or transparent contact layer being in electrical contact with the contacting means via the pn- or p-i-n-junction.
- Such a nanostructured LED can be placed on a carrier having contact pads corresponding to the position of p-contact pads and n-contact pads on the nanowire LED chip and attached using soldering, ultrasonic welding, bonding or by the use of electrically conductive glue.
- the contact pads on the carrier can be electrically connected to the appropriate power supply lead of the LED package.
- One object of the invention is to overcome problems related to flip-chip bonded LED's, namely to increase efficiency, and decrease losses related to series resistance in the buffer layer. It is further an advantage of the invention to exhibit low energy consumption.
- One further object of the invention is to provide a nanowire LED comprising one or more contact groups of nanowires that can be exclusively and individually addressed.
- Embodiments of the invention are defined in the dependent claims. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of examples of embodiments of the invention when considered in conjunction with the accompanying drawings and claims.
- FIG. 1 shows a schematic structure of a nanowire LED
- FIG. 2a shows the nanowire LED with a bottom contact and a top contact that strictly defines the active area of the LED, and b) shows the nanowire LED with two active areas, that can be addressed exclusively and individually
- FIG. 3 illustrates a nanowire LED with a top contact and a bottom contact
- FIG. 4 is a suggestion with several individual contacts on how to design the contact pattern on a nanowire LED
- FIG. 5 is another suggestion with several individual contacts on how to design the contact pattern on a nanowire LED
- FIG. 6 shows the nanowire structure bonded onto a carrier with the contact bumps between the p- and n-contacts
- FIG. 7 shows a LED device with areas between the contact groups of nanowires where the nanowires have been removed that works as cooling flanges
- FIG. 8 shows a flip -chip LED mounted on a carrier with control electronics
- FIG. 9 shows how a LED device can be used as a smart head-light in a vehicle
- nanostructure or nanoelement is intended to mean a structure having at least two dimensions not greater than about 1 ⁇ m.
- FIG. 1 of a nanostructured LED according to the invention, the nanowires 1 10 protrude from a substrate or a buffer layer 120 deposited on a substrate (the substrate not shown in the figure), where the substrate or buffer layer 120 can be Si, Ge, AI2O3, SiC, Quartz, glass, GaN or any other material suitable for nanowire growth and further processing.
- the buffer layer 120 can be made of a material different than the substrate material.
- the buffer layer 120 is usually chosen so as to match the desired nanowire material, and thus form a growth base for the nanowires later in the process. That means that the buffer layer 120 is chosen so that the lattice parameters of the nanowires and the buffer layer admit nanowire growth.
- nanowires can be achieved by utilizing methods described in the above referred application, in which well known mask techniques result in nanowires with a pn- or p-i-n-junction 160.
- the nanowires can be of any semiconductor material, although III-V semiconductors such as GaN, InP, GaAs, AlInGaN, AlGaN and InGaN etc. are expedient for the production of LEDs.
- the nanowires are then eliminated by etching down to the buffer layer 120 resulting in a first area where the nanowires protrude from the substrate, and a second area, free from nanowires, and in electrical contact with the bottom portion 145 of the nanowires in the first area.
- a metal or highly doped semiconductor is arranged to form the contacting means.
- the wording p-i-n-junction is intended to include both pn- and p-i-n- junctions unless otherwise indicated.
- the substrate is covered with nanowires except at the location of the first group of contact pads 190 contacting the buffer layer or substrate, where the nanowires have been removed.
- a second group of contact pad(s) 180 and light-reflecting or transparent contact layer 130 is defined on the nanowires 1 10 according to FIG. 2a, and thus strictly defines the light emitting active area of the LED device. All nanowires 1 10 located outside the area defined by the second group of contact pad(s) 180 and the light-reflecting or transparent layer 130 will be electrically dead, and will not contribute to the formation of light upon an applied voltage between the first group of contact pad(s)
- the nanowire technology offers a unique ability to allow strict definition of active areas by the second group of contact pads, which is not possible in planar technology.
- FIG. 2b illustrates an embodiment of the present invention where there are two contact pads of the second group of contact pad(s) 180.
- the nanowires 1 10 located under the second group of contact pad(s) 180 and the light reflecting or transparent layer 130 will be active in the generation of light when a voltage is applied.
- the distribution of the, in FIG. 2b two contacts, on top of the nanowires makes it possible to exclusively and individually control the two contact groups of nanowires defined by the second group of contact pad(s) 180 and the light reflecting or transparent layer 130. Since there is no leakage to nanowires beside the active areas, the resolution of the active areas is strictly determined by the resolution of the contact pattern.
- a substrate having a multitude of contact groups of nanowires where all the contact groups of nanowires can be exclusively and individually addressed can be used to form for example displays, Red-Green- Blue-LED setups (RGB), dimmers, head-lights for vehicles, etc.
- RGB Red-Green- Blue-LED setups
- a metallic reflector forming a light-reflecting contact layer 130 is formed on the top portion 140 of the protruding nanowires in the first area.
- the light-reflecting contact layer 130 can be formed in several ways, although using a PVD (Physical Vapour Deposition) method and well-known mask techniques is the preferred method.
- the reflector is preferably made of aluminum or silver, but other metals or metal alloys may also be used.
- the purpose of the light-reflecting contact layer 130 is to prevent light from leaving the structure in a direction other than the preferred direction, and to focus the emitted light to one single direction. Additionally, the light-reflecting contact layer 130 also usually functions as a top contact to the nanowires.
- Nanowire based LEDs are either front-emitting or back-emitting, i.e. the light generated within the nanowires are emitted from the top of the nanowires, or through the bottom of the nanowires, the buffer layer and the substrate, respectively.
- Nanowire-based LED devices as such are usually mounted on a carrier that provides mechanical support and electrical connections. The carrier should not absorb light or limit the light emission from the device.
- One way to construct a LED with improved efficiency is to make a flip-chip device.
- a metallic layer with high reflectivity in the visible region of the light spectra is formed on top of the nanowires.
- the substrate, on which the nanowires have been grown, is removed as a part of the process, leaving the buffer layer 120, to allow for the light to be emitted through said buffer layer 120 which has formed a base for the nanowires. Emitted light directed towards the top of the nanowires is then reflected when it encounters the metallic layer, thus creating a clearly dominating direction for the light leaving the structure as shown in FIG. 3. This way of producing the structure allows for a much larger fraction of the emitted light to be guided in a desired direction, increasing the efficiency of the LED.
- contact pads have to be formed on the buffer layer 120, also called the bottom layer, and on the light-reflecting contact layer 130, called the top layer.
- a first way of doing this is to form one contact on the buffer layer and one contact on the mirror layer, letting the layer itself distribute the current to the nanowires. This will make it impossible to address a nanowire or group of nanowires independently of the rest of the nanowires or groups of nanowires, since at least one the contact pads of one contact layer needs to be distributed to enable individual addressing of groups of nanowires.
- a second preferred way of forming the contacts is to form several contact pads and distribute them over the buffer layer 120 surface, for example by creating a layer of interleaving arrays of contact pads, to equalize the current density on the surface. This improves the efficiency of the LED device by decreasing resistive losses originating from series resistance in the buffer layer. The effect resistive losses become more and more dominant as the resistivity of the layer increases. In the case of a metal layer having low resistivity, the gain is small, but for a layer having higher resistivity such as a semiconductor buffer layer, the gain can be significant.
- the first group of contact pads 190 on the buffer layer may be called the cathode
- the second group of contact pads 180 on top of the light-reflecting contact layer may be called the anode.
- a contact group of nanowires comprises at least one nanowire, but preferably each contact group comprises a plurality of nanowires. Having a plurality of nanowires in a group of nanowires increases reliability of the device, since the group of nanowires in that case does not strongly depend upon the functionality of one single nanowire.
- the term group in this text is defined so as to include the case where a contact group of nanowires comprises the case with only one nanowire.
- the method of using distributed contact pads is also applicable on the second area on top of the light-reflecting contact layer 130.
- This layer is very often a metallic layer, but it can also be built up of compound material having high optical reflectivity and relatively high electrical conductivity.
- the distributed contact pads will, if the light-reflecting contact layer 130 is properly adapted, enable exclusive and individual addressing of at least one group of nanowires.
- Another essential advantage of using distributed contact pads even in the case of a metallic light- reflecting contact layer 130 is that an increased number of contact points offer an improved structural support in the case where the structure is bonded onto a carrier wafer 280.
- the distribution can be done in many different ways, and in many geometric configurations, utilizing in principle any pattern, as long as the contact pads do not short-circuit the top layer and the bottom layer.
- An advantage of the distributed contact pads is that they can equalize the current distribution to the layer where they are applied, which can also be achieved with the distributed contact pads in an irregular pattern.
- the geometric arrangement for the contact pads is not critical, as long as the current distribution effect is achieved.
- the contact pattern for the contact pads is formed using a plurality of arrays for the top layer and the bottom layer respectively, and simply letting the arrays of contact pads for the top layer and the bottom layer be laterally displaced in relation to each other.
- the contact pads for the bottom layer can all be connected through for example the buffer layer, and thus be distributed between nanowires or groups of nanowires, as long as this contact layer is not used for individual addressing.
- the contact pads for the top layer are also distributed, but not at all connected to each other through the light- reflecting contact layer 130 as shown in FIG. 7 and 8, when this contact layer is used for individual addressing.
- the first group of contact pads 190 and the second group of contact pads 180 for the top layer and the bottom layer are formed as arrays perpendicular to each other seen in FIG. 4.
