[go: up one dir, main page]

WO2009135031A1 - Substituted il-15 - Google Patents

Substituted il-15 Download PDF

Info

Publication number
WO2009135031A1
WO2009135031A1 PCT/US2009/042355 US2009042355W WO2009135031A1 WO 2009135031 A1 WO2009135031 A1 WO 2009135031A1 US 2009042355 W US2009042355 W US 2009042355W WO 2009135031 A1 WO2009135031 A1 WO 2009135031A1
Authority
WO
WIPO (PCT)
Prior art keywords
ser
ala
nnn
group
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2009/042355
Other languages
French (fr)
Inventor
David F. Nellis
Dennis F. Michiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Health and Human Services
Original Assignee
US Department of Health and Human Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Health and Human Services filed Critical US Department of Health and Human Services
Publication of WO2009135031A1 publication Critical patent/WO2009135031A1/en
Priority to US12/915,363 priority Critical patent/US8415456B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5443IL-15
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Interleukin-15 is a vertebrate immune system modulating protein (cytokine) that stimulates the proliferation and differentiation of T-cells.
  • cytokine a vertebrate immune system modulating protein
  • IL- 15 is useful for the treatment of any of a variety of conditions such as, e.g., cancer.
  • the ex-vivo manufacture of IL- 15, however, can be problematic, and there is a need in the art for improved IL- 15 products.
  • the invention provides substituted IL- 15 amino acid sequences that reduce or eliminate deamidation, and the invention also provides substituted gene sequences that encode the substituted IL- 15 amino acid sequences.
  • the substituted IL- 15 amino acid sequences advantageously facilitate the refolding, purification, storage, characterization, and clinical testing of IL- 15.
  • the invention provides an amino acid sequence comprising
  • the invention provides a nucleic acid sequence comprising SEQ ID NO:2 or SEQ ID NO:4.
  • a pharmaceutical composition according to another embodiment of the invention comprises SEQ ID NO:1 or SEQ ID NO:3.
  • an embodiment of the invention provides a method of treating a condition in a mammalian host, comprising administering to the host an amino acid sequence comprising SEQ ID NO:1 or SEQ ID NO:3.
  • Isolated cells and expression vectors comprising SEQ ID NO:2 or SEQ ID NO:4 are also provided according to an embodiment of the invention. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • Figure 1 shows a chromatogram from a Reverse Phase High Performance Liquid Chromatography (RP-HPLC) separation of an unsubstituted IL- 15 preparation after partial purification by preparative hydrophobic interaction chromatography (HIC Tail Pool) (YMC- C4 column, 4.6 mm x 150 mm, 5- ⁇ m beads, 20°C column temperature, at 0.9 mL/minute flow rate, load at 0% ethanol, elution by 42-77% linear gradient of ethanol in water with 2OmM ammonium acetate: acetate, 0.2 mM CaCl 2 buffer, pH approximately 5, conducted over 21 column volumes).
  • RP-HPLC Reverse Phase High Performance Liquid Chromatography
  • Figure 2 shows chromatograms from an RP-HPLC analysis of respective fractions obtained from the separation shown in Figure 1 (Waters X-Bridge BEH300 column, 4.6 mm x 250 mm, 3.5 ⁇ m beads, 20 0 C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion- pairing agent, pH approximately 2, conducted over 12 column volumes).
  • Figure 3 shows chromatograms from an RP-HPLC analysis of respective fractions obtained from the separation shown in Figure 1 (Waters YMC-C4 column, 4.6 mm x 150 mm, 5- ⁇ m beads, 20 0 C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion- pairing agent, pH approximately 2, conducted over 22 column volumes).
  • Figure 4 shows chromatograms from an RP-HPLC analysis of two unsubstituted IL- 15 preparations of a process sample following purification by preparative hydrophobic interaction chromatography (HIC Tail Pool) and a process sample following purification by preparative ion-exchange chromatography (Source 15Q Tail Pool) (analysis over Waters YMC-C4 column, 4.6 mm x 150 mm, 5- ⁇ m beads, 20°C column temperature, 0.9 mL/minute flow rate, load at 0% acetonitrile, elution by 50-72% linear gradient of ethanol in water with 20 mM 20 mM ammonium acetate: acetate, 0.2mM CaCl 2 buffer, pH approximately 5, conducted over 21 column volumes).
  • HIC Tail Pool preparative hydrophobic interaction chromatography
  • Source 15Q Tail Pool Source 15Q Tail Pool
  • Figure 5 shows a chromatogram from a ProPac Anion Exchange-HPLC analysis of two unsubstituted IL- 15 preparations of an upstream process sample following purification by preparative hydrophobic interaction chromatography (HIC Tail Pool; Panel 2) and a process sample following purification by preparative ion-exchange chromatography (Source 15Q Tail Pool; Panel 1) (analysis over Waters ProPac-SAX-10, elution by linear gradient from 7-700 mM NaCl in a mobile phase containing ⁇ 10 mM Bis-Tris-Propane, 30% ethanol buffer, pH approximately 7.4, measured prior to ethanol addition).
  • Figure 6 shows chromatograms from an RP-HPLC analysis of an unsubstituted IL- 15 preparation before and after methylation of deamidation-produced isoaspartate residues using Protein Isoaspartyl Methyltransferase (PIMT) enzyme in the presence of the methyl group donor S-Andenosyl-L-Methionine.
  • PIMT Protein Isoaspartyl Methyltransferase
  • Figure 7 shows an RP- HPLC analysis of peptides resulting from a chymotrypsin digest of deamidation enriched human IL-15.
  • Figure 8 shows a wide mass-range view of the fragmentation mass spectrum obtained from MS/MS analysis of a deamidation enriched IL- 15 chymotryptic peptide having a mass to charge ratio of 1101.80 atomic mass units and a singly-protonated monoisotopic molecular weight of 3303.4 atomic mass units that eluted at 16.3 minutes in Figure 7.
  • Figure 9 shows a narrow mass-range view of the fragmentation mass spectrum obtained from MS/MS analysis of a deamidation enriched IL- 15 chymotryptic peptide having a mass to charge ratio of 1101.80 atomic mass units and a singly-protonated monoisotopic molecular weight of 3303.4 atomic mass units that eluted at 16.3 minutes in Figure 7.
  • the invention provides substituted IL- 15 amino acid sequences that reduce or eliminate deamidation, and also provides substituted gene sequences that encode the substituted IL- 15 amino acid sequences.
  • the substituted IL- 15 amino acid sequences advantageously facilitate the refolding, purification, storage, characterization, and clinical testing of IL- 15.
  • the IL- 15 products according to the invention may have a chromatographic profile that shows a reduced presence of degradation by-products.
  • one embodiment of the invention provides an amino acid sequence comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
  • Another embodiment of the invention provides an amino acid sequence comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
  • Still another embodiment of the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
  • Another embodiment of the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
  • Another embodiment of the invention provides a method of treating a condition in a mammalian host, comprising administering to the host an amino acid sequence comprising SEQ ID NO:1 or a pharmaceutical composition comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
  • Another embodiment of the invention provides a method of treating a condition in a mammalian host, comprising administering to the host an amino acid sequence comprising SEQ ID NO:3 or a pharmaceutical composition comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
  • Still another embodiment of the invention provides an isolated or purified amino acid sequence comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
  • Another embodiment of the invention provides an isolated or purified amino acid sequence comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
  • Another embodiment of the invention provides a nucleic acid sequence comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
  • Another embodiment of the invention provides a nucleic acid sequence comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
  • Another embodiment of the invention provides an isolated or purified nucleic acid sequence comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
  • Another embodiment of the invention provides an isolated or purified nucleic acid sequence comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
  • Another embodiment of the invention provides an isolated cell comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
  • Another embodiment of the invention provides an isolated cell comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
  • Another embodiment of the invention provides an expression vector comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
  • Still another embodiment of the invention provides an expression vector comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn. [0035]
  • the nucleic acids of the invention may, advantageously, be transformed into a host cell, such as a bacterial cell, to produce the amino acid sequences of the invention.
  • deamidation of unsubstituted IL- 15 can form degradation by-products of IL-15 when unsubstituted IL-15 is manufactured in vitro.
  • deamidation of Asn71, Asn72, and/or Asn77 of SEQ ID NO: 7 may lead to degradation by-products that may reduce the purity of the yield of the manufactured IL-15.
  • IL-15 when IL-15 is expressed in mammalian cells, asparagine residues can be protected from deamidation by natural glycosylation that shields the asparagines from deamidation or by rapid, native refolding into conformations less susceptible to asparagine side-chain attack.
  • IL-15 when IL-15 is expressed in bacterial systems and isolated by solubilizing the inclusion body in, e.g., guanidinium hydrochloride or urea, native glycosylation and refolding may not occur to protect the asparagines from deamidation. Accordingly, solubilized, in vzYr ⁇ -produced IL-15 may be susceptible to deamidation.
  • Asn77 of SEQ ID NO: 7 may be most susceptible to deamidation, and Asn71 and Asn72 may also be susceptible to deamidation, based on the relative deamidation rates of the Asn residues.
  • Deamidation rates may be estimated and expressed as half time (X 1 A) in days. For example, Robinson, N.E. and Robinson, A.B.
  • Asn71 and Asn72 of SEQ ID NO:1 may have a half time of approximately 20 X 1 A and approximately 15.4 X 1 A, respectively.
  • Asn71 and Asn72 of SEQ ID NO:7 may, therefore, also be susceptible to deamidation, but to a lesser degree than Asn77.
  • the degradation by-products formed by the deamidation of IL-15 may be, therefore, heterogeneous in terms of charge, polarity, and hydrophobicity.
  • These degradation by-products of IL- 15 complicate manufacture and characterization of the IL- 15 (SEQ ID NO:7) product, and may lead to the presence of impurities such as host cell proteins, mis- folded proteins or aggregates in an IL- 15 preparation.
  • preparations including deamidated IL- 15 have undesireably complex chromatographic elution profiles including, e.g., broad and split peaks.
  • the deamidation of IL-15 may be observed as a close-doublet heterogeneity (at high pH, e.g., approximately 5.0 or higher) or as a triplet heterogeneity (at low pH, e.g., approximately 2.0 or lower).
  • These deamidation by-products may be found in approximately 30 to 80% of refolded IL-15 molecules.
  • the invention provides substituted IL-15 amino acid sequences, and also provides substituted gene sequences that encode the substituted IL-15 amino acid sequences.
  • the substituted amino acid sequences SEQ ID NO:1 and SEQ ID NO:3 correspond with the native, unsubstituted IL-15 SEQ ID NO: 7 with SEQ ID NO:1 and SEQ ID NO: 3 having at least one substitution when compared to SEQ ID NO:7.
  • one or both of the native Asn77 and Gly78 of SEQ ID NO:7 is substituted, and either or both of the native Asn71 and Asn72 of SEQ ID NO:7 may be substituted or may be unsubstituted.
  • the invention provides an amino acid sequence comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
  • SEQ ID NO:1 generally corresponds to the native, unsubstituted IL-15 amino acid sequence SEQ ID NO:7 with the exception that in SEQ ID NO:1, at least Asn77 is substituted, and Gly78, Asn71, and Asn72 substituted or unsubstituted.
  • the amino acid sequence comprising SEQ ID NO:1 may be generated from, for example, nucleic acid sequences comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn, as set forth, for example, in Table 2 below.
  • SEQ ID NO:2 generally corresponds to the native, unsubstituted IL- 15 nucleic acid sequence SEQ ID NO:8 with the exception that in SEQ ID NO:2, at least NNN at base pairs 229 to 231 is substituted, and NNN at base pairs 232 to 234, NNN at base pairs 211 to 213, and NNN at base pairs 214 to 216 may be substituted or unsubstituted.
  • the invention also provides an amino acid sequence comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
  • SEQ ID NO: 3 generally corresponds to the native, unsubstituted IL- 15 amino acid sequence SEQ ID NO:7 with the exception that in SEQ ID NO:3, at least Gly78 is substituted, and Asn77, Asn71, and Asn72 may be substituted or unsubstituted.
  • the amino acid sequence comprising SEQ ID NO: 3 may be generated from nucleic acid sequences comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn, as set forth, for example, in Table 2 below.
  • SEQ ID NO:4 generally corresponds to the native, unsubstituted IL- 15 nucleic acid sequence SEQ ID NO:8 with the exception that in SEQ ID NO:4, at least NNN at base pairs 232 to 234 is substituted, and NNN at base pairs 229 to 231, NNN at base pairs 211 to 213, and NNN at base pairs 214 to 216 may be substituted or unsubstituted.
  • primers may be more effective when the genetic substitution removes an A/T and replaces it with C/G.
  • genetic substitutions that require a single point mutation may be preferred over genetic substitutions that require a double or triple point mutation, and genetic substitutions that require a double point mutation may be preferable to genetic substitutions that require a triple point mutation.
  • Xaa77 is substituted with GIn, Ser, Lys, Ala, or GIu.