- An electrically insulating portion 250 that can be electrically insulating material or just absence of conducting material is separating the groups as seen in the design in FIGs. 4 and 5.
- the contact pads are formed in a matrix pattern with a quadratic or rectangular shape for the first and the second area, and then laterally displaced in relation to each other. Also combinations of the geometrical contact pad setups are possible.
- the design in FIGs. 4 and 5 and combinations thereof show just a few possible ways to form the conduction pattern of the device, but there are of course an infinite number of possible solutions.
- the contact pads can also act as soldering bumps 260 (FIGs. 6 and 8) in the bonding process if the LED structure is attached to another wafer by soldering. If type of material in the contact pad and wafer are chosen appropriately, the two units can be thermally bonded to each other. Another way is to mount soldering bumps onto the contact pads before bonding. A flip -chip LED device bonded onto a carrier wafer using soldering bumps can be seen in FIGs. 6 and 8. The shape on the soldering bumps is not in any way intended to show the shape in a real situation, but formed as such to ease the understanding of the figure.
- the nanowires have one common contact, for example the buffer layer, for the first group of contact pads 190.
- the second group of contact pads 180 and the light-reflecting contact layer 130 is distributed and electrically separated, such that groups of nanowires can be addressed exclusively and individually, independently of the other groups of nanowires, such that a group of nanowires represents for example one pixel.
- This enables having an arrangement where different groups of nanowires have different properties, for example different groups can be adapted to represent a colour in a Red-Green-Blue (RGB) setup.
- the contact groups of nanowires are separated by an etched trench. However, this is not necessary in the case of distributed contacts for nanowires.
- the electrically dead area between the contact groups of nanowires can also be nanowires that are not active, since the active area, that is, the active contact group of nanowires, is strictly defined by the light- reflecting contact layer and the contact pads, and each active group of nanowires can be individually addressed. This is not the case in planar technology fabrication of LEDs, where leakage currents etc. will destroy the individuality of LEDs.
- a group of nanowires can be adapted to respond differently to different voltage levels, such that a first voltage level represents red light, a second voltage level represents green light, and a third voltage level represents blue light. Accordingly, the contact groups of nanowires can be controlled to emit light of a desired wavelength, thus a desired colour.
- Another possible solution is to let different contact groups of nanowires comprise nanowires with different material composition, and thus nanowires of different groups respond differently to the same voltage level.
- a contact group of nanowires can be adapted to respond to an applied voltage such that an increased voltage results in an increased intensity, thus higher voltage results in a stronger emission of that particular group of nanowires. In that way, the intensity of the coloured emission, for example RGB, can be controlled colour by colour.
- a multitude of groups of nanowires are arranged on a substrate, where it is possible to address every group exclusively and individually.
- the groups of nanowires can all have the same properties when a voltage is applied, here called an active group, although the number of active groups can be varied depending on the amount of light desired. This can be very useful, for example when using LEDs as the headlight in vehicles (for example cars, trucks, transport lorry's etc.).
- the amount of light can be controlled by the number of active groups of nanowires. That is, the more active groups means more emitted light.
- different groups of nanowires can be attributed to different lighting modes, for example one mode for highway driving, one mode for country driving, and one mode for adverse weather driving etc., as illustrated in FIG. 8.
- One way to fabricate such a device is to grow an array or arrays of nanowires on top of an n-doped GaN buffer on a substrate.
- the nanowires are arranged as a uniform array or a set of sub-arrays with gaps, each sub-array corresponding to an individual pixel.
- the nanowires consist of an n-doped GaN core, an active radial InGaN layer and a p-doped shell.
- the nanowires are first coated with a metal stack that forms p-contact to the shell, metallic reflector and metal bond pads.
- the metal layers are patterned to form the individual pixels of the device. These pixels are electrically isolated from each other.
- n-contact to the buffer is formed in the area outside the active area of the display.
- the nanowires are locally removed e.g. by etching and the underlying insulating mask layer is removed to expose the GaN buffer layer.
- the n-contacts are applied to it and contact pads are formed.
- the nanowire LED die made on the substrate is placed on a sub-mount wafer having contact pads corresponding to the positions of p- and n-contact pads on the nanowire LED die made on the substrate, and attached using soldering or ultrasonic welding.
- the sub-mount wafer can also contain an active transistor current source matrix for driving the LED pixels.
- the material of the original substrate is removed by grinding, etching, lapping, or a combination of these methods.
- a layer of colour converting phosphor can be applied on the surface where the light exits the structure, to produce white light from for example blue light emission.
- the light-reflecting contact layer 130 on top of the nanowires is aluminum or silver.
- Silver among the metals, has the best reflection coefficient in the visible region of the optical spectra, but is more prone to exhibit corrosion damage in normal atmosphere if not capped inside a structure.
- Si3N 4 , Si ⁇ 2 , AL 2 O3 or any other stable dielectric can be used as a capping layer. After deposition the capping layer is preferably patterned to allow exclusive and individual electrical contact to the mirror layer of individual nanowires or groups of nanowires.
- Aluminum is another good option. It has a reflective index in the visible region somewhat lower than silver, but exhibits very good corrosion resistance in dry atmospheric environments. In order to improve device reliability additional dielectric capping as described above may still be desired.
- Non-metallic high reflectivity materials that actually can reach higher reflectivity coefficients than silver in specific wavelength intervals when for example integrated into engineered Bragg reflector stacks.
- These include dielectric multi layers from compounds such as Si ⁇ 2, Si3N4, and AI2O3.
- Such dielectric mirrors are electrically non-conductive. Therefore they should be combined with transparent conductive materials like Indium Tin Oxide (ITO) deposited onto the nanowires prior to the multilayer dielectric mirrors. Multilayer dielectric mirror must then be patterned to allow electrical connection to the transparent conductor and thus to the device.
- ITO Indium Tin Oxide
- the light-reflecting contact layer 130 is deposited on top of the nanostructured LED such that the light-reflecting contact layer 130 extends down the sidewalls of the peripheral nanowires for at least one group of nanowires of the first area. This further improves the efficiency of the nanostructured LED, since with this arrangement there is only one direction for the generated light to leave the structure, and this is the direction preferred and defined by the user. In all other directions the light will be reflected until it exits through the only open exit.
- the nanostructured LED is glued onto a new carrier wafer 280, using glue having high electrical conductivity. This is preferably done when the new carrier wafer 280 does not comprise a complex pattern of leads, but is merely a large contact area intended to supply power to the LEDs. Nevertheless, the gluing technique can also be used for more demanding applications with a more complex pattern of leads.
- a carrier that acts as a new carrier wafer 280 can have different forms. It can be a new substrate for further processing. It can be a microelectronic structure, where the LED chip adds just another important feature to the complete device.
- the new wafer can also be a wafer that supplies only the electronic leads to feed the LED structure when assembled together. Wafer in this sense is not intended to be limiting and comprise only semiconductor materials. It can also be e.g. a glass substrate or any other substrate offering sufficient structural support.
- a nanostructured LED comprises at least one nanowire and a contacting means, wherein each nanowire protrudes from a substrate, each nanowire comprises a pn- or p-i-n-junction (160) and a top portion (140) of each nanowire is covered with a transparent contact layer.
- the contacting means is in electrical contact with the bottom portion (145) of each nanowire and the transparent contact layer is in electrical contact with the contacting means via the pn- or p-i-n-junction where the contacting means is a first group of contact pads (190) that are distributed and separated from each other.
- the transparent contact layer is also preferably distributed and arranged as contact pads such that every contact pad exclusively and individually connects electrically to one nanowire or one group of nanowires.
- this embodiment can be applied in the same manner as described earlier in the application, with the distinction that the light is emitted through the top portion of the nanowires, instead of being reflected in the top portion and being emitted through the bottom portion instead.
- the nanostructured LED does not need to be bonded to for example a carrier wafer.