  • Xaa77 is Ser or Ala. These substitutions advantageously prevent deamidation of Asn77.
  • Xaa77 is Ser.
  • Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO: 3 may be GIn.
  • the substitution of Asn for GIn (Xaa77 is GIn) is advantageously structurally conservative.
  • the GIn substitution (Xaa77 is GIn) adds a methylene group to the side chain while retaining the amide side chain terminus.
  • substitutions of Xaa77 with GIn in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229 to 231 is any codon that encodes GIn, as shown in Table 2.
  • NNN at base pairs 229 to 231 is CAG.
  • Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be Ser.
  • the substitution of Asn for Ser (Xaa is Ser) advantageously replaces the uncharged, double h-bond donor with a slightly smaller, uncharged, single h-bond donor.
  • Ser is also, advantageously, minimally immunogenic.
  • substitutions of Xaa77 with Ser in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes Ser, as shown in Table 2.
  • NNN at base pairs 229 to 231 is AGT, which requires only a single point mutation.
  • Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be Lys.
  • the substitution of Asn for Lys (Xaa77 is Lys) in SEQ ID NO:1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 or SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes Lys, as shown in Table 2.
  • NNN at base pairs 229-231 is AAA or AAG, as shown in Table 2.
  • Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be Ala.
  • This substitution of Asn for Ala (Xaa77 is Ala) replaces the uncharged, double-h bond donor with a small, uncharged, non-reactive side chain. Ala is also, advantageously, minimally immunogenic.
  • substitution of Xaa77 with Ala in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes Ala, as shown in Table 2.
  • NNN at positions 229-231 is GCT.
  • Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be GIu. This substitution introduces a negative charge at position 77. Without being bound to a particular theory, it is believed that introducing a negative charge at position 77 may, advantageously, increase IL- 15 solubility by increasing same-charge repulsion under physiological conditions.
  • the substitution of Xaa77 in SEQ ID NO: 1 and SEQ ID NO:3 with GIu may be may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes GIu, as shown in Table 2.
  • NNN at base pairs 229-231 is GAG.
  • Gly78 of SEQ ID NO:7 may make the deamidation of Asn77 possible by making the peptide backbone flexible at the site of the side-chain attack of Asn77. Accordingly, the replacement of Xaa78 of SEQ ID NO:1 and/or SEQ ID NO:3 with sterically hindering amino acids Ala or Ser may reduce or eliminate deamidation of Asn77. Ala and Ser are, advantageously, minimally immunogenic and also minimize the alteration of the secondary structure of the protein.
  • Xaa78 is Ser.
  • substitution of Xaa78 in SEQ ID NO: 1 and SEQ ID NO:3 with Ala may be may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 232-234 is any codon that encodes Ala.
  • the GGG codon at positions 232-234 may be substituted with GCT, GCA, GCC, or GCG, as shown in Table 2.
  • NNN at base pairs 232-234 is GCG.
  • NNN at base pairs 232-234 may be AGT, AGC, TCA, TCC, TCG, or TCT, as shown in Table 2.
  • NNN at base pairs 232-234 is AGC.
  • Xaa71 and Xaa72 of SEQ ID NO:1 and/or SEQ ID NO: 3 may be substituted with Ser or Ala.
  • additional substitutions may, advantageously, also prevent deamidation of Asn71 and Asn72, and may also be particularly advantageous for highly basic or heated solubilization conditions.
  • Xaa71 and/or Xaa72 is Ser.
  • substitutions of either or both of Xaa71 and Xaa72 with Ser in SEQ ID NO : 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 214-216 and/or 217-219 are/is any codon that encodes Ser.
  • NNN at base pairs 214-216 and/or 217-219 may be AGT, AGC, TCA, TCC, TCG, or TCT, as shown in Table 2.
  • NNN at base pairs 214-216 and/or 217-219 are AGC.
  • substitutions of either or both of Xaa71 and Xaa72 with Ala in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 214-216 and/or 217-219 are any codon that encodes Ala.
  • NNN at base pairs 214-216 and/or 217-219 may be GCT, GCA, GCC, or GCG, as shown in Table 2.
  • amino acid sequences SEQ ID NO: 1 and SEQ ID NO: 3 may optionally further include Met or the natural leader sequence SEQ ID NO:5 on the N-terminus.
  • SEQ ID NO:1 and SEQ ID NO: 3 further include the natural leader sequence SEQ ID NO: 5 on the N-terminus when expressed in mammalian cells.
  • SEQ ID NO: 1 and SEQ ID NO: 3 include Met on the N-terminus when expressed in bacterial cells.
  • the amino acid sequence may consist of SEQ ID NO:1 or SEQ ID NO:3.
  • the amino acid sequence may consist of SEQ ID NO:1 or SEQ ID NO:3 with Met or the natural leader sequence SEQ ID NO:5 on the N-terminus.
  • Nucleic acid sequences SEQ ID NO:2 and SEQ ID NO:4 may optionally further include the start codon ATG or SEQ ID NO:6 encoding the natural leader sequence SEQ ID NO:5 on the 5' end.
  • SEQ ID NO:2 and SEQ ID NO:4 further include SEQ ID NO: 6 encoding the natural leader sequence SEQ ID NO: 5 on the 5' end when expressed in mammalian cells.
  • SEQ ID NO:2 and SEQ ID NO:4 include the start codon ATG on the 5' end when expressed in bacterial cells.
  • the nucleic acid sequence may consist of SEQ ID NO:2 or SEQ ID NO:4.
  • the nucleic acid sequence may consist of SEQ ID NO:2 or SEQ ID NO:4 with the start codon ATG or SEQ ID NO: 6 encoding the natural leader sequence SEQ ID NO: 5 on the 5' end.
  • the invention also includes variants of the substituted amino acid sequences and nucleic acid sequences that encode variants of the substituted amino acid sequences.
  • variant as defined herein, includes any peptide which displays the functional aspects of the substituted IL- 15 amino acid sequences.
  • the phrase "conservative substitution” also includes the use of a chemically derivatized residue in place of a non-derivatized residue.
  • “Chemical derivative” refers to a subject polypeptide having one or more residues chemically derivatized by reaction of a functional side group.
  • Examples of such derivatized molecules include for example, those molecules in which free amino groups have been derivatized to form amine hydrochlorides, p-toluene sulfonyl groups, carbobenzoxy groups, t-butyloxycarbonyl groups, chloroacetyl groups or formyl groups.
  • Free carboxyl groups may be derivatized to form salts, methyl and ethyl esters or other types of esters or hydrazides.
  • Free hydroxyl groups may be derivatized to form O-acyl or O-alkyl derivatives.
  • the imidazole nitrogen of histidine may be derivatized to form N-im-benzylhistidine.
  • chemical derivatives those proteins or peptides which contain one or more naturally-occurring amino acid derivatives of the twenty standard amino acids. For example: 4-hydroxyproline may be substituted for proline; 5-hydroxylysine may be substituted for lysine; 3-methylhistidine may be substituted for histidine; homoserine may be substituted for serine; and ornithine may be substituted for lysine.
  • Proteins or polypeptides of the present invention also include any polypeptide having one or more additions and/or deletions or residues relative to the sequence of a polypeptide whose sequence is encoded in the DNA of IL-15.
  • the techniques may include, for example, in vitro mutagenesis, PCR, or any other genetic engineering methods known in the art which are suitable for making specific changes to a nucleic acid sequence.
  • Such techniques are described, for example, in In Vitro Mutagenesis Protocols, Braman, ed., 2002, Humana Press; in Sankaranarayanan, Protocols in Mutagenesis, 2001, Elsevier Science Ltd.; and in Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY 2001.
  • Any primers suitable for generating the specific substitutions described herein may be employed. Exemplary primers are set forth in Table 3 below.
  • the nucleic acids can be constructed based on chemical synthesis and/or enzymatic ligation reactions using procedures known in the art. See, for example, Sambrook et al.
  • a nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed upon hybridization (e.g., phosphorothioate derivatives and acridine substituted nucleotides).
  • modified nucleotides that can be used to generate the nucleic acids include, but are not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl- 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2- methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N ⁇ -substituted adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueo
  • the nucleic acids of the invention can be incorporated into any expression vector.
  • the invention provides expression vectors comprising any of the nucleic acids of the invention.
  • expression vector means a genetically- modified oligonucleotide or polynucleotide construct that permits the expression of an mRNA, protein, polypeptide, or peptide by a host cell, when the construct comprises a nucleotide sequence encoding the mRNA, protein, polypeptide, or peptide, and the vector is contacted with the cell under conditions sufficient to have the mRNA, protein, polypeptide, or peptide expressed within the cell.
  • the vectors of the invention are not naturally-occurring as a whole.
  • inventive expression vectors can comprise any type of nucleotides, including, but not limited to DNA and RNA, which can be single-stranded or double-stranded, synthesized or obtained in part from natural sources, and which can contain natural, non-natural or altered nucleotides.
  • the expression vectors can comprise naturally-occurring, non-naturally-occurring internucleotide linkages, or both types of linkages.
  • the non-naturally occurring or altered nucleotides or internucleotide linkages does not hinder the transcription or replication of the vector.
  • the expression vector of the invention can be any suitable expression vector, and can be used to transform or transfect any suitable host cell.
  • Suitable vectors include those designed for propagation and expansion or for expression or both, such as plasmids and viruses.
  • the vector can be selected from the group consisting of the pUC series (Fermentas Life Sciences), the pBluescript series (Stratagene, LaJoIIa, CA), the pET series (Novagen, Madison, WI), the pGEX series (Pharmacia Biotech, Uppsala, Sweden), and the pEX series (Clontech, Palo Alto, CA).
  • Bacteriophage vectors such as ⁇ GTIO, ⁇ GTl 1, ⁇ ZapII (Stratagene), ⁇ EMBL4, and ⁇ NMl 149, also can be used.
  • plant expression vectors include pBIOl, pBI101.2, pBI101.3, pBI121 and pBIN19 (Clontech).
  • animal expression vectors include pEUK-Cl, pMAM and pMAMneo (Clontech).
  • the expression vector is a plasmid, e.g., a bacterial plasmid.
  • the expression vectors of the invention can be prepared using standard recombinant DNA techniques described in, for example, Sambrook et al., supra. Constructs of expression vectors, which are circular or linear, can be prepared to contain a replication system functional in a prokaryotic or eukaryotic host cell. Replication systems can be derived, e.g., from CoIEl, 2 ⁇ plasmid, ⁇ , SV40, bovine papilloma virus, and the like.
  • the expression vector comprises regulatory sequences, such as transcription and translation initiation and termination codons, which are specific to the type of host (e.g., bacterium, fungus, plant, or animal) into which the vector is to be introduced, as appropriate and taking into consideration whether the vector is DNA- or RNA-based.
  • the expression vector can include one or more marker genes, which allow for selection of transformed or transfected hosts. Marker genes include biocide resistance, e.g., resistance to antibiotics, heavy metals, etc., complementation in an auxotrophic host to provide prototrophy, and the like.
  • Suitable marker genes for the inventive expression vectors include, for instance, neomycin/G418 resistance genes, hygromycin resistance genes, histidinol resistance genes, tetracycline resistance genes, and ampicillin resistance genes.
  • the expression vector can comprise a native or normative promoter operably linked to the nucleotide sequence encoding the substituted IL- 15 (including functional portions and functional variants thereof), or to the nucleotide sequence which is complementary to or which hybridizes to the nucleotide sequence encoding the substituted IL-15.
  • promoters e.g., strong, weak, is within the ordinary skill of the artisan.
  • the invention further provides a host cell comprising any of the expression vectors or nucleic acid sequences described herein.
  • the term "host cell” refers to any type of cell that can contain the inventive expression vector.
  • the host cell can be a eukaryotic cell, e.g., plant, animal, fungi, or algae, or can be a prokaryotic cell, e.g., bacteria or protozoa.
  • the host cell can be a cultured cell or a primary cell, i.e., isolated directly from an organism, e.g., a human.
  • the host cell can be an adherent cell or a suspended cell, i.e., a cell that grows in suspension.
  • Suitable host cells are known in the art and include, for instance, DH5 ⁇ E. coli cells, Chinese hamster ovarian cells, monkey VERO cells, COS cells, HEK293 cells, and the like.
  • the host cell is preferably a prokaryotic cell, e.g., a DH5 ⁇ cell.
  • Also provided by the invention is a population of cells comprising at least one host cell described herein.
  • the population of cells can be a heterogeneous population comprising the host cell comprising any of the expression vectors described, in addition to at least one other cell which does not comprise any of the expression vectors.
  • the population of cells can be a substantially homogeneous population, in which the population comprises mainly of host cells (e.g., consisting essentially of) comprising the expression vector.
  • the population also can be a clonal population of cells, in which all cells of the population are clones of a single host cell comprising an expression vector, such that all cells of the population comprise the expression vector.
  • the population of cells is a clonal population comprising host cells comprising an expression vector as described herein.
  • the inventive substituted IL- 15 (including functional portions and functional variants thereof), nucleic acids, expression vectors, host cells (including populations thereof), can be isolated and/or purified.