- the p-contact and the n- contact can be used interchangeably, such that the p-contact is not restricted to be used as the top contact that contacts the top of the nanowires, and the n-contact is not restricted to be used as the contact that contacts the bottom part of the nanowires. While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments On the contrary, is intended to cover various modifications and equivalent arrangements within the scope of the appended claims.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mathematical Physics (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
Description
Claims
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP09803213.9A EP2297794B1 (en) | 2008-07-07 | 2009-07-07 | Nanostructured light emitting diode |
| CN2009801264269A CN102089893B (en) | 2008-07-07 | 2009-07-07 | Nanostructured LEDs |
| US13/002,906 US8669574B2 (en) | 2008-07-07 | 2009-07-07 | Nanostructured LED |
| JP2011517386A JP5836122B2 (en) | 2008-07-07 | 2009-07-07 | Nanostructured LED |
| US14/168,757 US9595649B2 (en) | 2008-07-07 | 2014-01-30 | Nanostructured LED |
| US15/455,403 US10217917B2 (en) | 2008-07-07 | 2017-03-10 | Nanostructured LED |
| US16/252,144 US11605758B2 (en) | 2008-07-07 | 2019-01-18 | Display device including nanostructured LEDs connected in parallel |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE0801621 | 2008-07-07 | ||
| SE0801621-4 | 2008-07-07 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/002,906 A-371-Of-International US8669574B2 (en) | 2008-07-07 | 2009-07-07 | Nanostructured LED |
| US14/168,757 Continuation US9595649B2 (en) | 2008-07-07 | 2014-01-30 | Nanostructured LED |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010014032A1 true WO2010014032A1 (en) | 2010-02-04 |
Family
ID=41610579
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/SE2009/050878 Ceased WO2010014032A1 (en) | 2008-07-07 | 2009-07-07 | A nanostructured LED |
Country Status (6)
| Country | Link |
|---|---|
| US (4) | US8669574B2 (en) |
| EP (1) | EP2297794B1 (en) |
| JP (1) | JP5836122B2 (en) |
| KR (1) | KR20110039313A (en) |
| CN (2) | CN102089893B (en) |
| WO (1) | WO2010014032A1 (en) |
Cited By (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011117056A1 (en) * | 2010-03-25 | 2011-09-29 | Osram Opto Semiconductors Gmbh | Radiation-emitting semiconductor component and method for producing a radiation-emitting semiconductor component |
| KR20110132135A (en) * | 2010-06-01 | 2011-12-07 | 삼성전자주식회사 | Light emitting device and manufacturing method |
| US20120056237A1 (en) * | 2010-09-03 | 2012-03-08 | Samsung Electronics Co., Ltd. | Semiconductor compound structure and method of fabricating the same using graphene or carbon nanotubes, and semiconductor device including the semiconductor compound structure |
| JP2012089900A (en) * | 2010-09-01 | 2012-05-10 | Sharp Corp | Light-emitting device and method of manufacturing the same |
| US20120205614A1 (en) * | 2009-10-23 | 2012-08-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for manufacturing a very-high-resolution screen using a nanowire-based emitting anisotropic conductive film |
| US8350251B1 (en) | 2011-09-26 | 2013-01-08 | Glo Ab | Nanowire sized opto-electronic structure and method for manufacturing the same |
| CN103098237A (en) * | 2010-06-18 | 2013-05-08 | Glo公司 | Nanowire led structure and method for manufacturing the same |
| WO2014053445A1 (en) * | 2012-10-04 | 2014-04-10 | Osram Opto Semiconductors Gmbh | Method for producing a light-emitting diode display and light-emitting diode display |
| WO2014066379A1 (en) | 2012-10-26 | 2014-05-01 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| WO2014090605A1 (en) * | 2012-12-14 | 2014-06-19 | Osram Opto Semiconductors Gmbh | Display device and method for producing a display device |
| WO2014154880A1 (en) * | 2013-03-28 | 2014-10-02 | Aledia | Electroluminescent device comprising active nanowires and contact nanowires and production method |
| US8999737B2 (en) | 2013-08-27 | 2015-04-07 | Glo Ab | Method of making molded LED package |
| WO2015091754A1 (en) * | 2013-12-19 | 2015-06-25 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component |
| US9076945B2 (en) | 2012-10-26 | 2015-07-07 | Glo Ab | Nanowire LED structure and method for manufacturing the same |
| US9142745B2 (en) | 2013-08-27 | 2015-09-22 | Glo Ab | Packaged LED device with castellations |
| US20150280062A1 (en) * | 2014-03-27 | 2015-10-01 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
| US9178106B2 (en) | 2012-10-26 | 2015-11-03 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| US9190590B2 (en) | 2010-09-01 | 2015-11-17 | Sharp Kabushiki Kaisha | Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode |
| US9196792B2 (en) | 2013-03-15 | 2015-11-24 | Glo Ab | Nanowire LED structure with decreased leakage and method of making same |
| US9196787B2 (en) | 2013-06-07 | 2015-11-24 | Glo Ab | Nanowire LED structure with decreased leakage and method of making same |
| WO2016016460A1 (en) * | 2014-07-31 | 2016-02-04 | Infiniled Limited | A colour iled display on silicon |
| US9257616B2 (en) | 2013-08-27 | 2016-02-09 | Glo Ab | Molded LED package and method of making same |
| EP2709171A3 (en) * | 2012-09-18 | 2016-04-06 | Stanley Electric Co., Ltd. | LED array |
| FR3030995A1 (en) * | 2014-12-23 | 2016-06-24 | Aledia | ELECTROLUMINESCENT LIGHT SOURCE WITH ADJUSTABLE OR ADJUSTABLE LUMINANCE LUMINANCE PARAMETER AND METHOD FOR ADJUSTING A LUMINANCE PARAMETER OF THE LIGHT EMITTING LIGHT SOURCE |
| US20160197064A1 (en) * | 2013-09-30 | 2016-07-07 | Aledia | Optoelectronic device comprising light-emitting diodes |
| WO2016192939A1 (en) * | 2015-05-29 | 2016-12-08 | Osram Opto Semiconductors Gmbh | Display device having a plurality of pixels that can be operated separately from one another |
| EP3127747A1 (en) * | 2015-08-07 | 2017-02-08 | Valeo Vision | Lighting and/or signalling device for a motor vehicle |
| FR3039882A1 (en) * | 2015-08-07 | 2017-02-10 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| FR3039880A1 (en) * | 2015-08-07 | 2017-02-10 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| FR3039881A1 (en) * | 2015-08-07 | 2017-02-10 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| FR3041074A1 (en) * | 2015-09-14 | 2017-03-17 | Valeo Vision | LIGHTING MODULE FOR MOTOR VEHICLE |
| FR3041062A1 (en) * | 2015-09-15 | 2017-03-17 | Valeo Vision | LUMINOUS BODY, LAMP COMPRISING SUCH A LUMINOUS BODY, AND LUMINOUS DEVICE COMPRISING SUCH A LAMP |
| WO2017050756A1 (en) * | 2015-09-25 | 2017-03-30 | Valeo Vision | Light device including a light source comprising rods with zones of different colours |
| WO2017050727A1 (en) * | 2015-09-25 | 2017-03-30 | Valeo Vision | Device and method for imparting different white colours to a light beam |
| US9620559B2 (en) | 2014-09-26 | 2017-04-11 | Glo Ab | Monolithic image chip for near-to-eye display |
| US9640723B2 (en) | 2013-06-18 | 2017-05-02 | Glo Ab | Insulating layer for planarization and definition of the active region of a nanowire device |
| DE102015121554A1 (en) * | 2015-12-10 | 2017-06-14 | Osram Opto Semiconductors Gmbh | Process for the production of optoelectronic semiconductor chips and optoelectronic semiconductor chip |
| US9720163B2 (en) | 2013-12-09 | 2017-08-01 | Glo Ab | Optical display system |
| FR3047946A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | READER, IN PARTICULAR FOR THE CABINET OF A MOTOR VEHICLE |
| FR3047941A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | LIGHTING SYSTEM FOR THE CABIN OF A MOTOR VEHICLE |
| FR3048066A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | LUMINOUS DEVICE WITH A LUMINOUS LIGHT SOURCE FOR DIFFERENT PHOTOMETRIC FUNCTIONS |
| EP3214660A1 (en) * | 2016-03-02 | 2017-09-06 | Valeo Vision | Semiconductor light source and driver assistance system for motor vehicle comprising such a source |
| WO2018002252A1 (en) * | 2016-07-01 | 2018-01-04 | Valeo Vision | Light device suitable for generating a fine pixel source |
| WO2018001911A1 (en) * | 2016-06-30 | 2018-01-04 | Valeo Vision | Module for emitting white light with enhanced spectrum |
| WO2018007385A1 (en) * | 2016-07-05 | 2018-01-11 | Valeo Vision | Light device with a light source having a lighting area and a communication area |
| WO2018007382A1 (en) * | 2016-07-05 | 2018-01-11 | Valeo Vision | Luminous device projecting an image from a radiant surface having a different shape |