  • isolated means having been removed from its natural environment.
  • purified as used herein means having been increased in purity, wherein “purity” is a relative term, and not to be necessarily construed as absolute purity. For example, the purity can be at least about 50%, can be greater than 60%, 70% or 80%, or can be 100%.
  • the substituted IL- 15 amino acid sequences of the invention can be prepared using standard techniques known in the art such as those described in, for example, Current Protocols in Protein Science, John C. Wiley and Sons, 2007.
  • inventive substituted IL- 15, polypeptides, proteins (including functional portions and variants thereof), nucleic acids, expression vectors, host cells (including populations thereof), all of which are collectively referred to as "inventive substituted IL- 15 materials" hereinafter, can be formulated into a composition, such as a pharmaceutical composition.
  • the invention provides a pharmaceutical composition comprising any of the substituted IL-15, polypeptides, proteins, functional portions, functional variants, nucleic acids, expression vectors, host cells (including populations thereof), and a pharmaceutically acceptable carrier.
  • inventive pharmaceutical compositions containing any of the inventive substituted IL- 15 materials can comprise more than one inventive substituted IL-15 material, e.g., a polypeptide and a nucleic acid, or two or more different substituted IL- 15 sequences.
  • the pharmaceutical composition can comprise an inventive substituted IL- 15 material in combination with another pharmaceutically active agents or drugs, such as, for example, chemotherapeutic agents.
  • the carrier is a pharmaceutically acceptable carrier.
  • the carrier can be any of those conventionally used and is limited only by chemico-physical considerations, such as solubility and lack of reactivity with the active compound(s), and by the route of administration.
  • the pharmaceutically acceptable carriers described herein, for example, vehicles, adjuvants, excipients, and diluents, are well-known to those skilled in the art and are readily available to the public. It is preferred that the pharmaceutically acceptable carrier be one which is chemically inert to the active agent(s) and one which has no detrimental side effects or toxicity under the conditions of use.
  • the choice of carrier will be determined in part by the particular inventive substituted IL- 15 material, as well as by the particular method used to administer the inventive substituted IL- 15 material. Accordingly, there are a variety of suitable formulations of the pharmaceutical composition of the invention.
  • the formulation may be suitable for oral, aerosol, parenteral, subcutaneous, intravenous, intramuscular, intraarterial, intrathecal, interperitoneal, rectal, or vaginal administration. More than one route can be used to administer the inventive substituted IL- 15 materials, and in certain instances, a particular route can provide a more immediate and more effective response than another route.
  • the amount or dose of the inventive IL-15 product administered should be sufficient to effect, e.g., a therapeutic or prophylactic response, in the subject or animal over a reasonable time frame.
  • the dose of the inventive IL- 15 product should be sufficient to treat or prevent the condition in a period of up to 2 hours, from about 2 hours or longer, e.g., 12 to 24 or more hours, from the time of administration. In certain embodiments, the time period could be even longer.
  • the dose will be determined by the efficacy of the particular inventive IL- 15 product and the condition of the animal (e.g., human), as well as the body weight of the animal (e.g., human) to be treated.
  • the dose of the inventive IL- 15 product also will be determined by the existence, nature and extent of any adverse side effects that might accompany the administration of a particular inventive IL- 15 product.
  • the attending physician will decide the dosage of the inventive IL- 15 product with which to treat each individual patient, taking into consideration a variety of factors, such as age, body weight, general health, diet, sex, inventive IL- 15 product to be administered, route of administration, and the severity of the condition being treated.
  • the dose of the inventive IL- 15 product can be about 0.01 to about 2,000 ⁇ g/kg body weight of the subject being treated/day, from about 0.1 to about 200 ⁇ g/kg body weight/day, about 1 ⁇ g to about 20 ⁇ g/kg body weight/day.
  • the condition may be any condition, including any of, for example, cancer, lymphocytopenia, immune deficiency associated with stem cell transplantation or organ transplantation; viral, bacterial, fungal, or parasitic infections such as, e.g., meningitis, pneumonia, bronchitis, human immune deficiency virus (HIV), herpes simplex virus (HSV) (e.g., HSV-I and HSV-2), influenza, Epstein-Barr virus, cytomegalovirus (CMV), hepatitis, Dengue virus, malaria, lymphocytic choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), appendicitis, Campylobacter, rotavirus, Salmonella, Shigella adenovirus, chlamydia, diphtheria, encephalitis, gonorrhea, Listeria, Lyme disease, measles, mononucleo
  • HIV human immune deficiency virus
  • the cancer can be any cancer, including any of, for example, acute lymphocytic cancer, acute myeloid leukemia, alveolar rhabdomyosarcoma, bone cancer, brain cancer, breast cancer, cancer of the anus, anal canal, or anorectum, cancer of the eye, cancer of the intrahepatic bile duct, cancer of the joints, cancer of the neck, gallbladder, or pleura, cancer of the nose, nasal cavity, or middle ear, cancer of the oral cavity, cancer of the vulva, chronic lymphocytic leukemia, chronic myeloid cancer, colon cancer, esophageal cancer, cervical cancer, gastrointestinal carcinoid tumor.
  • acute lymphocytic cancer acute myeloid leukemia, alveolar rhabdomyosarcoma
  • bone cancer including any of, for example, acute lymphocytic cancer, acute myeloid leukemia, alveolar rhabdomyosarcoma, bone cancer, brain cancer, breast cancer, cancer of the
  • renal cancer e.g., renal cell carcinoma (RCC)
  • inventive methods can provide any amount of any level of treatment or prevention of a condition in a mammal.
  • the treatment or prevention provided by the inventive method can include treatment or prevention of one or more conditions or symptoms of the condition being treated or prevented.
  • prevention can encompass delaying the onset of the condition, or a symptom or condition thereof.
  • the host referred to in the inventive methods can be any host.
  • the host is a mammal.
  • the term "mammal” refers to any mammal, including, but not limited to, mammals of the order Rodentia, such as mice and hamsters, and mammals of the order Logomorpha, such as rabbits. It is preferred that the mammals are from the order Carnivora, including Felines (cats) and Canines (dogs). It is more preferred that the mammals are from the order Artiodactyla, including Bovines (cows) and Swines (pigs) or of the order Perssodactyla, including Equines (horses). It is most preferred that the mammals are of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes). An especially preferred mammal is the human.
  • the peak at 86.74 corresponds to undeamidated IL-15
  • the peak at 84.36 corresponds to deamidated IL-15
  • the peak at 84.36 includes D- and L- isoaspartic acid and D- and L- aspartic acid deamidation by-products of IL-15.
  • Example 1 The close-doublet heterogeneity observed in Example 1 is further sub-fractionated into four regions YMC-30, YMC 30-b, YMC-30c, and YMC-31, as shown in Figure 1. Each of these four regions is further analyzed by RP-HPLC (Waters X-Bridge BEH300 column, 4.6 mm x 250 mm, 3.5 ⁇ m beads, 20°C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion-pairing agent, pH approximately 2, conducted over 12 column volumes). As shown in Figure 2, the close-doublet heterogeneity includes Peak 1, Peak 2, and Peak *.
  • Peak 1 corresponds to the D-, L- isoaspartic acid deamidation by-product
  • Peak * corresponds to the D-, L- aspartic acid deamidation by-product
  • Peak 2 corresponds to undeamidated IL-15.
  • in vitro preparations of unsubstituted IL-15 include undeamidated IL-15 as well as the deamidation by-products D-, L- isoaspartic acid and D-, L- aspartic acid.
  • Regions YMC 30-b, YMC-30c, and YMC-31 are analyzed by RP-HPLC (Waters YMC-C4 column, 4.6 mm x 150 mm, 5- ⁇ m beads, 20°C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion-pairing agent, pH approximately 2, conducted over 22 column volumes).
  • the close-doublet heterogeneity includes Peak 1, Peak 2, and Peak *.
  • Peak 1 corresponds to the D-, L- isoaspartic acid deamidation by-product
  • Peak * corresponds to the D-, L- aspartic acid deamidation by-product
  • Peak 2 corresponds to undeamidated IL-15.
  • in vitro preparations of unsubstituted IL-15 include undeamidated IL-15 as well as the deamidation by-products D-, L- isoaspartic acid and D-, L- aspartic acid.
  • the unsubstituted IL-15 preparation is also analyzed by anion exchange HPLC (analysis over Waters ProPac-SAX-10, elution by linear gradient from 7-700 mM NaCl in a mobile phase containing ⁇ 10 mM Bis-Tris-Propane, 30% ethanol buffer, pH approximately 7.4, measured prior to ethanol addition).
  • the resulting chromatogram is shown in Figure 5. Peak A, which corresponds with deamidated IL-15, elutes after Peak B, which corresponds with undeamidated IL-15.
  • unsubstituted IL-15 in vitro preparations includes isoaspartic acid, a deamidation by-product of IL-15.
  • IL-15 in vitro preparation is digested with Protein Isoaspartyl Methyltransferase (PIMT) enzyme using an IsoquantTM Protein Deamidation Detection kit from Promega Corporation (Madison, Wisconsin, U.S.A.) according to the manufacturer's directions, with the exception that the buffer provided in the kit is replaced with an identical buffer that does not include detergents.
  • PIMT Protein Isoaspartyl Methyltransferase
  • the IL-15 preparation is fractionated by size exclusion chromatography SEC- ExRP-HPLC (guard column) to remove aggregates, detergents and salts and to select for IL- 15.
  • the IL-15 protein-containing pool is analyzed by RP-HPLC (Tandem X-Bridge BEH300 column, 2.1 x 250 mm, 3.5 ⁇ m beads, water/acetonitrile/0.08% TF A/formic acid buffer, 50 ⁇ l in 250 ⁇ l final volume, 48-53% over 100 minutes, 20° C, 0.16 ml per minute). The results are shown in Figure 6.
  • the upper panel of Figure 6 shows the undigested unsubstituted IL- 15 preparation, with peaks D, N, and B corresponding to the iso-aspartic acid deamidation product of IL- 15, the undeamidated IL- 15, and the aspartic acid deamidation product of IL- 15, respectively.
  • the PIMT enzyme selectively methylates iso-aspartic acid with methyl group donation by S-adenosyl methionine. As shown in the lower panel of Figure 6, a new peak appears on the right following digestion of the unsubstituted IL- 15 preparation with the PIMT enzyme, which corresponds to the enzymatically formed methyl-iso-aspartic acid deamidation by-product of IL-15.
  • in vitro preparations of unsubstituted IL- 15 include one of the by-products of deamidation of IL-15, i.e., the iso-aspartic acid version of IL-15.
  • An unsubstituted, deamidation enriched recombinant human IL-15 sample having between 60-70% deamidation as determined analytically by RP-HPLC, is digested with chymotrypsin. The resulting digest is reduced with dithiothreitol (DTT). The chymotryptic peptides are separated by reverse phase HPLC with UV and mass spectral detection. Using a MicroMass Q-ToF API US, quadrapole time-of-flight mass spectrometer (Waters, Inc., Milford, Massachusetts), mass spectrometric detection is achieved by positive ion ESI-MS with selected peptides further analyzed by on-line ESI-MS/MS.
  • DTT dithiothreitol
  • the asparagine residue-containing peptides are found to remain predominantly non-deamidated. Specifically noted are [peak: peptide] species [16.0: S(75)-F(99)] and [16.5: S(73)-F(99)], both of which include the N(77) modification site, but have unmodified asparagines residues at N(77).
  • the detection of these two specific non-deamidated peptides and the balance of remaining non-deamidated peptides demonstrates that the digestion, chromatography and mass spectrophotometric detection methods are sufficiently gentle to preserve non-deamidated peptides.
  • the peptide is deamidated, it would be expected to have a molecular mass that is one atomic mass unit more than a peptide that is not deamidated. Further, the 1101.80 mass-to-charge ratio of this peptide is consistent with a single deamidation event resulting in a parent monoisotopic molecular mass of 3303.4. This empirical measurement agrees with the theoretical monoisotopic molecular mass calculated for a deamidated form of peptide A(70)-F(99) where the expected value is 3303.4628 atomic mass units.
  • Fragment ID Calcualted a Observed a Fragment ID Calculated b Observed b Fragment ID Calculated y Observed y a b ⁇
  • portions of the data set are consistent with co-elution of possible trace levels of non-deamidated species, species containing single-deamidation modifications in some combination of the other four possible sites within the A(70)-F(99) sequence, as well as the existence of minor species containing doubly-deamidated peptides. Thus, the possibility of other minor deamidation sites can not be ruled out by this analysis.
  • N(77) is the primary deamidation site within unsubstituted IL-15.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • AIDS & HIV (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention provides IL-15 amino acid sequences with amino acid substitutions that reduce or eliminate deamidation of IL-15 and degradation by-products. The invention also provides DNA sequences that encode the substituted amino acid sequences, a pharmaceutical composition comprising the substituted IL-15 amino acid sequence and a pharmaceutically acceptable carrier, and a method of treating a condition in a mammalian host comprising administering to the host the substituted IL-15 amino acid sequence or the pharmaceutical composition including the substituted IL-15 amino acid sequence in an amount effective to treat the condition in the host.

Description

SUBSTITUTED IL- 15
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This patent application claims the benefit of U.S. Provisional Patent Application No. 61/049, 165, filed April 30, 2008, which is incorporated by reference.
BACKGROUND OF THE INVENTION
[0002] Interleukin-15 (IL-15) is a vertebrate immune system modulating protein (cytokine) that stimulates the proliferation and differentiation of T-cells. In the clinical context, IL- 15 is useful for the treatment of any of a variety of conditions such as, e.g., cancer. The ex-vivo manufacture of IL- 15, however, can be problematic, and there is a need in the art for improved IL- 15 products.
BRIEF SUMMARY OF THE INVENTION
[0003] The invention provides substituted IL- 15 amino acid sequences that reduce or eliminate deamidation, and the invention also provides substituted gene sequences that encode the substituted IL- 15 amino acid sequences. The substituted IL- 15 amino acid sequences advantageously facilitate the refolding, purification, storage, characterization, and clinical testing of IL- 15.
[0004] In one embodiment, the invention provides an amino acid sequence comprising
SEQ ID NO:1 or SEQ ID NO:3.
[0005] In another embodiment, the invention provides a nucleic acid sequence comprising SEQ ID NO:2 or SEQ ID NO:4.
[0006] A pharmaceutical composition according to another embodiment of the invention comprises SEQ ID NO:1 or SEQ ID NO:3.
[0007] Additionally, an embodiment of the invention provides a method of treating a condition in a mammalian host, comprising administering to the host an amino acid sequence comprising SEQ ID NO:1 or SEQ ID NO:3.
[0008] Isolated cells and expression vectors comprising SEQ ID NO:2 or SEQ ID NO:4 are also provided according to an embodiment of the invention. BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0009] Figure 1 shows a chromatogram from a Reverse Phase High Performance Liquid Chromatography (RP-HPLC) separation of an unsubstituted IL- 15 preparation after partial purification by preparative hydrophobic interaction chromatography (HIC Tail Pool) (YMC- C4 column, 4.6 mm x 150 mm, 5-μm beads, 20°C column temperature, at 0.9 mL/minute flow rate, load at 0% ethanol, elution by 42-77% linear gradient of ethanol in water with 2OmM ammonium acetate: acetate, 0.2 mM CaCl2 buffer, pH approximately 5, conducted over 21 column volumes).
[0010] Figure 2 shows chromatograms from an RP-HPLC analysis of respective fractions obtained from the separation shown in Figure 1 (Waters X-Bridge BEH300 column, 4.6 mm x 250 mm, 3.5 μm beads, 200C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion- pairing agent, pH approximately 2, conducted over 12 column volumes). [0011] Figure 3 shows chromatograms from an RP-HPLC analysis of respective fractions obtained from the separation shown in Figure 1 (Waters YMC-C4 column, 4.6 mm x 150 mm, 5-μm beads, 200C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion- pairing agent, pH approximately 2, conducted over 22 column volumes). [0012] Figure 4 shows chromatograms from an RP-HPLC analysis of two unsubstituted IL- 15 preparations of a process sample following purification by preparative hydrophobic interaction chromatography (HIC Tail Pool) and a process sample following purification by preparative ion-exchange chromatography (Source 15Q Tail Pool) (analysis over Waters YMC-C4 column, 4.6 mm x 150 mm, 5-μm beads, 20°C column temperature, 0.9 mL/minute flow rate, load at 0% acetonitrile, elution by 50-72% linear gradient of ethanol in water with 20 mM 20 mM ammonium acetate: acetate, 0.2mM CaCl2 buffer, pH approximately 5, conducted over 21 column volumes).
[0013] Figure 5 shows a chromatogram from a ProPac Anion Exchange-HPLC analysis of two unsubstituted IL- 15 preparations of an upstream process sample following purification by preparative hydrophobic interaction chromatography (HIC Tail Pool; Panel 2) and a process sample following purification by preparative ion-exchange chromatography (Source 15Q Tail Pool; Panel 1) (analysis over Waters ProPac-SAX-10, elution by linear gradient from 7-700 mM NaCl in a mobile phase containing ~10 mM Bis-Tris-Propane, 30% ethanol buffer, pH approximately 7.4, measured prior to ethanol addition). [0014] Figure 6 shows chromatograms from an RP-HPLC analysis of an unsubstituted IL- 15 preparation before and after methylation of deamidation-produced isoaspartate residues using Protein Isoaspartyl Methyltransferase (PIMT) enzyme in the presence of the methyl group donor S-Andenosyl-L-Methionine.
[0015] Figure 7 shows an RP- HPLC analysis of peptides resulting from a chymotrypsin digest of deamidation enriched human IL-15.
[0016] Figure 8 shows a wide mass-range view of the fragmentation mass spectrum obtained from MS/MS analysis of a deamidation enriched IL- 15 chymotryptic peptide having a mass to charge ratio of 1101.80 atomic mass units and a singly-protonated monoisotopic molecular weight of 3303.4 atomic mass units that eluted at 16.3 minutes in Figure 7. [0017] Figure 9 shows a narrow mass-range view of the fragmentation mass spectrum obtained from MS/MS analysis of a deamidation enriched IL- 15 chymotryptic peptide having a mass to charge ratio of 1101.80 atomic mass units and a singly-protonated monoisotopic molecular weight of 3303.4 atomic mass units that eluted at 16.3 minutes in Figure 7.
DETAILED DESCRIPTION OF THE INVENTION
[0018] The invention provides substituted IL- 15 amino acid sequences that reduce or eliminate deamidation, and also provides substituted gene sequences that encode the substituted IL- 15 amino acid sequences. The substituted IL- 15 amino acid sequences advantageously facilitate the refolding, purification, storage, characterization, and clinical testing of IL- 15. For example, the IL- 15 products according to the invention may have a chromatographic profile that shows a reduced presence of degradation by-products. [0019] In particular, one embodiment of the invention provides an amino acid sequence comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
[0020] Another embodiment of the invention provides an amino acid sequence comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
[0021] Still another embodiment of the invention provides a pharmaceutical composition comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
[0022] Another embodiment of the invention provides a pharmaceutical composition comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
[0023] Another embodiment of the invention provides a method of treating a condition in a mammalian host, comprising administering to the host an amino acid sequence comprising SEQ ID NO:1 or a pharmaceutical composition comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy. [0024] Another embodiment of the invention provides a method of treating a condition in a mammalian host, comprising administering to the host an amino acid sequence comprising SEQ ID NO:3 or a pharmaceutical composition comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala. [0025] Still another embodiment of the invention provides an isolated or purified amino acid sequence comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
[0026] Another embodiment of the invention provides an isolated or purified amino acid sequence comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
[0027] Another embodiment of the invention provides a nucleic acid sequence comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
[0028] Another embodiment of the invention provides a nucleic acid sequence comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
[0029] Another embodiment of the invention provides an isolated or purified nucleic acid sequence comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
[0030] Another embodiment of the invention provides an isolated or purified nucleic acid sequence comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
[0031] Another embodiment of the invention provides an isolated cell comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn. [0032] Another embodiment of the invention provides an isolated cell comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn. [0033] Another embodiment of the invention provides an expression vector comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn.
[0034] Still another embodiment of the invention provides an expression vector comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn. [0035] The nucleic acids of the invention may, advantageously, be transformed into a host cell, such as a bacterial cell, to produce the amino acid sequences of the invention.
Deamidation of IL-15
[0036] The inventors have discovered that deamidation of unsubstituted IL- 15 (SEQ ID NO:7) can form degradation by-products of IL-15 when unsubstituted IL-15 is manufactured in vitro. In particular, the inventors have found that deamidation of Asn71, Asn72, and/or Asn77 of SEQ ID NO: 7 may lead to degradation by-products that may reduce the purity of the yield of the manufactured IL-15.
[0037] It is believed by the inventors that when IL-15 is expressed in mammalian cells, asparagine residues can be protected from deamidation by natural glycosylation that shields the asparagines from deamidation or by rapid, native refolding into conformations less susceptible to asparagine side-chain attack. However, it appears that when IL-15 is expressed in bacterial systems and isolated by solubilizing the inclusion body in, e.g., guanidinium hydrochloride or urea, native glycosylation and refolding may not occur to protect the asparagines from deamidation. Accordingly, solubilized, in vzYrø-produced IL-15 may be susceptible to deamidation.
[0038] The inventors believe that Asn77 of SEQ ID NO: 7 may be most susceptible to deamidation, and Asn71 and Asn72 may also be susceptible to deamidation, based on the relative deamidation rates of the Asn residues. Deamidation rates may be estimated and expressed as half time (X1A) in days. For example, Robinson, N.E. and Robinson, A.B. (2004) Molecular Clocks: Deamidation of Asparaginyl and Glutaminyl Residues in Peptides and Proteins, Althouse Press, Cave Junction, OR, sets forth first-order deamidation half-times of various pentapeptides with the formula GlyXxxAsnYyyGly at pH 7.4, 37° C, 0.15 M Tris HCl (e.g., Table 6-2 of Robinson et al.). Under these conditions, Asn77 of SEQ ID NO:7 may have a half time of less than approximately 1 day (0.96 X1A). The Asn77 of SEQ ID NO:7 may, therefore, be susceptible to deamidation. Under these conditions, Asn71 and Asn72 of SEQ ID NO:1 may have a half time of approximately 20 X1A and approximately 15.4 X1A, respectively. Asn71 and Asn72 of SEQ ID NO:7 may, therefore, also be susceptible to deamidation, but to a lesser degree than Asn77.
[0039] Without being bound to a particular theory, it is believed that in the deamidation of unsubstituted IL-15 (SEQ ID NO:7), the asparagine side chain attacks the C-side peptide backbone nitrogen of the Asn residue. It is believed that this attack forms a cyclic succinimide intermediate that may racimize and linearize to form four degradation products of IL- 15, i.e., D-isoaspartic acid, L-isoaspartic acid, D-aspartic acid, and L-aspartic acid. Deamidation results in the replacement of the amide group of asparagine with the carboxylic acid side chain of aspartic acid. The carboxylic acid side chain of either aspartic acid or isoaspartic acid is more negatively charged, less hydrophobic, and more polar than the neutral asparagine amide group.
[0040] The degradation by-products formed by the deamidation of IL-15 may be, therefore, heterogeneous in terms of charge, polarity, and hydrophobicity. These degradation by-products of IL- 15 complicate manufacture and characterization of the IL- 15 (SEQ ID NO:7) product, and may lead to the presence of impurities such as host cell proteins, mis- folded proteins or aggregates in an IL- 15 preparation. In addition, preparations including deamidated IL- 15 have undesireably complex chromatographic elution profiles including, e.g., broad and split peaks. For example, in HPLC analyses of unsubstituted IL-15, the deamidation of IL-15 may be observed as a close-doublet heterogeneity (at high pH, e.g., approximately 5.0 or higher) or as a triplet heterogeneity (at low pH, e.g., approximately 2.0 or lower). These deamidation by-products may be found in approximately 30 to 80% of refolded IL-15 molecules.
Amino Acid Substitutions
[0041] The invention provides substituted IL-15 amino acid sequences, and also provides substituted gene sequences that encode the substituted IL-15 amino acid sequences. In general, the substituted amino acid sequences SEQ ID NO:1 and SEQ ID NO:3 correspond with the native, unsubstituted IL-15 SEQ ID NO: 7 with SEQ ID NO:1 and SEQ ID NO: 3 having at least one substitution when compared to SEQ ID NO:7. Preferably, one or both of the native Asn77 and Gly78 of SEQ ID NO:7 is substituted, and either or both of the native Asn71 and Asn72 of SEQ ID NO:7 may be substituted or may be unsubstituted. [0042] In particular, the invention provides an amino acid sequence comprising SEQ ID NO:1, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy. SEQ ID NO:1 generally corresponds to the native, unsubstituted IL-15 amino acid sequence SEQ ID NO:7 with the exception that in SEQ ID NO:1, at least Asn77 is substituted, and Gly78, Asn71, and Asn72 substituted or unsubstituted. [0043] The amino acid sequence comprising SEQ ID NO:1 may be generated from, for example, nucleic acid sequences comprising SEQ ID NO:2, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, or GIy; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn, as set forth, for example, in Table 2 below. SEQ ID NO:2 generally corresponds to the native, unsubstituted IL- 15 nucleic acid sequence SEQ ID NO:8 with the exception that in SEQ ID NO:2, at least NNN at base pairs 229 to 231 is substituted, and NNN at base pairs 232 to 234, NNN at base pairs 211 to 213, and NNN at base pairs 214 to 216 may be substituted or unsubstituted.
[0044] The invention also provides an amino acid sequence comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn; Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala. SEQ ID NO: 3 generally corresponds to the native, unsubstituted IL- 15 amino acid sequence SEQ ID NO:7 with the exception that in SEQ ID NO:3, at least Gly78 is substituted, and Asn77, Asn71, and Asn72 may be substituted or unsubstituted. [0045] The amino acid sequence comprising SEQ ID NO: 3 may be generated from nucleic acid sequences comprising SEQ ID NO:4, wherein NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn; NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser or Ala; NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala and Asn, as set forth, for example, in Table 2 below. SEQ ID NO:4 generally corresponds to the native, unsubstituted IL- 15 nucleic acid sequence SEQ ID NO:8 with the exception that in SEQ ID NO:4, at least NNN at base pairs 232 to 234 is substituted, and NNN at base pairs 229 to 231, NNN at base pairs 211 to 213, and NNN at base pairs 214 to 216 may be substituted or unsubstituted.
[0046] In general, genetic substitutions that remove an A/T and insert a C/G may be preferred. Because steric forces may interfere with hybridization of the primer with the template, primers may be more effective when the genetic substitution removes an A/T and replaces it with C/G.
[0047] Also, genetic substitutions that require a single point mutation may be preferred over genetic substitutions that require a double or triple point mutation, and genetic substitutions that require a double point mutation may be preferable to genetic substitutions that require a triple point mutation.
Xaa 77 Substitutions
[0048] In one embodiment, Xaa77 is substituted with GIn, Ser, Lys, Ala, or GIu. Preferably, Xaa77 is Ser or Ala. These substitutions advantageously prevent deamidation of Asn77. Most preferably, Xaa77 is Ser.
Table 2: Amino Acids and Corresponding Codons
Figure imgf000011_0001
a. Xaa77→Gln
[0049] Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO: 3 may be GIn. The substitution of Asn for GIn (Xaa77 is GIn) is advantageously structurally conservative. The GIn substitution (Xaa77 is GIn) adds a methylene group to the side chain while retaining the amide side chain terminus.
[0050] The substitutions of Xaa77 with GIn in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229 to 231 is any codon that encodes GIn, as shown in Table 2. Preferably, NNN at base pairs 229 to 231 is CAG. b. Xaall→Ser
[0051] Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be Ser. The substitution of Asn for Ser (Xaa is Ser) advantageously replaces the uncharged, double h-bond donor with a slightly smaller, uncharged, single h-bond donor. Ser is also, advantageously, minimally immunogenic.
[0052] The substitutions of Xaa77 with Ser in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes Ser, as shown in Table 2. Preferably, NNN at base pairs 229 to 231 is AGT, which requires only a single point mutation.
c. Xaall→Lys
[0053] Alternatively, Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be Lys. The substitution of Asn for Lys (Xaa77 is Lys) in SEQ ID NO:1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 or SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes Lys, as shown in Table 2. For example, NNN at base pairs 229-231 is AAA or AAG, as shown in Table 2.
d. XaaH→Ala
[0054] Alternatively, Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be Ala. This substitution of Asn for Ala (Xaa77 is Ala) replaces the uncharged, double-h bond donor with a small, uncharged, non-reactive side chain. Ala is also, advantageously, minimally immunogenic.
[0055] The substitution of Xaa77 with Ala in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes Ala, as shown in Table 2. Preferably, NNN at positions 229-231 is GCT.
e. Xaa77→Glu