| FR3053758A1 (en) * | 2016-07-05 | 2018-01-12 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| EP3273147A1 (en) * | 2016-07-22 | 2018-01-24 | Valeo Vision | Land vehicle light module |
| FR3055943A1 (en) * | 2016-09-15 | 2018-03-16 | Valeo Vision | WIRING A HIGH RESOLUTION LIGHT SOURCE |
| FR3058500A1 (en) * | 2016-11-09 | 2018-05-11 | Valeo Vision | SEMICONDUCTOR LIGHT SOURCE AND LUMINOUS DEVICE FOR A MOTOR VEHICLE COMPRISING SUCH A SOURCE |
| US9972750B2 (en) | 2013-12-13 | 2018-05-15 | Glo Ab | Use of dielectric film to reduce resistivity of transparent conductive oxide in nanowire LEDs |
| FR3061542A1 (en) * | 2017-01-02 | 2018-07-06 | Valeo Vision | LIGHTING AND / OR LINEAR SIGNALING DEVICE FOR MOTOR VEHICLE |
| FR3061535A1 (en) * | 2017-01-02 | 2018-07-06 | Valeo Vision | MULTICOLOR LED LIGHT SOURCE WITH STICKERS |
| US10079331B2 (en) | 2013-03-15 | 2018-09-18 | Glo Ab | High index dielectric film to increase extraction efficiency of nanowire LEDs |
| EP3495719A1 (en) * | 2017-12-05 | 2019-06-12 | LG Electronics Inc. | Lamp for vehicle and vehicle |
| EP3508778A1 (en) * | 2018-01-05 | 2019-07-10 | LG Electronics Inc. | Lamp for vehicle and vehicle |
| US10483319B2 (en) | 2014-08-08 | 2019-11-19 | Glo Ab | Pixilated display device based upon nanowire LEDs and method for making the same |
| US10600354B2 (en) | 2016-04-22 | 2020-03-24 | Glo Ab | Small pitch direct view display and method of making thereof |
| US11158993B2 (en) | 2017-09-15 | 2021-10-26 | Seiko Epson Corporation | Light-emitting device, method for manufacturing the same, and projector |
| EP4303929A1 (en) * | 2022-07-04 | 2024-01-10 | Samsung Electronics Co., Ltd. | Light-emitting device, display apparatus including the same, and method of manufacturing the same |
Families Citing this family (95)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2297794B1 (en) * | 2008-07-07 | 2017-09-06 | Glo Ab | Nanostructured light emitting diode |
| EP2509119B1 (en) * | 2009-12-01 | 2017-03-08 | National University Corporation Hokkaido University | Light emitting element and method for manufacturing same |
| GB201021112D0 (en) | 2010-12-13 | 2011-01-26 | Ntnu Technology Transfer As | Nanowires |
| KR101209449B1 (en) * | 2011-04-29 | 2012-12-07 | 피에스아이 주식회사 | Full-color LED display device and manufacturing method thereof |
| US20140239809A1 (en) | 2011-08-18 | 2014-08-28 | Lynk Labs, Inc. | Devices and systems having ac led circuits and methods of driving the same |
| US8350249B1 (en) | 2011-09-26 | 2013-01-08 | Glo Ab | Coalesced nanowire structures with interstitial voids and method for manufacturing the same |
| US9035278B2 (en) | 2011-09-26 | 2015-05-19 | Glo Ab | Coalesced nanowire structures with interstitial voids and method for manufacturing the same |
| KR101269053B1 (en) * | 2011-11-09 | 2013-06-04 | 삼성전자주식회사 | Nano lod light emitting device and method of manufacturing the same |
| TW201321297A (en) * | 2011-11-18 | 2013-06-01 | Nat Applied Res Laboratories | Solid-state optical component of semiconductor nanowire and control method thereof |
| DE102011056140A1 (en) | 2011-12-07 | 2013-06-13 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip |
| DE102011056888A1 (en) | 2011-12-22 | 2013-06-27 | Osram Opto Semiconductors Gmbh | Display device and method for producing a display device |
| KR101473288B1 (en) * | 2012-05-14 | 2014-12-16 | 내셔널 칭화 유니버시티 | Light-emitting diode display and method of producing the same |
| KR101901320B1 (en) * | 2012-05-22 | 2018-09-21 | 삼성전자주식회사 | Light emitting device and method of manufacturing the same |
| US20130313514A1 (en) * | 2012-05-23 | 2013-11-28 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
| GB201211038D0 (en) | 2012-06-21 | 2012-08-01 | Norwegian Univ Sci & Tech Ntnu | Solar cells |
| KR101898679B1 (en) * | 2012-12-14 | 2018-10-04 | 삼성전자주식회사 | Nano-structured light emitting devices |
| FR3000294B1 (en) * | 2012-12-21 | 2016-03-04 | Aledia | FUNCTIONAL SUPPORT COMPRISING NANOWIRES AND NANO-FINGERPRINTS AND METHOD OF MANUFACTURING THE SAME |
| DE102013100291B4 (en) * | 2013-01-11 | 2021-08-05 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelectronic semiconductor chip |
| KR102018615B1 (en) * | 2013-01-18 | 2019-09-05 | 삼성전자주식회사 | Semiconductor light emitting device and manufacturing method of the same |
| DE102013104273A1 (en) | 2013-04-26 | 2014-10-30 | Osram Opto Semiconductors Gmbh | Arrangement with columnar structure and an active zone |
| DE102013211707B4 (en) | 2013-06-20 | 2024-03-28 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Single support array, multiple array array and method of making an array |
| GB201311101D0 (en) | 2013-06-21 | 2013-08-07 | Norwegian Univ Sci & Tech Ntnu | Semiconducting Films |
| FR3011380B1 (en) * | 2013-09-30 | 2017-01-13 | Aledia | OPTOELECTRONIC DEVICE WITH LIGHT EMITTING DIODES |
| FR3011383B1 (en) * | 2013-09-30 | 2017-05-26 | Commissariat Energie Atomique | METHOD FOR MANUFACTURING OPTOELECTRONIC DEVICES WITH ELECTROLUMINESCENT DIODES |
| FR3015772B1 (en) | 2013-12-19 | 2017-10-13 | Aledia | OPTICAL ELECTROLUMINESCENT DIODE DEVICE WITH IMPROVED LIGHT EXTRACTION |
| DE102013114691A1 (en) * | 2013-12-20 | 2015-06-25 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component and adaptive headlight for a motor vehicle |
| FR3016463A1 (en) * | 2014-01-16 | 2015-07-17 | Commissariat Energie Atomique | MICRO-DISPLAY SCREEN WITH HIGH LUMINANCE. |
| KR102285786B1 (en) * | 2014-01-20 | 2021-08-04 | 삼성전자 주식회사 | Semiconductor light-emitting device |
| US9583533B2 (en) | 2014-03-13 | 2017-02-28 | Apple Inc. | LED device with embedded nanowire LEDs |
| FR3023066B1 (en) * | 2014-06-30 | 2017-10-27 | Aledia | OPTOELECTRONIC DEVICE COMPRISING LIGHT EMITTING DIODES AND A CONTROL CIRCUIT |
| KR102188494B1 (en) * | 2014-07-21 | 2020-12-09 | 삼성전자주식회사 | Semiconductor light emitting device, manufacturing method of the semiconductor light emitting device and manufacturing method of semiconductor light emitting device package |
| KR102227770B1 (en) | 2014-08-29 | 2021-03-16 | 삼성전자주식회사 | Nano sturucture semiconductor light emitting device |
| DE102014117995A1 (en) | 2014-12-05 | 2016-06-09 | Osram Opto Semiconductors Gmbh | Semiconductor layer sequence for generating visible light and light emitting diode |
| FR3031238B1 (en) * | 2014-12-30 | 2016-12-30 | Aledia | OPTOELECTRONIC DEVICE WITH LIGHT EMITTING DIODES |
| US10535709B2 (en) * | 2014-12-30 | 2020-01-14 | Aledia | Optoelectronic device with light-emitting diodes |
| KR102397362B1 (en) * | 2015-05-28 | 2022-05-20 | 엘지이노텍 주식회사 | Light unit and Lamp unit for automobile of using the same |
| DK3323152T3 (en) | 2015-07-13 | 2021-12-20 | Crayonano As | NANOWIRE / NANOPYRAMIDE SHAPED LEDS AND PHOTO DETECTORS |
| AU2016292850B2 (en) | 2015-07-13 | 2019-05-16 | Crayonano As | Nanowires or nanopyramids grown on graphitic substrate |
| KR102698244B1 (en) | 2015-07-31 | 2024-08-22 | 크래요나노 에이에스 | Method for growing nanowires or nanopyramids on graphite substrates |
| FR3041148A1 (en) * | 2015-09-14 | 2017-03-17 | Valeo Vision | LED LIGHT SOURCE COMPRISING AN ELECTRONIC CIRCUIT |
| FR3041068B1 (en) * | 2015-09-15 | 2017-09-15 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| US9719926B2 (en) * | 2015-11-16 | 2017-08-01 | International Business Machines Corporation | Nanopillar microfluidic devices and methods of use thereof |
| CN105470274B (en) * | 2015-11-23 | 2018-09-04 | 厦门天马微电子有限公司 | A kind of display panel, display panel manufacturing method and display device |
| KR101854509B1 (en) * | 2015-12-01 | 2018-06-15 | 삼성에스디아이 주식회사 | Transparent conductor, method for preparing the same and display apparatus comprising the same |
| KR102373722B1 (en) | 2015-12-30 | 2022-03-14 | 에이에스엠엘 네델란즈 비.브이. | Method and apparatus for direct write maskless lithography |
| FR3048817B1 (en) * | 2016-03-11 | 2018-06-15 | Valeo Comfort And Driving Assistance | SCREEN AND HIGH HEAD DISPLAY INCLUDING SUCH SCREEN |
| FR3048845A1 (en) * | 2016-03-11 | 2017-09-15 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| EP3440714A1 (en) * | 2016-04-04 | 2019-02-13 | Glo Ab | Through backplane laser irradiation for die transfer |
| DE102016114992A1 (en) * | 2016-08-12 | 2018-02-15 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor chip |
| DE102016123013A1 (en) | 2016-11-29 | 2018-05-30 | Osram Opto Semiconductors Gmbh | Display device with a plurality of separately operable pixels |
| TWI742222B (en) | 2017-01-09 | 2021-10-11 | 美商納諾西斯有限公司 | Light emitting diodes with integrated reflector for a direct view display and method of making thereof |