[0056] Alternatively, Xaa77 of SEQ ID NO: 1 and/or SEQ ID NO:3 may be GIu. This substitution introduces a negative charge at position 77. Without being bound to a particular theory, it is believed that introducing a negative charge at position 77 may, advantageously, increase IL- 15 solubility by increasing same-charge repulsion under physiological conditions. [0057] The substitution of Xaa77 in SEQ ID NO: 1 and SEQ ID NO:3 with GIu may be may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 229-231 is any codon that encodes GIu, as shown in Table 2. Preferably, NNN at base pairs 229-231 is GAG.
Xaa78 Substitutions
[0058] Without being bound to a particular theory, it is believed that Gly78 of SEQ ID NO:7 may make the deamidation of Asn77 possible by making the peptide backbone flexible at the site of the side-chain attack of Asn77. Accordingly, the replacement of Xaa78 of SEQ ID NO:1 and/or SEQ ID NO:3 with sterically hindering amino acids Ala or Ser may reduce or eliminate deamidation of Asn77. Ala and Ser are, advantageously, minimally immunogenic and also minimize the alteration of the secondary structure of the protein. Preferably, Xaa78 is Ser.
a. Xaa78 →Ala
[0059] The substitution of Xaa78 in SEQ ID NO: 1 and SEQ ID NO:3 with Ala may be may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 232-234 is any codon that encodes Ala. For example, the GGG codon at positions 232-234 may be substituted with GCT, GCA, GCC, or GCG, as shown in Table 2. Preferably, NNN at base pairs 232-234 is GCG.
b. Xaa78→Ser
[0060] The substitution of Xaa78 with Ser in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 232-234 is any codon that encodes Ser. For example, NNN at base pairs 232-234 may be AGT, AGC, TCA, TCC, TCG, or TCT, as shown in Table 2. Preferably, NNN at base pairs 232-234 is AGC.
Xaa71 andXaa.72 Substitutions
[0061] Optionally, either or both of Xaa71 and Xaa72 of SEQ ID NO:1 and/or SEQ ID NO: 3 may be substituted with Ser or Ala. These additional substitutions may, advantageously, also prevent deamidation of Asn71 and Asn72, and may also be particularly advantageous for highly basic or heated solubilization conditions. Preferably, Xaa71 and/or Xaa72 is Ser.
a. Xaa71 and/or Xaa72→Ser
[0062] The substitutions of either or both of Xaa71 and Xaa72 with Ser in SEQ ID NO : 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 214-216 and/or 217-219 are/is any codon that encodes Ser. For example, NNN at base pairs 214-216 and/or 217-219 may be AGT, AGC, TCA, TCC, TCG, or TCT, as shown in Table 2. Preferably, NNN at base pairs 214-216 and/or 217-219 are AGC.
b. Xaall and/or Xaa72 → Ala
[0063] The substitutions of either or both of Xaa71 and Xaa72 with Ala in SEQ ID NO: 1 and SEQ ID NO:3 may be generated from nucleic acid SEQ ID NO:2 and SEQ ID NO:4, respectively, in which NNN at base pairs 214-216 and/or 217-219 are any codon that encodes Ala. For example, NNN at base pairs 214-216 and/or 217-219 may be GCT, GCA, GCC, or GCG, as shown in Table 2.
[0064] Amino acid sequences SEQ ID NO: 1 and SEQ ID NO: 3 may optionally further include Met or the natural leader sequence SEQ ID NO:5 on the N-terminus. Preferably, SEQ ID NO:1 and SEQ ID NO: 3 further include the natural leader sequence SEQ ID NO: 5 on the N-terminus when expressed in mammalian cells. Preferably, SEQ ID NO: 1 and SEQ ID NO: 3 include Met on the N-terminus when expressed in bacterial cells. In an alternative embodiment, the amino acid sequence may consist of SEQ ID NO:1 or SEQ ID NO:3. In still another alternative embodiment, the amino acid sequence may consist of SEQ ID NO:1 or SEQ ID NO:3 with Met or the natural leader sequence SEQ ID NO:5 on the N-terminus. [0065] Nucleic acid sequences SEQ ID NO:2 and SEQ ID NO:4 may optionally further include the start codon ATG or SEQ ID NO:6 encoding the natural leader sequence SEQ ID NO:5 on the 5' end. Preferably, SEQ ID NO:2 and SEQ ID NO:4 further include SEQ ID NO: 6 encoding the natural leader sequence SEQ ID NO: 5 on the 5' end when expressed in mammalian cells. Preferably, SEQ ID NO:2 and SEQ ID NO:4 include the start codon ATG on the 5' end when expressed in bacterial cells. In an alternative embodiment, the nucleic acid sequence may consist of SEQ ID NO:2 or SEQ ID NO:4. In still another alternative embodiment, the nucleic acid sequence may consist of SEQ ID NO:2 or SEQ ID NO:4 with the start codon ATG or SEQ ID NO: 6 encoding the natural leader sequence SEQ ID NO: 5 on the 5' end.
[0066] The invention also includes variants of the substituted amino acid sequences and nucleic acid sequences that encode variants of the substituted amino acid sequences. The term "variant" as defined herein, includes any peptide which displays the functional aspects of the substituted IL- 15 amino acid sequences. Any polypeptide having an amino acid sequence substantially identical to the substituted IL- 15 in which one or more residues (other than at least one of the specific amino acid substitutions Xaa77→Gln, Ser, Lys, Ala, or GIu; Xaa78→Ser or Ala; Xaa71→Ser or Ala; or Xaa72→Ser or Ala) have been conservatively substituted with a functionally similar residue and which displays the functional aspects of the substituted IL- 15 amino acid sequence is considered to be a "variant." [0067] The phrase "conservative substitution" also includes the use of a chemically derivatized residue in place of a non-derivatized residue. "Chemical derivative" refers to a subject polypeptide having one or more residues chemically derivatized by reaction of a functional side group. Examples of such derivatized molecules include for example, those molecules in which free amino groups have been derivatized to form amine hydrochlorides, p-toluene sulfonyl groups, carbobenzoxy groups, t-butyloxycarbonyl groups, chloroacetyl groups or formyl groups. Free carboxyl groups may be derivatized to form salts, methyl and ethyl esters or other types of esters or hydrazides. Free hydroxyl groups may be derivatized to form O-acyl or O-alkyl derivatives. The imidazole nitrogen of histidine may be derivatized to form N-im-benzylhistidine. Also included as chemical derivatives are those proteins or peptides which contain one or more naturally-occurring amino acid derivatives of the twenty standard amino acids. For example: 4-hydroxyproline may be substituted for proline; 5-hydroxylysine may be substituted for lysine; 3-methylhistidine may be substituted for histidine; homoserine may be substituted for serine; and ornithine may be substituted for lysine. Proteins or polypeptides of the present invention also include any polypeptide having one or more additions and/or deletions or residues relative to the sequence of a polypeptide whose sequence is encoded in the DNA of IL-15.
[0068] Techniques for substituting codons in a nucleic acid are well known in the art. The techniques may include, for example, in vitro mutagenesis, PCR, or any other genetic engineering methods known in the art which are suitable for making specific changes to a nucleic acid sequence. Such techniques are described, for example, in In Vitro Mutagenesis Protocols, Braman, ed., 2002, Humana Press; in Sankaranarayanan, Protocols in Mutagenesis, 2001, Elsevier Science Ltd.; and in Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Press, Cold Spring Harbor, NY 2001. Any primers suitable for generating the specific substitutions described herein may be employed. Exemplary primers are set forth in Table 3 below.
Table 3: Exemplary Primers
Figure imgf000016_0001
[0069] Alternatively, the nucleic acids can be constructed based on chemical synthesis and/or enzymatic ligation reactions using procedures known in the art. See, for example, Sambrook et al. For example, a nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed upon hybridization (e.g., phosphorothioate derivatives and acridine substituted nucleotides). Examples of modified nucleotides that can be used to generate the nucleic acids include, but are not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl- 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2- methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, Nό-substituted adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio- N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2- thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5- oxyacetic acid methylester, 3-(3-amino-3-N-2-carboxypropyl) uracil, and 2,6-diaminopurine. Alternatively, one or more of the nucleic acids of the invention can be purchased from companies, such as Macromolecular Resources (Fort Collins, CO) and Synthegen (Houston, TX).
[0070] The nucleic acids of the invention can be incorporated into any expression vector. In this regard, the invention provides expression vectors comprising any of the nucleic acids of the invention. For purposes herein, the term "expression vector" means a genetically- modified oligonucleotide or polynucleotide construct that permits the expression of an mRNA, protein, polypeptide, or peptide by a host cell, when the construct comprises a nucleotide sequence encoding the mRNA, protein, polypeptide, or peptide, and the vector is contacted with the cell under conditions sufficient to have the mRNA, protein, polypeptide, or peptide expressed within the cell. The vectors of the invention are not naturally-occurring as a whole. However, parts of the vectors can be naturally-occurring. The inventive expression vectors can comprise any type of nucleotides, including, but not limited to DNA and RNA, which can be single-stranded or double-stranded, synthesized or obtained in part from natural sources, and which can contain natural, non-natural or altered nucleotides. The expression vectors can comprise naturally-occurring, non-naturally-occurring internucleotide linkages, or both types of linkages. Preferably, the non-naturally occurring or altered nucleotides or internucleotide linkages does not hinder the transcription or replication of the vector.
[0071] The expression vector of the invention can be any suitable expression vector, and can be used to transform or transfect any suitable host cell. Suitable vectors include those designed for propagation and expansion or for expression or both, such as plasmids and viruses. The vector can be selected from the group consisting of the pUC series (Fermentas Life Sciences), the pBluescript series (Stratagene, LaJoIIa, CA), the pET series (Novagen, Madison, WI), the pGEX series (Pharmacia Biotech, Uppsala, Sweden), and the pEX series (Clontech, Palo Alto, CA). Bacteriophage vectors, such as λGTIO, λGTl 1, λZapII (Stratagene), λEMBL4, and λNMl 149, also can be used. Examples of plant expression vectors include pBIOl, pBI101.2, pBI101.3, pBI121 and pBIN19 (Clontech). Examples of animal expression vectors include pEUK-Cl, pMAM and pMAMneo (Clontech). Preferably, the expression vector is a plasmid, e.g., a bacterial plasmid. [0072] The expression vectors of the invention can be prepared using standard recombinant DNA techniques described in, for example, Sambrook et al., supra. Constructs of expression vectors, which are circular or linear, can be prepared to contain a replication system functional in a prokaryotic or eukaryotic host cell. Replication systems can be derived, e.g., from CoIEl, 2 μ plasmid, λ, SV40, bovine papilloma virus, and the like. [0073] Desirably, the expression vector comprises regulatory sequences, such as transcription and translation initiation and termination codons, which are specific to the type of host (e.g., bacterium, fungus, plant, or animal) into which the vector is to be introduced, as appropriate and taking into consideration whether the vector is DNA- or RNA-based. [0074] The expression vector can include one or more marker genes, which allow for selection of transformed or transfected hosts. Marker genes include biocide resistance, e.g., resistance to antibiotics, heavy metals, etc., complementation in an auxotrophic host to provide prototrophy, and the like. Suitable marker genes for the inventive expression vectors include, for instance, neomycin/G418 resistance genes, hygromycin resistance genes, histidinol resistance genes, tetracycline resistance genes, and ampicillin resistance genes. [0075] The expression vector can comprise a native or normative promoter operably linked to the nucleotide sequence encoding the substituted IL- 15 (including functional portions and functional variants thereof), or to the nucleotide sequence which is complementary to or which hybridizes to the nucleotide sequence encoding the substituted IL-15. The selection of promoters, e.g., strong, weak, is within the ordinary skill of the artisan. Similarly, the combining of a nucleotide sequence with a promoter is also within the skill of the artisan. The promoter can be a non-bacterial promoter or a bacterial promoter. [0076] The invention further provides a host cell comprising any of the expression vectors or nucleic acid sequences described herein. As used herein, the term "host cell" refers to any type of cell that can contain the inventive expression vector. The host cell can be a eukaryotic cell, e.g., plant, animal, fungi, or algae, or can be a prokaryotic cell, e.g., bacteria or protozoa. The host cell can be a cultured cell or a primary cell, i.e., isolated directly from an organism, e.g., a human. The host cell can be an adherent cell or a suspended cell, i.e., a cell that grows in suspension. Suitable host cells are known in the art and include, for instance, DH5α E. coli cells, Chinese hamster ovarian cells, monkey VERO cells, COS cells, HEK293 cells, and the like. Preferably, the host cell is preferably a prokaryotic cell, e.g., a DH5α cell. [0077] Also provided by the invention is a population of cells comprising at least one host cell described herein. The population of cells can be a heterogeneous population comprising the host cell comprising any of the expression vectors described, in addition to at least one other cell which does not comprise any of the expression vectors. Alternatively, the population of cells can be a substantially homogeneous population, in which the population comprises mainly of host cells (e.g., consisting essentially of) comprising the expression vector. The population also can be a clonal population of cells, in which all cells of the population are clones of a single host cell comprising an expression vector, such that all cells of the population comprise the expression vector. In one embodiment of the invention, the population of cells is a clonal population comprising host cells comprising an expression vector as described herein.
[0078] The inventive substituted IL- 15 (including functional portions and functional variants thereof), nucleic acids, expression vectors, host cells (including populations thereof), can be isolated and/or purified. The term "isolated" as used herein means having been removed from its natural environment. The term "purified" as used herein means having been increased in purity, wherein "purity" is a relative term, and not to be necessarily construed as absolute purity. For example, the purity can be at least about 50%, can be greater than 60%, 70% or 80%, or can be 100%. The substituted IL- 15 amino acid sequences of the invention can be prepared using standard techniques known in the art such as those described in, for example, Current Protocols in Protein Science, John C. Wiley and Sons, 2007.
[0079] The inventive substituted IL- 15, polypeptides, proteins (including functional portions and variants thereof), nucleic acids, expression vectors, host cells (including populations thereof), all of which are collectively referred to as "inventive substituted IL- 15 materials" hereinafter, can be formulated into a composition, such as a pharmaceutical composition. In this regard, the invention provides a pharmaceutical composition comprising any of the substituted IL-15, polypeptides, proteins, functional portions, functional variants, nucleic acids, expression vectors, host cells (including populations thereof), and a pharmaceutically acceptable carrier. The inventive pharmaceutical compositions containing any of the inventive substituted IL- 15 materials can comprise more than one inventive substituted IL-15 material, e.g., a polypeptide and a nucleic acid, or two or more different substituted IL- 15 sequences. Alternatively, the pharmaceutical composition can comprise an inventive substituted IL- 15 material in combination with another pharmaceutically active agents or drugs, such as, for example, chemotherapeutic agents.
[0080] Preferably, the carrier is a pharmaceutically acceptable carrier. With respect to pharmaceutical compositions, the carrier can be any of those conventionally used and is limited only by chemico-physical considerations, such as solubility and lack of reactivity with the active compound(s), and by the route of administration. The pharmaceutically acceptable carriers described herein, for example, vehicles, adjuvants, excipients, and diluents, are well-known to those skilled in the art and are readily available to the public. It is preferred that the pharmaceutically acceptable carrier be one which is chemically inert to the active agent(s) and one which has no detrimental side effects or toxicity under the conditions of use.
[0081] The choice of carrier will be determined in part by the particular inventive substituted IL- 15 material, as well as by the particular method used to administer the inventive substituted IL- 15 material. Accordingly, there are a variety of suitable formulations of the pharmaceutical composition of the invention. For example, the formulation may be suitable for oral, aerosol, parenteral, subcutaneous, intravenous, intramuscular, intraarterial, intrathecal, interperitoneal, rectal, or vaginal administration. More than one route can be used to administer the inventive substituted IL- 15 materials, and in certain instances, a particular route can provide a more immediate and more effective response than another route.
[0082] For purposes of the invention, the amount or dose of the inventive IL-15 product administered should be sufficient to effect, e.g., a therapeutic or prophylactic response, in the subject or animal over a reasonable time frame. For example, the dose of the inventive IL- 15 product should be sufficient to treat or prevent the condition in a period of up to 2 hours, from about 2 hours or longer, e.g., 12 to 24 or more hours, from the time of administration. In certain embodiments, the time period could be even longer. The dose will be determined by the efficacy of the particular inventive IL- 15 product and the condition of the animal (e.g., human), as well as the body weight of the animal (e.g., human) to be treated. [0083] The dose of the inventive IL- 15 product also will be determined by the existence, nature and extent of any adverse side effects that might accompany the administration of a particular inventive IL- 15 product. Typically, the attending physician will decide the dosage of the inventive IL- 15 product with which to treat each individual patient, taking into consideration a variety of factors, such as age, body weight, general health, diet, sex, inventive IL- 15 product to be administered, route of administration, and the severity of the condition being treated. By way of example and not intending to limit the invention, the dose of the inventive IL- 15 product can be about 0.01 to about 2,000 μg/kg body weight of the subject being treated/day, from about 0.1 to about 200 μg/kg body weight/day, about 1 μg to about 20 μg/kg body weight/day.
[0084] With respect to the inventive methods, the condition may be any condition, including any of, for example, cancer, lymphocytopenia, immune deficiency associated with stem cell transplantation or organ transplantation; viral, bacterial, fungal, or parasitic infections such as, e.g., meningitis, pneumonia, bronchitis, human immune deficiency virus (HIV), herpes simplex virus (HSV) (e.g., HSV-I and HSV-2), influenza, Epstein-Barr virus, cytomegalovirus (CMV), hepatitis, Dengue virus, malaria, lymphocytic choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), appendicitis, Campylobacter, rotavirus, Salmonella, Shigella adenovirus, chlamydia, diphtheria, encephalitis, gonorrhea, Listeria, Lyme disease, measles, mononucleosis, mumps, rabies, scarlet fever, smallpox, tuberculosis, Streptococcus, Staphylococcus, pinworm, giardiasis, toxoplasmosis, trichonomiasis, tetanus, and human papillomavirus. See also, Diab, A. et al., Cytotherapy 7(l):23-35 (2005) and Rodrigues et al., Expert Rev. Vaccines 8(2), 167-177 (2009).
[0085] The cancer can be any cancer, including any of, for example, acute lymphocytic cancer, acute myeloid leukemia, alveolar rhabdomyosarcoma, bone cancer, brain cancer, breast cancer, cancer of the anus, anal canal, or anorectum, cancer of the eye, cancer of the intrahepatic bile duct, cancer of the joints, cancer of the neck, gallbladder, or pleura, cancer of the nose, nasal cavity, or middle ear, cancer of the oral cavity, cancer of the vulva, chronic lymphocytic leukemia, chronic myeloid cancer, colon cancer, esophageal cancer, cervical cancer, gastrointestinal carcinoid tumor. Hodgkin lymphoma, hypopharynx cancer, kidney cancer, larynx cancer, liver cancer, lung cancer, malignant mesothelioma, melanoma, multiple myeloma, nasopharynx cancer, non-Hodgkin lymphoma, ovarian cancer, pancreatic cancer, peritoneum, omentum, and mesentery cancer, pharynx cancer, prostate cancer, rectal cancer, renal cancer (e.g., renal cell carcinoma (RCC)), small intestine cancer, soft tissue cancer, stomach cancer, testicular cancer, thyroid cancer, ureter cancer, and urinary bladder cancer.
[0086] The terms "treat," and "prevent" as well as words stemming therefrom, as used herein, do not necessarily imply 100% or complete treatment or prevention. Rather, there are varying degrees of treatment or prevention of which one of ordinary skill in the art recognizes as having a potential benefit or therapeutic effect. In this respect, the inventive methods can provide any amount of any level of treatment or prevention of a condition in a mammal. Furthermore, the treatment or prevention provided by the inventive method can include treatment or prevention of one or more conditions or symptoms of the condition being treated or prevented. Also, for purposes herein, "prevention" can encompass delaying the onset of the condition, or a symptom or condition thereof.
[0087] The host referred to in the inventive methods can be any host. Preferably, the host is a mammal. As used herein, the term "mammal" refers to any mammal, including, but not limited to, mammals of the order Rodentia, such as mice and hamsters, and mammals of the order Logomorpha, such as rabbits. It is preferred that the mammals are from the order Carnivora, including Felines (cats) and Canines (dogs). It is more preferred that the mammals are from the order Artiodactyla, including Bovines (cows) and Swines (pigs) or of the order Perssodactyla, including Equines (horses). It is most preferred that the mammals are of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes). An especially preferred mammal is the human.
EXAMPLE 1
[0088] This example demonstrates that in vitro preparation of unsubstituted IL- 15 produces a close-doublet heterogeneity in HPLC analyses.
[0089] An unsubstituted IL- 15 in vitro preparation is analyzed by RP-HPLC (YMC-C4 column, 4.6 mm x 150 mm, 5-μm beads, 200C column temperature, at 0.9 mL/minute flow rate, load at 0% ethanol, elution by 42-77% linear gradient of ethanol in water with 2OmM ammonium acetate: acetate, 0.2 mM CaCl2 buffer, pH approximately 5, conducted over 21 column volumes). The resulting chromatogram is shown in Figure 1. [0090] Deamidation by-products may be observed as a close-doublet heterogeneity. In Figure 1, the close-doublet includes the peaks at 84.36 and 86.74. The peak at 86.74 corresponds to undeamidated IL-15, and the peak at 84.36 corresponds to deamidated IL-15. The peak at 84.36 includes D- and L- isoaspartic acid and D- and L- aspartic acid deamidation by-products of IL-15. EXAMPLE 2
[0091] This example demonstrates that the close-doublet heterogeneity includes undeamidated IL- 15 and deamidation by-products of IL- 15.
[0092] The close-doublet heterogeneity observed in Example 1 is further sub-fractionated into four regions YMC-30, YMC 30-b, YMC-30c, and YMC-31, as shown in Figure 1. Each of these four regions is further analyzed by RP-HPLC (Waters X-Bridge BEH300 column, 4.6 mm x 250 mm, 3.5 μm beads, 20°C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion-pairing agent, pH approximately 2, conducted over 12 column volumes). As shown in Figure 2, the close-doublet heterogeneity includes Peak 1, Peak 2, and Peak *. Peak 1 corresponds to the D-, L- isoaspartic acid deamidation by-product, Peak * corresponds to the D-, L- aspartic acid deamidation by-product, and Peak 2 corresponds to undeamidated IL-15. Thus, in vitro preparations of unsubstituted IL-15 include undeamidated IL-15 as well as the deamidation by-products D-, L- isoaspartic acid and D-, L- aspartic acid.
EXAMPLE 3
[0093] This example demonstrates that the close-doublet heterogeneity includes undeamidated IL-15 and deamidation by-products of IL-15.
[0094] Regions YMC 30-b, YMC-30c, and YMC-31 are analyzed by RP-HPLC (Waters YMC-C4 column, 4.6 mm x 150 mm, 5-μm beads, 20°C column temperature, 1.0 mL/minute flow rate, load at 0% acetonitrile, elution by 35-65% linear gradient of acetonitrile in water with 0.1% TFA ion-pairing agent, pH approximately 2, conducted over 22 column volumes). As shown in Figure 3, the close-doublet heterogeneity includes Peak 1, Peak 2, and Peak *. Peak 1 corresponds to the D-, L- isoaspartic acid deamidation by-product, Peak * corresponds to the D-, L- aspartic acid deamidation by-product, and Peak 2 corresponds to undeamidated IL-15. Thus, in vitro preparations of unsubstituted IL-15 include undeamidated IL-15 as well as the deamidation by-products D-, L- isoaspartic acid and D-, L- aspartic acid.
EXAMPLE 4
[0095] This example demonstrates that the order of elution of deamidated IL-15 and undeamidated IL-15 in an RP-HPLC analysis reverses in an anion exchange HPLC analysis, which is consistent with the deamidation of IL-15. [0096] An unsubstituted IL- 15 preparation is analyzed by RP-HPLC (analysis over Waters YMC-C4 column, 4.6 mm x 150 mm, 5-μm beads, 20°C column temperature, 0.9 mL/minute flow rate, load at 0% acetonitrile, elution by 50-72% linear gradient of ethanol in water with 20 mM 20 mM ammonium acetate: acetate, 0.2mM CaCl2 buffer, pH approximately 5, conducted over 21 column volumes). The resulting chromatograph is shown in Figure 4. Peak A, which corresponds with deamidated IL-15, elutes before Peak B, which corresponds with undeamidated IL-15.
[0097] The unsubstituted IL-15 preparation is also analyzed by anion exchange HPLC (analysis over Waters ProPac-SAX-10, elution by linear gradient from 7-700 mM NaCl in a mobile phase containing ~10 mM Bis-Tris-Propane, 30% ethanol buffer, pH approximately 7.4, measured prior to ethanol addition). The resulting chromatogram is shown in Figure 5. Peak A, which corresponds with deamidated IL-15, elutes after Peak B, which corresponds with undeamidated IL-15.
[0098] Thus, the order of elution between the deamidated and undeamidated IL-15 is reversed between RP-HPLC and anion-exchange HPLC. These results are consistent with the deamidation of IL-15. Because deamidation replaces the neutral amide group of asparagine with a negatively charged, less hydrophobic, more polar carboxylic acid side chain of aspartic acid, the deamidated form of IL-15 has a greater attraction to the anion- exchange column. Therefore, the deamidated form of IL-15 elutes later than the undeamidated form of IL-15 on an anion exchange column.
EXAMPLE 5
[0099] This example demonstrates that unsubstituted IL-15 in vitro preparations includes isoaspartic acid, a deamidation by-product of IL-15.
[0100] An unsubstituted IL-15 in vitro preparation is digested with Protein Isoaspartyl Methyltransferase (PIMT) enzyme using an Isoquant™ Protein Deamidation Detection kit from Promega Corporation (Madison, Wisconsin, U.S.A.) according to the manufacturer's directions, with the exception that the buffer provided in the kit is replaced with an identical buffer that does not include detergents.
[0101] The IL-15 preparation is fractionated by size exclusion chromatography SEC- ExRP-HPLC (guard column) to remove aggregates, detergents and salts and to select for IL- 15. The IL-15 protein-containing pool is analyzed by RP-HPLC (Tandem X-Bridge BEH300 column, 2.1 x 250 mm, 3.5 μm beads, water/acetonitrile/0.08% TF A/formic acid buffer, 50 μl in 250μl final volume, 48-53% over 100 minutes, 20° C, 0.16 ml per minute). The results are shown in Figure 6. The upper panel of Figure 6 shows the undigested unsubstituted IL- 15 preparation, with peaks D, N, and B corresponding to the iso-aspartic acid deamidation product of IL- 15, the undeamidated IL- 15, and the aspartic acid deamidation product of IL- 15, respectively.
[0102] The PIMT enzyme selectively methylates iso-aspartic acid with methyl group donation by S-adenosyl methionine. As shown in the lower panel of Figure 6, a new peak appears on the right following digestion of the unsubstituted IL- 15 preparation with the PIMT enzyme, which corresponds to the enzymatically formed methyl-iso-aspartic acid deamidation by-product of IL-15. Thus, in vitro preparations of unsubstituted IL- 15 include one of the by-products of deamidation of IL-15, i.e., the iso-aspartic acid version of IL-15.
EXAMPLE 6
[0103] An unsubstituted, deamidation enriched recombinant human IL-15 sample, having between 60-70% deamidation as determined analytically by RP-HPLC, is digested with chymotrypsin. The resulting digest is reduced with dithiothreitol (DTT). The chymotryptic peptides are separated by reverse phase HPLC with UV and mass spectral detection. Using a MicroMass Q-ToF API US, quadrapole time-of-flight mass spectrometer (Waters, Inc., Milford, Massachusetts), mass spectrometric detection is achieved by positive ion ESI-MS with selected peptides further analyzed by on-line ESI-MS/MS.
[0104] The resulting reverse phase HPLC chromatogram is shown in Figure 7 and Table 4. Figure 7 and Table 4 summarize the relative elution positions for a subset of peptides that cover all of the asparagines within the deamidation enriched IL-15 sample.
Table 4
Figure imgf000025_0001
Figure imgf000026_0001
[0105] The asparagine residue-containing peptides are found to remain predominantly non-deamidated. Specifically noted are [peak: peptide] species [16.0: S(75)-F(99)] and [16.5: S(73)-F(99)], both of which include the N(77) modification site, but have unmodified asparagines residues at N(77). The detection of these two specific non-deamidated peptides and the balance of remaining non-deamidated peptides demonstrates that the digestion, chromatography and mass spectrophotometric detection methods are sufficiently gentle to preserve non-deamidated peptides.
[0106] However, deamidation is observed in a narrow subset of peptides. Specifically noted are [peak: peptide] species [16.3: A(70)-F(99)-deamidated] and [17.6: 1(67)-F(99)- deamidated or 17.6: 1(68)-L(100)-deamidated]. Because the [16.3: A(70)-F(99)] peptide sequence contains five asparagine residues, all within an peptide of convenient size, the peptide provides an ideal empirical basis on which to detect possible deamidation at the N(71), N(72), N(77), and N(79) and N(95) sites. If the peptide is deamidated, it would be expected to have a molecular mass that is one atomic mass unit more than a peptide that is not deamidated. Further, the 1101.80 mass-to-charge ratio of this peptide is consistent with a single deamidation event resulting in a parent monoisotopic molecular mass of 3303.4. This empirical measurement agrees with the theoretical monoisotopic molecular mass calculated for a deamidated form of peptide A(70)-F(99) where the expected value is 3303.4628 atomic mass units.
[0107] This example demonstrated that deamidation occurs within the A(70) to F(99) peptide fragment of unsubstituted IL-15 (SEQ ID NO: 7).
EXAMPLE 7
[0108] The A(70)-F(99) peptide of Example 6 corresponding to an on-line mass of 1101.80 atomic mass units is subjected to in-detector, collisional-fragmentation (LC- MS/MS). The results are shown in Figures 8 and 9 and Table 5. Table 5 ι-Hu-IL-15 Peptide MS/MS for Species at 1101.80 ES+ [16.356:(A70)-F(99)]
Within each isotopic envelope, the peak corresponding to the most abundant peak ion minus one molucular weight unit was assinged as the monoisotopic peak.
Fragment ID Calcualted a Observed a Fragment ID Calculated b Observed b Fragment ID Calculated y Observed y a b Ϋ
1 A — N/M 1 A ... N/M 30 A — N/M
2 N 158.0924 158.08 (+1) 2 N 186.0873 186.08 (+1) 29 N 3232.4256 N/M (+2)
3 N 272.1353 272.13 (+1) 3 N 300.1302 300.11 (+1) 28 N 3118.3827 3118.18 (+2)
4 S 359.1674 359.15 (+1) 4 S 387.1623 387.14 (+1) 27 S 3004.3398 3004.14 (+2)
5 L 472.2514 472.22 (+1) 5 L 500.2463 500.22 (+1) 26 L 2917.3078 2917.14 (+2)
6 S 559.2835 560.19 (+1) 6 S 587.2784 587.24 (+1) 25 S 2804.2237 2803.80 (+2)
7 S 646.3155 674.27 (+1) 7 S 674.3104 (691.21) (+1) 24 S 2717.1917 2717.02 (+2)
8 D 761.3424 761.39 (+1) 8 D 789.3373 789.28 (+1) 23 D 2630.1596 2629.98 (+2)
9 G 818.3639 818.30 (+1) 9 G 846.3588 846.30 (+1) 22 G 2515.1327 2514.96 (+2)
10 N 932.4068 (935.67) (+1) 10 N 960.4017 960.33 (+1) 21 N 2458.1112 2457.96 (+2)
11 V 1031.4752 N/M 11 V 1059.4701 N/M 20 V 2344.0683 2343.90 (+2)
12 T 1132.5229 N/M 12 T 1160.5178 N/M 19 T 2244.9999 2244.88 (+2)
13 E 1261.5655 N/M 13 E 1289.5604 N/M 18 E 2143.9522 2143.90 (+2)
14 S 1348.5975 N/M 14 S 1376.5924 N/M 17 S 2014.9096 2014.78 (+2)
15 G 1405.619 N/M 15 G 1433.6139 N/M 16 G 1927.8776 1927.72 (+2)
16 C 1508.6282 N/M 16 C 1536.6231 N/M 15 C 1870.8561 1869.72 (+2)
17 K 1636.7231 N/M 17 K 1664.7181 N/M 14 K 1767.8469 1767.80 (+2)
18 E 1765.7657 N/M 18 E 1793.7606 N/M 13 E 1639.752 1639.64 (+2)
19 C 1868.7749 N/M 19 C 1896.7698 N/M 12 C 1510.7094 1510.56 (+2)
20 E 1997.8175 N/M 20 E 2025.8124 N/M 11 E 1407.7002 N/M (+1)
21 E 2126.8601 N/M 21 E 2154.855 N/M 10 E 1278.6576 N/M (+1)
22 L 2239.9442 N/M 22 L 2267.9391 2267.82 (+2) 9 L 1149.615 N/M (+1)
23 E 2368.9868 N/M 23 E 2396.9817 2379.86 (+2) 8 E 1036.531 N/M (+1)
24 E 2498.0294 N/M 24 E 2526.0243 2509.94 (+2) 7 E 907.4884 907.43 (+1)
25 K 2626.1243 N/M 25 K 2654.1192 N/M 6 K 778.4458 778.39 (+1)
26 N 2740.1672 N/M 26 N 2768.1622 N/M 5 N 650.3508 650.30 (+1)
27 I 2853.2513 N/M 27 I 2881.2462 N/M 4 I 536.3079 (536.27) (+1)
28 K 2981.3463 N/M 28 K 3009.3412 N/M 3 K 423.2238 423.20 (+1)
29 E 3110.3889 N/M 29 E 3138.3838 N/M 2 E 295.1288 N/M
30 F — N/M 30 F ... N/M 1 F 166.0863 N/M
[0109] The resulting set of observed a-type, b-type and y-type fragment mass-to-charge ratios, when converted singly-protonated monoisotopic masses (based upon determination of ion-charge using observed isotopic pattern spacing) matches the theoretical calculated values for the peptide containing an asparatic acid in place of asparagine 77. The theoretical calculated values are obtained from Protein Prospector (University of California at San Francisco) MS-Product and MS-Isotope programs. It is noted that portions of the data set are consistent with co-elution of possible trace levels of non-deamidated species, species containing single-deamidation modifications in some combination of the other four possible sites within the A(70)-F(99) sequence, as well as the existence of minor species containing doubly-deamidated peptides. Thus, the possibility of other minor deamidation sites can not be ruled out by this analysis.
[0110] However, based upon the totality of the empirical evidence obtained through LC- MS/MS chymotrypic peptide map analysis, it is concluded that N(77) is the primary deamidation site within unsubstituted IL-15.
[0111] This example demonstrated that deamidation occurs at the N(77) site of unsubstituted IL-15 (SEQ ID NO: 7).
[0112] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
[0113] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
[0114] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims

CLAIMS:
1. An amino acid sequence comprising SEQ ID NO: 1 , wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn;
Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
2. An amino acid sequence comprising SEQ ID NO:3, wherein Xaa71 is selected from the group consisting of Ser, Ala and Asn; Xaa72 is selected from the group consisting of Ser, Ala and Asn;
Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and Xaa78 is selected from the group consisting of Ser and Ala.
3. The amino acid sequence according to any one of claims 1-2, wherein Xaa77 is GIn.
4. The amino acid sequence according to any one of claims 1-2, wherein Xaa77 is Ser.
5. The amino acid sequence according to any one of claims 1-2, wherein Xaa77 is GIu.
6. The amino acid sequence according to any one of claims 1-2, wherein Xaa77 is Lys.
7. The amino acid sequence according to any one of claims 1-2, wherein Xaa77 is Ala.
8. The amino acid sequence according to any one of claims 1-2, wherein Xaa71 is Ser,
Xaa 72 is Ser, and Xaa 77 is Ser.
9. The amino acid sequence according to any one of claims 1-2, wherein Xaa78 is Ser.
10. The IL- 15 amino acid sequence claimed in claim 7, wherein Xaa78 is Ala.
11. A pharmaceutical composition comprising the amino acid sequence according to any one of claims 1-10, and a pharmaceutically acceptable carrier.
12. A method of treating or preventing a condition in a mammalian host, comprising administering to the host the amino acid sequence of any one of claims 1-10 or the pharmaceutical composition of claim 11, in an amount effective to treat or prevent the condition in the host.
13. The method of treating the condition as claimed in claim 12, wherein the host is a human.
14. An isolated or purified amino acid sequence comprising SEQ ID NO: 1, wherein
Xaa71 is selected from the group consisting of Ser, Ala and Asn;
Xaa72 is selected from the group consisting of Ser, Ala and Asn;
Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, and GIu; and
Xaa78 is selected from the group consisting of Ser, Ala, and GIy.
15. An isolated or purified amino acid sequence comprising SEQ ID NO:3, wherein
Xaa71 is selected from the group consisting of Ser, Ala and Asn;
Xaa72 is selected from the group consisting of Ser, Ala and Asn;
Xaa77 is selected from the group consisting of GIn, Ser, Lys, Ala, GIu, and Asn; and
Xaa78 is selected from the group consisting of Ser and Ala.
16. An isolated or purified polypeptide according to any one of claims 14-15, wherein
Xaa71 is Ser, Xaa72 is Ser, and Xaa77 is Ser.
17. A nucleic acid sequence comprising SEQ ID NO:2, wherein
NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu;
NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and GIy;
NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn; and
NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn.
18. A nucleic acid sequence comprising SEQ ID NO:4, wherein
NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn;
NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser and Ala;
NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn; and
NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn.
19. The nucleic acid sequence according to any one of claims 17-18, wherein NNN at base pairs 229 to 231 is CAG.
20. The nucleic acid sequence according to any one of claims 17-18, wherein NNN at base pairs 229 to 231 is AGT.
21. The nucleic acid sequence according to any one of claims 17-18, wherein NNN at base pairs 229 to 231 is GCT.
22. The nucleic acid sequence according to any one of claims 17-18, wherein NNN at base pairs 229 to 231 is GAG.
23. The nucleic acid sequence according to any one of claims 17-18, wherein NNN at base pairs 229 to 231 is AAG.
24. The nucleic acid sequence according to any one of claims 17-18, wherein NNN at base pairs 211 to 213 is a codon that encodes for Ser;
NNN at base pairs 214 to 216 is a codon that encodes for Ser; and NNN at base pairs 229 to 231 is a codon that encodes for Ser.
25. The nucleic acid sequence according to claim 24, wherein NNN at base pairs 211 to 213 is AGC;
NNN at base pairs 214 to 216 is AGC; and NNN at base pairs 229 to 231 is AGT.
26. The nucleic acid sequence according to any one of claims 17-25, wherein NNN at base pairs 232 to 234 is GCG.
27. The nucleic acid sequence according to any one of claims 17-25, wherein NNN at base pairs 232 to 234 is substituted with AGC.
28. An isolated or purified nucleic acid sequence comprising SEQ ID NO:2, wherein
NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu;
NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and GIy;
NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn; and NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn.
29. An isolated or purified nucleic acid sequence comprising SEQ ID NO:4, wherein
NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn;
NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser and Ala;
NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn; and
NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn.
30. An isolated or purified nucleic acid sequence according to any one of claims 28-29, wherein
NNN at base pairs 211 to 213 is a codon that encodes for Ser; NNN at base pairs 214 to 216 is a codon that encodes for Ser; and NNN at base pairs 229 to 231 is a codon that encodes for Ser.
31. An isolated cell comprising a nucleic acid sequence that encodes the amino acid sequence of any one of claims 1-16.
32. A population of cells comprising at least one cell as claimed in claim 31.
33. An expression vector comprising SEQ ID NO:2, wherein
NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, and GIu;
NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and GIy;
NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn; and
NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn.
34. An expression vector comprising SEQ ID NO.4, wherein
NNN at base pairs 229 to 231 is a codon that encodes for an amino acid selected from the group consisting of GIn, Ser, Ala, Lys, GIu, and Asn;
NNN at base pairs 232 to 234 is a codon that encodes for an amino acid selected from the group consisting of Ser and Ala;
NNN at base pairs 211 to 213 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn; and
NNN at base pairs 214 to 216 is a codon that encodes for an amino acid selected from the group consisting of Ser, Ala, and Asn.
35. The expression vector according to any one of claims 33-34, wherein NNN at base pairs 211 to 213 is a codon that encodes for Ser;
NNN at base pairs 214 to 216 is a codon that encodes for Ser; and NNN at base pairs 229 to 231 is a codon that encodes for Ser.
36. The method of treating the condition as claimed in claim 12, wherein the condition is selected from the group consisting of cancer, bacterial infection, parasitic infection, viral infection, and fungal infection.
37. The method of treating the condition as claimed in claim 12, wherein the condition is selected from the group consisting of lymphocytopenia, immune deficiency associated with stem cell transplantation or organ transplantation, meningitis, pneumonia, bronchitis, human immune deficiency virus (HIV), herpes simplex virus (HSV) (e.g., HSV-I and HSV-2), influenza, Epstein-Barr virus, cytomegalovirus (CMV), hepatitis, Dengue virus, malaria, lymphocytic choriomeningitis virus (LCMV), vesicular stomatitis virus (VSV), appendicitis, Campylobacter, rotavirus, Salmonella, Shigella, adenovirus, chlamydia, diphtheria, encephalitis, gonorrhea, Listeria, Lyme disease, measles, mononucleosis, mumps, rabies, scarlet fever, smallpox, tuberculosis, Streptococcus, Staphylococcus, pinworm, giardiasis, toxoplasmosis, trichonomiasis, tetanus, and human papillomavirus.
PCT/US2009/042355 2008-04-30 2009-04-30 Substituted il-15 Ceased WO2009135031A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/915,363 US8415456B2 (en) 2008-04-30 2010-10-29 Substituted IL-15 polypeptides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4916508P 2008-04-30 2008-04-30
US61/049,165 2008-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/915,363 Continuation-In-Part US8415456B2 (en) 2008-04-30 2010-10-29 Substituted IL-15 polypeptides