| US10998465B2 (en) | 2017-01-09 | 2021-05-04 | Glo Ab | Light emitting diodes with integrated reflector for a direct view display and method of making thereof |
| GB201701829D0 (en) | 2017-02-03 | 2017-03-22 | Norwegian Univ Of Science And Tech (Ntnu) | Device |
| US10770440B2 (en) * | 2017-03-15 | 2020-09-08 | Globalfoundries Inc. | Micro-LED display assembly |
| GB201705755D0 (en) | 2017-04-10 | 2017-05-24 | Norwegian Univ Of Science And Tech (Ntnu) | Nanostructure |
| KR102305180B1 (en) * | 2017-04-25 | 2021-09-28 | 주식회사 루멘스 | Micro led display apparatus and method for fabricating the same |
| US10418499B2 (en) | 2017-06-01 | 2019-09-17 | Glo Ab | Self-aligned nanowire-based light emitting diode subpixels for a direct view display and method of making thereof |
| FR3068517B1 (en) * | 2017-06-30 | 2019-08-09 | Aledia | OPTOELECTRONIC DEVICE COMPRISING THREE DIMENSIONAL SEMICONDUCTOR STRUCTURES IN AXIAL CONFIGURATION |
| WO2019036439A1 (en) * | 2017-08-15 | 2019-02-21 | Glo Ab | Method of making a semiconductor device using nano-imprint lithography for formation of a selective growth mask |
| KR102345618B1 (en) * | 2017-09-01 | 2021-12-31 | 삼성전자주식회사 | Light emitting diode apparatus and manufacturing method thereof |
| US10707374B2 (en) | 2017-09-15 | 2020-07-07 | Glo Ab | Etendue enhancement for light emitting diode subpixels |
| US11362238B2 (en) | 2017-10-06 | 2022-06-14 | Nanosys, Inc. | Light emitting diode containing oxidized metal contacts |
| US10804436B2 (en) | 2017-10-06 | 2020-10-13 | Glo Ab | Light emitting diode containing oxidized metal contacts |
| CA2985254A1 (en) * | 2017-11-14 | 2019-05-14 | Vuereal Inc | Integration and bonding of micro-devices into system substrate |
| DE102017130760A1 (en) * | 2017-12-20 | 2019-06-27 | Osram Opto Semiconductors Gmbh | OPTOELECTRONIC SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING OPTOELECTRONIC SEMICONDUCTOR COMPONENTS |
| JP6988460B2 (en) * | 2017-12-26 | 2022-01-05 | セイコーエプソン株式会社 | Light emitting device, manufacturing method of light emitting device, and projector |
| US10627673B2 (en) | 2018-04-06 | 2020-04-21 | Glo Ab | Light emitting diode array containing a multilayer bus electrode and method of making the same |
| US10707190B2 (en) * | 2018-04-10 | 2020-07-07 | Glo Ab | LED backplane having planar bonding surfaces and method of making thereof |
| WO2019199946A1 (en) | 2018-04-11 | 2019-10-17 | Glo Ab | Light emitting diodes formed on nanodisk substrates and methods of making the same |
| TWI828679B (en) | 2018-04-20 | 2024-01-11 | 美商納諾西斯有限公司 | Subpixel light emitting diodes for direct view display and methods of making the same |
| KR102473891B1 (en) * | 2018-07-12 | 2022-12-02 | 장시 자오 츠 세미컨덕터 컴퍼니 리미티드 | A type of UV light emitting diode chip capable of improving light extraction efficiency and its manufacturing method |
| JP7285491B2 (en) | 2018-08-24 | 2023-06-02 | マシュー ハーテンスヴェルド | Nanowire luminescence switch device and method |
| KR102724659B1 (en) | 2018-12-03 | 2024-10-31 | 삼성전자주식회사 | Light emitting diodes containing deactivated regions and methods of making the same |
| JP7227463B2 (en) * | 2018-12-27 | 2023-02-22 | 日亜化学工業株式会社 | Light emitting device and manufacturing method thereof |
| JP2020166191A (en) | 2019-03-29 | 2020-10-08 | 株式会社ジャパンディスプレイ | Display device |
| US11637219B2 (en) | 2019-04-12 | 2023-04-25 | Google Llc | Monolithic integration of different light emitting structures on a same substrate |
| WO2020243147A1 (en) | 2019-05-30 | 2020-12-03 | Glo Ab | Light emitting diode device containing a positive photoresist insulating spacer and a conductive sidewall contact and method of making the same |
| KR102892292B1 (en) | 2019-08-19 | 2025-11-26 | 삼성전자주식회사 | Display device |
| GB201913701D0 (en) * | 2019-09-23 | 2019-11-06 | Crayonano As | Composition of matter |
| US11594663B2 (en) | 2019-12-20 | 2023-02-28 | Nanosys, Inc. | Light emitting diode device containing a micro lens array and method of making the same |
| JP7424038B2 (en) * | 2019-12-23 | 2024-01-30 | セイコーエプソン株式会社 | Light emitting device and projector |
| EP3855513A3 (en) | 2020-01-22 | 2021-11-03 | Samsung Electronics Co., Ltd. | Semiconductor led and method of manufacturing the same |
| KR102871497B1 (en) | 2020-01-22 | 2025-10-15 | 삼성전자주식회사 | Semiconductor light emitting diode and manufacturing method of the same |
| US12074251B2 (en) | 2020-04-30 | 2024-08-27 | Samsung Electronics Co., Ltd. | Semiconductor device containing stress relaxation layer and method of making thereof |
| TWI893113B (en) | 2020-05-18 | 2025-08-11 | 南韓商三星電子股份有限公司 | Subpixel light emitting diodes for direct view display and methods of making the same |
| JP2022019456A (en) * | 2020-07-17 | 2022-01-27 | ソニーセミコンダクタソリューションズ株式会社 | Light emitting device and display |
| US11094846B1 (en) | 2020-08-31 | 2021-08-17 | 4233999 Canada Inc. | Monolithic nanocolumn structures |
| KR20220045478A (en) | 2020-10-05 | 2022-04-12 | 삼성전자주식회사 | Micro light emitting display apparatus and method of manufacturing the same |
| JP7230901B2 (en) | 2020-12-18 | 2023-03-01 | セイコーエプソン株式会社 | Light-emitting device and projector |
| US12159964B2 (en) | 2021-01-08 | 2024-12-03 | Samsung Electronics Co., Ltd. | Light-emitting diode device containing microlenses and method of making the same |
| US20240332339A1 (en) * | 2021-07-08 | 2024-10-03 | Koito Manufacturing Co., Ltd. | Semiconductor light emitting element and method for producing semiconductor light emitting element |
| JP7776817B2 (en) * | 2021-09-13 | 2025-11-27 | セイコーエプソン株式会社 | Light-emitting device, projector, and display |
| JP2023139643A (en) * | 2022-03-22 | 2023-10-04 | セイコーエプソン株式会社 | Light-emitting devices, projectors, displays, and head-mounted displays |
| EP4634999A1 (en) * | 2022-12-16 | 2025-10-22 | Lumileds LLC | Shaped surface luminance led with adjustable luminance gradient |
| US11799054B1 (en) | 2023-02-08 | 2023-10-24 | 4233999 Canada Inc. | Monochromatic emitters on coalesced selective area growth nanocolumns |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001047036A1 (en) * | 1999-12-22 | 2001-06-28 | Lumileds Lighting, U.S., Llc | Iii-nitride light-emitting device with increased light generating capability |
| US20040061123A1 (en) * | 2002-09-27 | 2004-04-01 | Emcore Corporation | Optimized contact design for flip-chip LED |
| US20050006754A1 (en) * | 2003-07-07 | 2005-01-13 | Mehmet Arik | Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking |
| US20060192223A1 (en) * | 2005-02-28 | 2006-08-31 | Samsung Electro-Mechanics Co., Ltd. | Nitride semiconductor light emitting device |
| US20060292839A1 (en) * | 2003-06-09 | 2006-12-28 | Yi Gyu C | Contacts fabric using heterostructure of metal/semiconductor nanorods and fabrication method thereof |
| US20080036038A1 (en) * | 2006-03-10 | 2008-02-14 | Hersee Stephen D | PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL |
Family Cites Families (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6184923B1 (en) * | 1994-11-25 | 2001-02-06 | Olympus Optical Co., Ltd. | Endoscope with an interchangeable distal end optical adapter |
| US5898185A (en) * | 1997-01-24 | 1999-04-27 | International Business Machines Corporation | Hybrid organic-inorganic semiconductor light emitting diodes |
| JPH10321910A (en) * | 1997-05-16 | 1998-12-04 | Ricoh Co Ltd | Semiconductor light emitting device |
| US6784463B2 (en) * | 1997-06-03 | 2004-08-31 | Lumileds Lighting U.S., Llc | III-Phospide and III-Arsenide flip chip light-emitting devices |
| JP3906653B2 (en) * | 2000-07-18 | 2007-04-18 | ソニー株式会社 | Image display device and manufacturing method thereof |
| TW516248B (en) * | 2001-12-21 | 2003-01-01 | Epitech Technology Corp | Nitride light emitting diode with spiral-shaped metal electrode |
| US6809471B2 (en) * | 2002-06-28 | 2004-10-26 | General Electric Company | Phosphors containing oxides of alkaline-earth and Group-IIIB metals and light sources incorporating the same |
| US6969897B2 (en) * | 2002-12-10 | 2005-11-29 | Kim Ii John | Optoelectronic devices employing fibers for light collection and emission |
| JP4235440B2 (en) * | 2002-12-13 | 2009-03-11 | キヤノン株式会社 | Semiconductor device array and manufacturing method thereof |
| CN100336234C (en) * | 2003-03-03 | 2007-09-05 | 诠兴开发科技股份有限公司 | bare crystal light emitting diode |
| US7265037B2 (en) * | 2003-06-20 | 2007-09-04 | The Regents Of The University Of California | Nanowire array and nanowire solar cells and methods for forming the same |
| US7132677B2 (en) * | 2004-02-13 | 2006-11-07 | Dongguk University | Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same |
| US7768081B2 (en) * | 2004-10-27 | 2010-08-03 | Koninklijke Philips Electronics N V | Semiconductor device with tunable energy band gap |
| WO2006060599A2 (en) * | 2004-12-02 | 2006-06-08 | The Regents Of The University Of California | Semiconductor devices based on coalesced nano-rod arrays |
| US7221044B2 (en) * | 2005-01-21 | 2007-05-22 | Ac Led Lighting, L.L.C. | Heterogeneous integrated high voltage DC/AC light emitter |
| EP1696473A3 (en) * | 2005-02-25 | 2009-06-10 | Samsung Electronics Co.,Ltd. | Silicon nano wires, semiconductor device including the same, and method of manufacturing the silicon nano wires |
| US20060197436A1 (en) * | 2005-03-01 | 2006-09-07 | Sharp Laboratories Of America, Inc. | ZnO nanotip electrode electroluminescence device on silicon substrate |
| EP1727216B1 (en) * | 2005-05-24 | 2019-04-24 | LG Electronics, Inc. | Rod type light emitting diode and method for fabricating the same |
| KR100658938B1 (en) * | 2005-05-24 | 2006-12-15 | 엘지전자 주식회사 | Light emitting device having nanorods and manufacturing method thereof |
| JP4841628B2 (en) * | 2005-06-25 | 2011-12-21 | ソウル オプト デバイス カンパニー リミテッド | Nanostructure, light-emitting diode using the same, and manufacturing method thereof |
| KR100720101B1 (en) | 2005-08-09 | 2007-05-18 | 삼성전자주식회사 | Top-Emitt Type Nitride Light Emitting Diode Using Nanostructured Multifunctional Ohmic Layer and Its Manufacturing Method |
| KR20070021671A (en) * | 2005-08-19 | 2007-02-23 | 서울옵토디바이스주식회사 | Light Emitting Diode Adopting Array of Nano Rods and Method of Manufacturing the Same |
| US20070225778A1 (en) * | 2006-03-23 | 2007-09-27 | Heacock Gregory L | PDT apparatus with an addressable LED array for therapy and aiming |
| JP5082504B2 (en) * | 2006-03-31 | 2012-11-28 | 日亜化学工業株式会社 | Light emitting device and method for manufacturing light emitting device |
| JP2007324579A (en) * | 2006-05-01 | 2007-12-13 | Mitsubishi Chemicals Corp | Integrated semiconductor light emitting device and method of manufacturing the same |
| US9024349B2 (en) * | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
| US8964020B2 (en) * | 2007-04-25 | 2015-02-24 | Stc.Unm | Solid-state microscope for selectively imaging a sample |
| JP5462998B2 (en) * | 2007-08-10 | 2014-04-02 | 住友化学株式会社 | Composition and organic photoelectric conversion element |
| EP2297794B1 (en) * | 2008-07-07 | 2017-09-06 | Glo Ab | Nanostructured light emitting diode |
| JP2011077351A (en) | 2009-09-30 | 2011-04-14 | Sumitomo Electric Ind Ltd | Light emitting device |
| JP5709899B2 (en) | 2010-01-05 | 2015-04-30 | ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. | Light emitting diode and manufacturing method thereof |
| US8761218B2 (en) | 2010-04-05 | 2014-06-24 | The Regents Of The University Of California | Aluminum gallium nitride barriers and separate confinement heterostructure (SCH) layers for semipolar plane III-nitride semiconductor-based light emitting diodes and laser diodes |
| KR101781505B1 (en) | 2010-10-15 | 2017-09-26 | 엘지디스플레이 주식회사 | Gallium nitride type semiconductor light emitting device and method of fabricating the same |
| CN107740070A (en) | 2012-05-25 | 2018-02-27 | 索尔伏打电流公司 | Concentric flow reactor |
| US9577148B2 (en) | 2013-05-09 | 2017-02-21 | The University Of Tokyo | Light emitting diode element and method of manufacturing the same |
| TWI621278B (en) | 2013-12-17 | 2018-04-11 | 瑞典商Glo公司 | Group III nitride nanowire LED with strain-modified surface active region and manufacturing method thereof |
| WO2016025325A1 (en) | 2014-08-12 | 2016-02-18 | Glo Ab | Iii-nitride nanowire led with strain modified surface active region and method of making thereof |
| KR101803599B1 (en) * | 2014-09-12 | 2017-12-01 | 주식회사 엘지화학 | Organic light emitting diode |
| EP3204822A2 (en) | 2014-10-07 | 2017-08-16 | Corning Incorporated | Direct view display device and light unit for direct view display device |
| JP6823893B2 (en) | 2014-12-19 | 2021-02-03 | グロ アーベーGlo Ab | How to generate a light emitting diode array on the backplane |
| US9941330B2 (en) | 2016-05-18 | 2018-04-10 | Globalfoundries Inc. | LEDs with three color RGB pixels for displays |
| JP6853882B2 (en) | 2016-10-24 | 2021-03-31 | グロ アーベーGlo Ab | Light emitting diodes, display devices, and direct-view display devices |
-
2009
- 2009-07-07 EP EP09803213.9A patent/EP2297794B1/en not_active Not-in-force
- 2009-07-07 WO PCT/SE2009/050878 patent/WO2010014032A1/en not_active Ceased
- 2009-07-07 KR KR1020117002609A patent/KR20110039313A/en not_active Ceased
- 2009-07-07 JP JP2011517386A patent/JP5836122B2/en active Active
- 2009-07-07 US US13/002,906 patent/US8669574B2/en active Active
- 2009-07-07 CN CN2009801264269A patent/CN102089893B/en not_active Expired - Fee Related
- 2009-07-07 CN CN201210569542.1A patent/CN103022282B/en not_active Expired - Fee Related
-
2014
- 2014-01-30 US US14/168,757 patent/US9595649B2/en active Active
-
2017
- 2017-03-10 US US15/455,403 patent/US10217917B2/en active Active
-
2019
- 2019-01-18 US US16/252,144 patent/US11605758B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001047036A1 (en) * | 1999-12-22 | 2001-06-28 | Lumileds Lighting, U.S., Llc | Iii-nitride light-emitting device with increased light generating capability |
| US20040061123A1 (en) * | 2002-09-27 | 2004-04-01 | Emcore Corporation | Optimized contact design for flip-chip LED |
| US20060292839A1 (en) * | 2003-06-09 | 2006-12-28 | Yi Gyu C | Contacts fabric using heterostructure of metal/semiconductor nanorods and fabrication method thereof |
| US20050006754A1 (en) * | 2003-07-07 | 2005-01-13 | Mehmet Arik | Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking |
| US20060192223A1 (en) * | 2005-02-28 | 2006-08-31 | Samsung Electro-Mechanics Co., Ltd. | Nitride semiconductor light emitting device |
| US20080036038A1 (en) * | 2006-03-10 | 2008-02-14 | Hersee Stephen D | PULSED GROWTH OF CATALYST-FREE GROWITH OF GaN NANOWIRES AND APPLICATION IN GROUP III NITRIDE SEMICONDUCTOR BULK MATERIAL |
| WO2008048704A2 (en) | 2006-03-10 | 2008-04-24 | Stc.Unm | Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2297794A4 |
Cited By (126)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8890111B2 (en) * | 2009-10-23 | 2014-11-18 | Commissariat à l'énergie atomique et aux énergies alternatives | Method for manufacturing a very-high-resolution screen using a nanowire-based emitting anisotropic conductive film |
| US20120205614A1 (en) * | 2009-10-23 | 2012-08-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for manufacturing a very-high-resolution screen using a nanowire-based emitting anisotropic conductive film |
| WO2011117056A1 (en) * | 2010-03-25 | 2011-09-29 | Osram Opto Semiconductors Gmbh | Radiation-emitting semiconductor component and method for producing a radiation-emitting semiconductor component |
| EP2393129A3 (en) * | 2010-06-01 | 2013-10-02 | Samsung Electronics Co., Ltd. | Light-emitting devices and methods of manufacturing the same |
| KR20110132135A (en) * | 2010-06-01 | 2011-12-07 | 삼성전자주식회사 | Light emitting device and manufacturing method |
| KR101643757B1 (en) * | 2010-06-01 | 2016-07-29 | 삼성전자주식회사 | Light emitting device and method of manufacturing the same |
| US8674339B2 (en) | 2010-06-01 | 2014-03-18 | Samsung Electronics Co., Ltd | Light-emitting devices and methods of manufacturing the same |
| US8669125B2 (en) | 2010-06-18 | 2014-03-11 | Glo Ab | Nanowire LED structure and method for manufacturing the same |
| US9312442B2 (en) | 2010-06-18 | 2016-04-12 | Glo Ab | Nanowire structure and method for manufacturing the same |
| CN103098237A (en) * | 2010-06-18 | 2013-05-08 | Glo公司 | Nanowire led structure and method for manufacturing the same |
| US9117990B2 (en) | 2010-06-18 | 2015-08-25 | Glo Ab | Nanowire LED structure and method for manufacturing the same |
| JP2012089900A (en) * | 2010-09-01 | 2012-05-10 | Sharp Corp | Light-emitting device and method of manufacturing the same |
| US9190590B2 (en) | 2010-09-01 | 2015-11-17 | Sharp Kabushiki Kaisha | Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode |
| US20120056237A1 (en) * | 2010-09-03 | 2012-03-08 | Samsung Electronics Co., Ltd. | Semiconductor compound structure and method of fabricating the same using graphene or carbon nanotubes, and semiconductor device including the semiconductor compound structure |