Publications (1)

Publication Number Publication Date
WO2009135031A1 true WO2009135031A1 (en) 2009-11-05

Family

ID=40847550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/042355 Ceased WO2009135031A1 (en) 2008-04-30 2009-04-30 Substituted il-15

Country Status (2)

Country Link
US (1) US8415456B2 (en)
WO (1) WO2009135031A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537933A1 (en) 2011-06-24 2012-12-26 Institut National de la Santé et de la Recherche Médicale (INSERM) An IL-15 and IL-15Ralpha sushi domain based immunocytokines
EP2915569A1 (en) 2014-03-03 2015-09-09 Cytune Pharma IL-15/IL-15Ralpha based conjugates purification method
EP3444271A1 (en) 2013-08-08 2019-02-20 Cytune Pharma Il-15 and il-15raplha sushi domain based modulokines
EP3659622A1 (en) 2013-08-08 2020-06-03 Cytune Pharma Combined pharmaceutical composition
WO2020234387A1 (en) 2019-05-20 2020-11-26 Cytune Pharma IL-2/IL-15Rßy AGONIST DOSING REGIMENS FOR TREATING CANCER OR INFECTIOUS DISEASES
WO2022090202A1 (en) 2020-10-26 2022-05-05 Cytune Pharma IL-2/IL-15RBβү AGONIST FOR TREATING NON-MELANOMA SKIN CANCER
WO2022090203A1 (en) 2020-10-26 2022-05-05 Cytune Pharma IL-2/IL-15Rβү AGONIST FOR TREATING SQUAMOUS CELL CARCINOMA
EP4032540A1 (en) 2013-04-19 2022-07-27 Cytune Pharma Cytokine derived treatment with reduced vascular leak syndrome
WO2022214653A1 (en) * 2021-04-09 2022-10-13 Ose Immunotherapeutics New scaffold for bifunctional molecules with improved properties
WO2022268991A1 (en) 2021-06-23 2022-12-29 Cytune Pharma Interleukin 15 variants
WO2023017191A1 (en) 2021-08-13 2023-02-16 Cytune Pharma Il-2/il-15rbetagamma agonist combination with antibody-drug conjugates for treating cancer
WO2024215987A1 (en) 2023-04-14 2024-10-17 Sotio Biotech Inc. IMMUNE CELLS FOR TREATING CANCER IN COMBINATION WITH IL-15/IL-15Rα CONJUGATES
WO2024215989A1 (en) 2023-04-14 2024-10-17 Sotio Biotech Inc. ENGINEERED IMMUNE CELLS FOR TREATING CANCER IN COMBINATION WITH IL-2/IL-15 RECEPTOR βγ AGONISTS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12233104B2 (en) * 2015-10-08 2025-02-25 Nektar Therapeutics Combination of an IL-2RBETA-selective agonist and a long-acting IL-15 agonist
WO2021142476A1 (en) 2020-01-12 2021-07-15 Dragonfly Therapeutics, Inc. Single-chain polypeptides
US20230151095A1 (en) 2021-11-12 2023-05-18 Xencor, Inc. Bispecific antibodies that bind to b7h3 and nkg2d
WO2024102636A1 (en) 2022-11-07 2024-05-16 Xencor, Inc. Bispecific antibodies that bind to b7h3 and mica/b
US20250243279A1 (en) 2023-10-17 2025-07-31 Xencor, Inc. Bispecific antibodies that bind to nkp46 and mica/b

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747024A (en) * 1993-03-08 1998-05-05 Immunex Corporation Vaccine adjuvant comprising interleukin-15
CA2186747C (en) 1994-04-06 2009-01-27 Kenneth H. Grabstein Interleukin-15
US7008624B1 (en) * 1995-02-22 2006-03-07 Immunex Corporation Antagonists of interleukin-15
US5660824A (en) 1995-05-24 1997-08-26 Grabstein; Kenneth H. Muscle trophic factor
WO2003057881A1 (en) * 2001-12-28 2003-07-17 Chugai Seiyaku Kabushiki Kaisha Method of stabilizing protein
WO2004058278A1 (en) 2002-12-16 2004-07-15 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Recombinant vaccine viruses expressing il-15 and methods of using the same
JP5709356B2 (en) 2006-01-13 2015-04-30 アメリカ合衆国 Codon optimized IL-15 and IL-15R-α genes for expression in mammalian cells

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DAUMY G O ET AL: "REDUCTION OF BIOLOGICAL ACTIVITY OF MURINE RECOMBINANT INTERLEUKIN-1B BY SELECTIVE DEAMIDATION AT ASPARAGINE-149", FEBS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 278, no. 1, 14 January 1991 (1991-01-14), pages 98 - 102, XP000174775, ISSN: 0014-5793 *
DI SALVO MARTINO L ET AL: "Deamidation of asparagine residues in a recombinant serine hydroxymethyltransferase", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 372, no. 2, 15 December 1999 (1999-12-15), pages 271 - 279, XP002537638, ISSN: 0003-9861 *
HSU YUEH-RONG ET AL: "Selective deamidation of recombinant human stem cell factor during in vitro aging: Isolation and characterization of the aspartyl and isoaspartyl homodimers and heterodimers", BIOCHEMISTRY, vol. 37, no. 8, 24 February 1998 (1998-02-24), pages 2251 - 2262, XP002537640, ISSN: 0006-2960 *
SASAOKI K ET AL: "DEAMIDATION AT ASPARAGINE-88 RECOMBINANT HUMAN INTERLEUKIN 2", CHEMICAL AND PHARMACEUTICAL BULLETIN (TOKYO), vol. 40, no. 4, 1992, pages 976 - 980, XP009120247, ISSN: 0009-2363 *
WINGFIELD P T ET AL: "RECOMBINANT-DERIVED INTERLEUKIN-1ALPHA STABILIZED AGAINST SPECIFIC DEAMIDATION", PROTEIN ENGINEERING, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 1, no. 5, 1 October 1987 (1987-10-01), pages 413 - 417, XP009051058, ISSN: 0269-2139 *
ZHANG WEI ET AL: "Characterization of asparagine deamidation and aspartate isomerization in recombinant human interleukin-11", PHARMACEUTICAL RESEARCH (NEW YORK), vol. 19, no. 8, August 2002 (2002-08-01), pages 1223 - 1231, XP002537639, ISSN: 0724-8741 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2537933A1 (en) 2011-06-24 2012-12-26 Institut National de la Santé et de la Recherche Médicale (INSERM) An IL-15 and IL-15Ralpha sushi domain based immunocytokines
WO2012175222A1 (en) 2011-06-24 2012-12-27 Cytune AN IL-15 AND IL-15Rα SUSHI DOMAIN BASED IMMUNOCYTOKINES
EP3406723A1 (en) 2011-06-24 2018-11-28 Cytune An il-15 and il-15ralpha sushi domain based immunocytokines
US11753454B2 (en) 2011-06-24 2023-09-12 Cytune Pharma IL-15 and IL-15R\alpha sushi domain based immunocytokines
US10626155B2 (en) 2011-06-24 2020-04-21 Cytune Pharma IL-15 and IL-15R\alpha sushi domain based immunocytokines
US10899816B2 (en) 2011-06-24 2021-01-26 Inserm (Institut National De La Santé Et De La Recherche Medicale) IL-15 and IL-15Rα sushi domain based immunocytokines
US11401312B2 (en) 2013-04-19 2022-08-02 Cytune Pharma Cytokine derived treatment with reduced vascular leak syndrome
EP4032540A1 (en) 2013-04-19 2022-07-27 Cytune Pharma Cytokine derived treatment with reduced vascular leak syndrome
EP3444271A1 (en) 2013-08-08 2019-02-20 Cytune Pharma Il-15 and il-15raplha sushi domain based modulokines
EP3659622A1 (en) 2013-08-08 2020-06-03 Cytune Pharma Combined pharmaceutical composition
EP3995507A1 (en) 2013-08-08 2022-05-11 Cytune Pharma Il-15 and il-15ralpha sushi domain based on modulokines
EP4269441A2 (en) 2013-08-08 2023-11-01 Cytune Pharma Il-15 and il-15ralpha sushi domain based on modulokines
US10808022B2 (en) 2014-03-03 2020-10-20 Cytune Pharma IL-15/IL-15Ralpha based conjugates purification method
US12060407B2 (en) 2014-03-03 2024-08-13 Cytune Pharma IL-15/IL-15Ralpha based conjugates purification method
WO2015131994A1 (en) 2014-03-03 2015-09-11 Cytune Pharma Il-15/il-15ralpha based conjugates purification method
EP2915569A1 (en) 2014-03-03 2015-09-09 Cytune Pharma IL-15/IL-15Ralpha based conjugates purification method
WO2020234387A1 (en) 2019-05-20 2020-11-26 Cytune Pharma IL-2/IL-15Rßy AGONIST DOSING REGIMENS FOR TREATING CANCER OR INFECTIOUS DISEASES
KR20220012296A (en) 2019-05-20 2022-02-03 싸이튠 파마 IL-2/IL-15Rβγ agonist dosing regimen for treatment of cancer or infectious disease
WO2022090202A1 (en) 2020-10-26 2022-05-05 Cytune Pharma IL-2/IL-15RBβү AGONIST FOR TREATING NON-MELANOMA SKIN CANCER
KR20230096049A (en) 2020-10-26 2023-06-29 싸이튠 파마 IL-2/IL-15Rβγ agonists for the treatment of squamous cell carcinoma
KR20230096047A (en) 2020-10-26 2023-06-29 싸이튠 파마 IL-2/IL-15Rβγ agonists for the treatment of non-melanoma skin cancer
WO2022090203A1 (en) 2020-10-26 2022-05-05 Cytune Pharma IL-2/IL-15Rβү AGONIST FOR TREATING SQUAMOUS CELL CARCINOMA
WO2022214653A1 (en) * 2021-04-09 2022-10-13 Ose Immunotherapeutics New scaffold for bifunctional molecules with improved properties
WO2022268991A1 (en) 2021-06-23 2022-12-29 Cytune Pharma Interleukin 15 variants
WO2023017191A1 (en) 2021-08-13 2023-02-16 Cytune Pharma Il-2/il-15rbetagamma agonist combination with antibody-drug conjugates for treating cancer
WO2024215987A1 (en) 2023-04-14 2024-10-17 Sotio Biotech Inc. IMMUNE CELLS FOR TREATING CANCER IN COMBINATION WITH IL-15/IL-15Rα CONJUGATES
WO2024215989A1 (en) 2023-04-14 2024-10-17 Sotio Biotech Inc. ENGINEERED IMMUNE CELLS FOR TREATING CANCER IN COMBINATION WITH IL-2/IL-15 RECEPTOR βγ AGONISTS

Also Published As

Publication number Publication date
US8415456B2 (en) 2013-04-09
US20110059042A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
WO2009135031A1 (en) Substituted il-15
US11091526B2 (en) IL-2 muteins and uses thereof
FI81118B (en) FOERFARANDE FOER FRAMSTAELLNING AV VAESENTLIGEN RENT INTERLEUKIN-2 PROTEIN.
EP4023666A1 (en) Interleukin-2 derivative
KR920007439B1 (en) Hybrid human leukocyte interferons
KR20160067219A (en) Polynucleotides encoding low density lipoprotein receptor
US9796767B2 (en) Bis-met histones
EP4389893A1 (en) Human transferrin receptor binding peptide-drug conjugate
CN111432831A (en) I L-2 mutant protein and application thereof
KR100439290B1 (en) New polypeptides that recognize interleukin-18
RS66304B1 (en) Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
NZ205667A (en) Purification of recombinant human immune interferon;pharmaceutical compositions
EP3751004A1 (en) Manufacturing method for nucleic acid molecule
US20220041662A1 (en) Cell penetrating peptides
CN101679502A (en) A novel compound interferon and its preparation method
AU2002340118A1 (en) UL16 Binding protein 4
WO2003029436A2 (en) Ul16 binding protein 4
TW200302277A (en) Corticotropin releasing factor 2 receptor agonists
EA009771B1 (en) Neublastin polypeptide, method for making thereof and use
JPH0695939B2 (en) Cloned DNA coding for rabbit cancer necrosis factor
KR20170119007A (en) Peptides Having Activities for Anti-inflammation and Uses Thereof
Mikuni et al. Sequence and functional analysis of mutations in the gene encoding peptide-chain-release factor 2 of Escherichia coli
JPH02264796A (en) Libonucleotide reductase inhibitor
WO1986004506A1 (en) Infection-protective agent containing human granulocyte colony-stimulating factor as effective ingredient
CA1282353C (en) INTERFERON .alpha. 74

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09739833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09739833

Country of ref document: EP

Kind code of ref document: A1