| US9748094B2 (en) * | 2010-09-03 | 2017-08-29 | Samsung Electronics Co., Ltd. | Semiconductor compound structure and method of fabricating the same using graphene or carbon nanotubes, and semiconductor device including the semiconductor compound structure |
| US8350251B1 (en) | 2011-09-26 | 2013-01-08 | Glo Ab | Nanowire sized opto-electronic structure and method for manufacturing the same |
| US9419183B2 (en) | 2011-09-26 | 2016-08-16 | Glo Ab | Nanowire sized opto-electronic structure and method for manufacturing the same |
| JP2014530504A (en) * | 2011-09-26 | 2014-11-17 | グロ アーベーGlo Ab | Nanowire-sized photoelectric structure and method of manufacturing the same |
| WO2013049008A3 (en) * | 2011-09-26 | 2013-05-23 | Glo Ab | Nanowire sized opto-electronic structure and method for manufacturing the same |
| US8937295B2 (en) | 2011-09-26 | 2015-01-20 | Glo Ab | Nanowire sized opto-electronic structure and method for manufacturing the same |
| KR101944327B1 (en) * | 2011-09-26 | 2019-01-31 | 글로 에이비 | Nanowire sized opto-electronic structure and method for manufacturing the same |
| EP2761678A4 (en) * | 2011-09-26 | 2015-06-17 | Glo Ab | OPTOELECTRONIC STRUCTURE OF THE SIZE OF A NANOFIL AND ITS MANUFACTURING METHOD |
| KR20140067076A (en) * | 2011-09-26 | 2014-06-03 | 글로 에이비 | Nanowire sized opto-electronic structure and method for manufacturing the same |
| EP2709171A3 (en) * | 2012-09-18 | 2016-04-06 | Stanley Electric Co., Ltd. | LED array |
| US10770506B2 (en) | 2012-10-04 | 2020-09-08 | Osram Oled Gmbh | Method for producing a light-emitting diode display and light-emitting diode display |
| US9859330B2 (en) | 2012-10-04 | 2018-01-02 | Osram Opto Semiconductor Gmbh | Method for producing a light-emitting diode display and light-emitting diode display |
| WO2014053445A1 (en) * | 2012-10-04 | 2014-04-10 | Osram Opto Semiconductors Gmbh | Method for producing a light-emitting diode display and light-emitting diode display |
| US9231161B2 (en) | 2012-10-26 | 2016-01-05 | Glo Ab | Nanowire LED structure and method for manufacturing the same |
| US9178106B2 (en) | 2012-10-26 | 2015-11-03 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| WO2014066379A1 (en) | 2012-10-26 | 2014-05-01 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| US10038115B2 (en) | 2012-10-26 | 2018-07-31 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| US9722135B2 (en) | 2012-10-26 | 2017-08-01 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| US9076945B2 (en) | 2012-10-26 | 2015-07-07 | Glo Ab | Nanowire LED structure and method for manufacturing the same |
| US9166106B2 (en) | 2012-10-26 | 2015-10-20 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| US9799796B2 (en) | 2012-10-26 | 2017-10-24 | Glo Ab | Nanowire sized opto-electronic structure and method for modifying selected portions of same |
| US9899418B2 (en) | 2012-12-14 | 2018-02-20 | Osram Opto Semiconductors Gmbh | Display device and method for producing a display device |
| WO2014090605A1 (en) * | 2012-12-14 | 2014-06-19 | Osram Opto Semiconductors Gmbh | Display device and method for producing a display device |
| US10079331B2 (en) | 2013-03-15 | 2018-09-18 | Glo Ab | High index dielectric film to increase extraction efficiency of nanowire LEDs |
| US9196792B2 (en) | 2013-03-15 | 2015-11-24 | Glo Ab | Nanowire LED structure with decreased leakage and method of making same |
| US10453991B2 (en) | 2013-03-28 | 2019-10-22 | Aledia | Light-emitting device comprising active nanowires and contact nanowires and method of fabrication |
| WO2014154880A1 (en) * | 2013-03-28 | 2014-10-02 | Aledia | Electroluminescent device comprising active nanowires and contact nanowires and production method |
| FR3004006A1 (en) * | 2013-03-28 | 2014-10-03 | Aledia | ACTIVE NANOWIRE ELECTROLUMINESCENT DEVICE AND CONTACT NANOWIRES AND METHOD OF MANUFACTURE |
| US9196787B2 (en) | 2013-06-07 | 2015-11-24 | Glo Ab | Nanowire LED structure with decreased leakage and method of making same |
| US9640723B2 (en) | 2013-06-18 | 2017-05-02 | Glo Ab | Insulating layer for planarization and definition of the active region of a nanowire device |
| US9142745B2 (en) | 2013-08-27 | 2015-09-22 | Glo Ab | Packaged LED device with castellations |
| US8999737B2 (en) | 2013-08-27 | 2015-04-07 | Glo Ab | Method of making molded LED package |
| US9257616B2 (en) | 2013-08-27 | 2016-02-09 | Glo Ab | Molded LED package and method of making same |
| US10937777B2 (en) | 2013-09-30 | 2021-03-02 | Aledia | Opto-electronic device with light-emitting diodes |
| US20160197064A1 (en) * | 2013-09-30 | 2016-07-07 | Aledia | Optoelectronic device comprising light-emitting diodes |
| US9720163B2 (en) | 2013-12-09 | 2017-08-01 | Glo Ab | Optical display system |
| US9972750B2 (en) | 2013-12-13 | 2018-05-15 | Glo Ab | Use of dielectric film to reduce resistivity of transparent conductive oxide in nanowire LEDs |
| US9966503B2 (en) | 2013-12-19 | 2018-05-08 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component |
| WO2015091754A1 (en) * | 2013-12-19 | 2015-06-25 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component |
| US9660139B2 (en) | 2014-03-27 | 2017-05-23 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
| US20150280062A1 (en) * | 2014-03-27 | 2015-10-01 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
| US9287446B2 (en) * | 2014-03-27 | 2016-03-15 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
| US10515580B2 (en) | 2014-07-31 | 2019-12-24 | Facebook Technologies, Llc | Colour ILED display on silicon |
| US10984705B2 (en) | 2014-07-31 | 2021-04-20 | Facebook Technologies, Llc | Colour ILED display on silicon |
| US11244605B2 (en) | 2014-07-31 | 2022-02-08 | Facebook Technologies, Llc | Colour ILED display on silicon |
| WO2016016460A1 (en) * | 2014-07-31 | 2016-02-04 | Infiniled Limited | A colour iled display on silicon |
| US11468830B2 (en) | 2014-07-31 | 2022-10-11 | Meta Platforms Technologies, Llc | Colour ILED display on silicon |
| EP3826055A1 (en) * | 2014-07-31 | 2021-05-26 | Facebook Technologies, LLC | A colour iled display on silicon |
| US10483319B2 (en) | 2014-08-08 | 2019-11-19 | Glo Ab | Pixilated display device based upon nanowire LEDs and method for making the same |
| US10217911B2 (en) | 2014-09-26 | 2019-02-26 | Glo Ab | Monolithic image chip for near-to-eye display |
| US9620559B2 (en) | 2014-09-26 | 2017-04-11 | Glo Ab | Monolithic image chip for near-to-eye display |
| US9917232B2 (en) | 2014-09-26 | 2018-03-13 | Glo Ab | Monolithic image chip for near-to-eye display |
| WO2016102610A1 (en) * | 2014-12-23 | 2016-06-30 | Aledia | Electroluminescent light source with an adjusted or adjustable luminance parameter and method for adjusting a luminance parameter of the electroluminescent light source |
| FR3030995A1 (en) * | 2014-12-23 | 2016-06-24 | Aledia | ELECTROLUMINESCENT LIGHT SOURCE WITH ADJUSTABLE OR ADJUSTABLE LUMINANCE LUMINANCE PARAMETER AND METHOD FOR ADJUSTING A LUMINANCE PARAMETER OF THE LIGHT EMITTING LIGHT SOURCE |
| US10163736B2 (en) | 2014-12-23 | 2018-12-25 | Aledia | Electroluminescent light source with an adjusted or adjustable luminance parameter and method for adjusting a luminance parameter of the electroluminescent light source |
| US10361249B2 (en) | 2015-05-29 | 2019-07-23 | Osram Opto Semiconductors Gmbh | Display device having a plurality of pixels that can be operated separately from one another |
| WO2016192939A1 (en) * | 2015-05-29 | 2016-12-08 | Osram Opto Semiconductors Gmbh | Display device having a plurality of pixels that can be operated separately from one another |
| JP2018520504A (en) * | 2015-05-29 | 2018-07-26 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH | Display device |
| CN107636832A (en) * | 2015-05-29 | 2018-01-26 | 欧司朗光电半导体有限公司 | Display devices with multiple pixels that can operate independently of each other |
| FR3039881A1 (en) * | 2015-08-07 | 2017-02-10 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| FR3039880A1 (en) * | 2015-08-07 | 2017-02-10 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| FR3039882A1 (en) * | 2015-08-07 | 2017-02-10 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| WO2017025440A1 (en) * | 2015-08-07 | 2017-02-16 | Valeo Vision | Lighting and/or signalling device for a motor vehicle |
| EP3127747A1 (en) * | 2015-08-07 | 2017-02-08 | Valeo Vision | Lighting and/or signalling device for a motor vehicle |
| WO2017025439A1 (en) * | 2015-08-07 | 2017-02-16 | Valeo Vision | Lighting and/or signalling device for a motor vehicle |
| WO2017025444A1 (en) * | 2015-08-07 | 2017-02-16 | Valeo Vision | Lighting and/or signalling device for a motor vehicle |
| US20180252378A1 (en) * | 2015-09-14 | 2018-09-06 | Valeo Vision | Lighting module for motor vehicle |
| US10400971B2 (en) | 2015-09-14 | 2019-09-03 | Valeo Vision | Lighting module with dioptric interface for motor vehicle |
| WO2017046031A1 (en) * | 2015-09-14 | 2017-03-23 | Valeo Vision | Lighting module for motor vehicle |
| FR3041074A1 (en) * | 2015-09-14 | 2017-03-17 | Valeo Vision | LIGHTING MODULE FOR MOTOR VEHICLE |
| FR3041062A1 (en) * | 2015-09-15 | 2017-03-17 | Valeo Vision | LUMINOUS BODY, LAMP COMPRISING SUCH A LUMINOUS BODY, AND LUMINOUS DEVICE COMPRISING SUCH A LAMP |
| WO2017046160A1 (en) * | 2015-09-15 | 2017-03-23 | Valeo Vision | Luminous body, lamp comprising such a luminous body and luminous device comprising such a lamp |
| FR3041576A1 (en) * | 2015-09-25 | 2017-03-31 | Valeo Vision | DEVICE AND METHOD FOR CONFERING DIFFERENT WHITE COLORS TO A BRIGHT BEAM |
| FR3041575A1 (en) * | 2015-09-25 | 2017-03-31 | Valeo Vision | LUMINOUS DEVICE COMPRISING A LIGHT SOURCE WITH STICKS WITH DIFFERENT COLOR AREAS |
| WO2017050727A1 (en) * | 2015-09-25 | 2017-03-30 | Valeo Vision | Device and method for imparting different white colours to a light beam |
| WO2017050756A1 (en) * | 2015-09-25 | 2017-03-30 | Valeo Vision | Light device including a light source comprising rods with zones of different colours |
| DE102015121554A1 (en) * | 2015-12-10 | 2017-06-14 | Osram Opto Semiconductors Gmbh | Process for the production of optoelectronic semiconductor chips and optoelectronic semiconductor chip |
| DE102015121554B4 (en) | 2015-12-10 | 2022-01-13 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Process for producing optoelectronic semiconductor chips and optoelectronic semiconductor chip |
| FR3048066A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | LUMINOUS DEVICE WITH A LUMINOUS LIGHT SOURCE FOR DIFFERENT PHOTOMETRIC FUNCTIONS |
| EP3210828A1 (en) * | 2016-02-24 | 2017-08-30 | Valeo Vision | Lighting system for the passenger compartment of a motor vehicle |
| FR3047946A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | READER, IN PARTICULAR FOR THE CABINET OF A MOTOR VEHICLE |
| FR3047941A1 (en) * | 2016-02-24 | 2017-08-25 | Valeo Vision | LIGHTING SYSTEM FOR THE CABIN OF A MOTOR VEHICLE |
| US10399487B2 (en) | 2016-02-24 | 2019-09-03 | Valeo Vision | Lighting system for motor vehicle passenger compartment |
| EP3214660A1 (en) * | 2016-03-02 | 2017-09-06 | Valeo Vision | Semiconductor light source and driver assistance system for motor vehicle comprising such a source |
| US10100997B2 (en) | 2016-03-02 | 2018-10-16 | Valeo Vision | Semiconductor light source and driving aid system for a motor vehicle comprising such a source |
| FR3048552A1 (en) * | 2016-03-02 | 2017-09-08 | Valeo Vision | SEMICONDUCTOR LIGHT SOURCE AND DRIVING ASSISTANCE SYSTEM FOR MOTOR VEHICLE HAVING SUCH A SOURCE |
| US10600354B2 (en) | 2016-04-22 | 2020-03-24 | Glo Ab | Small pitch direct view display and method of making thereof |
| FR3053434A1 (en) * | 2016-06-30 | 2018-01-05 | Valeo Vision | WHITE LIGHT EMITTING MODULE WITH ENRICHED SPECTRUM |
| WO2018001911A1 (en) * | 2016-06-30 | 2018-01-04 | Valeo Vision | Module for emitting white light with enhanced spectrum |
| FR3053439A1 (en) * | 2016-07-01 | 2018-01-05 | Valeo Vision | LUMINOUS DEVICE CAPABLE OF GENERATING A FINE PIXEL SOURCE |
| WO2018002252A1 (en) * | 2016-07-01 | 2018-01-04 | Valeo Vision | Light device suitable for generating a fine pixel source |
| US11162657B2 (en) | 2016-07-01 | 2021-11-02 | Valeo Vision | Light device capable of generating a source with fine pixels |
| WO2018007382A1 (en) * | 2016-07-05 | 2018-01-11 | Valeo Vision | Luminous device projecting an image from a radiant surface having a different shape |
| FR3053765A1 (en) * | 2016-07-05 | 2018-01-12 | Valeo Vision | LIGHT DEVICE PROJECTING AN IMAGE FROM A RADIANT SURFACE OF DIFFERENT SHAPE |
| WO2018007385A1 (en) * | 2016-07-05 | 2018-01-11 | Valeo Vision | Light device with a light source having a lighting area and a communication area |
| FR3053759A1 (en) * | 2016-07-05 | 2018-01-12 | Valeo Vision | LUMINOUS DEVICE WITH A LIGHT SOURCE HAVING A LIGHTING ZONE AND A COMMUNICATING ZONE |
| FR3053758A1 (en) * | 2016-07-05 | 2018-01-12 | Valeo Vision | LIGHTING AND / OR SIGNALING DEVICE FOR MOTOR VEHICLE |
| EP3273147A1 (en) * | 2016-07-22 | 2018-01-24 | Valeo Vision | Land vehicle light module |
| FR3054292A1 (en) * | 2016-07-22 | 2018-01-26 | Valeo Vision | LIGHT MODULE OF LAND VEHICLE |
| US10516087B2 (en) | 2016-07-22 | 2019-12-24 | Valeo Vision | Terrestrial vehicle light-emitting module |
| WO2018050355A1 (en) * | 2016-09-15 | 2018-03-22 | Valeo Vision | Wiring for a high-resolution light source |
| US11503697B2 (en) | 2016-09-15 | 2022-11-15 | Valeo Vision | Wiring of a high resolution light source |
| FR3055943A1 (en) * | 2016-09-15 | 2018-03-16 | Valeo Vision | WIRING A HIGH RESOLUTION LIGHT SOURCE |
| FR3058500A1 (en) * | 2016-11-09 | 2018-05-11 | Valeo Vision | SEMICONDUCTOR LIGHT SOURCE AND LUMINOUS DEVICE FOR A MOTOR VEHICLE COMPRISING SUCH A SOURCE |
| FR3061535A1 (en) * | 2017-01-02 | 2018-07-06 | Valeo Vision | MULTICOLOR LED LIGHT SOURCE WITH STICKERS |
| FR3061542A1 (en) * | 2017-01-02 | 2018-07-06 | Valeo Vision | LIGHTING AND / OR LINEAR SIGNALING DEVICE FOR MOTOR VEHICLE |
| US11158993B2 (en) | 2017-09-15 | 2021-10-26 | Seiko Epson Corporation | Light-emitting device, method for manufacturing the same, and projector |
| EP3495719A1 (en) * | 2017-12-05 | 2019-06-12 | LG Electronics Inc. | Lamp for vehicle and vehicle |
| US10731814B2 (en) | 2017-12-05 | 2020-08-04 | Zkw Group Gmbh | Lamp for vehicle and vehicle |
| US10731813B2 (en) | 2018-01-05 | 2020-08-04 | Zkw Group Gmbh | Lamp for vehicle and vehicle |
| EP3508778A1 (en) * | 2018-01-05 | 2019-07-10 | LG Electronics Inc. | Lamp for vehicle and vehicle |
| EP4303929A1 (en) * | 2022-07-04 | 2024-01-10 | Samsung Electronics Co., Ltd. | Light-emitting device, display apparatus including the same, and method of manufacturing the same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2011527519A (en) | 2011-10-27 |
| US9595649B2 (en) | 2017-03-14 |
| US20190221731A1 (en) | 2019-07-18 |
| KR20110039313A (en) | 2011-04-15 |
| EP2297794A4 (en) | 2015-01-21 |
| US20170279017A1 (en) | 2017-09-28 |
| US10217917B2 (en) | 2019-02-26 |
| CN102089893A (en) | 2011-06-08 |
| EP2297794B1 (en) | 2017-09-06 |
| JP5836122B2 (en) | 2015-12-24 |
| US11605758B2 (en) | 2023-03-14 |
| US20140239327A1 (en) | 2014-08-28 |
| US8669574B2 (en) | 2014-03-11 |
| EP2297794A1 (en) | 2011-03-23 |
| US20110254034A1 (en) | 2011-10-20 |
| CN103022282B (en) | 2016-02-03 |
| CN102089893B (en) | 2013-02-06 |
| CN103022282A (en) | 2013-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11605758B2 (en) | Display device including nanostructured LEDs connected in parallel | |
| US20250294937A1 (en) | Light emitting diode | |
| US9312442B2 (en) | Nanowire structure and method for manufacturing the same | |
| US8256929B2 (en) | Efficient LED array | |
| CN111164753B (en) | Semiconductor device and headlamp including the same | |
| US9780260B2 (en) | Semiconductor light emitting device and manufacturing method of the same | |
| TW201322490A (en) | Nanowire size photoelectric structure and manufacturing method thereof | |
| US9627584B2 (en) | Light emitting device and light emitting device package | |
| CN118339665A (en) | Die design featuring application-driven brightness distribution | |
| HK1156439A (en) | A nanostructured led | |
| KR101728545B1 (en) | Light emitting device, method for fabricating the light emitting device and light emitting device package | |
| KR20140062216A (en) | Light emittng device | |
| US20170162751A1 (en) | Optoelectronic device and method for manufacturing the same | |
| HK1181190A (en) | Nanowire led structure and method for manufacturing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980126426.9 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09803213 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2009803213 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009803213 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2011517386 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13002906 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20117002609 Country of ref document: KR Kind code of ref document: A |