WO1998038239A1 - Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film - Google Patents
Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film Download PDFInfo
- Publication number
- WO1998038239A1 WO1998038239A1 PCT/US1998/003370 US9803370W WO9838239A1 WO 1998038239 A1 WO1998038239 A1 WO 1998038239A1 US 9803370 W US9803370 W US 9803370W WO 9838239 A1 WO9838239 A1 WO 9838239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- polycarbonate
- formulation
- polycarbonate material
- liquid formulation
- Prior art date
Links
- 229920000515 polycarbonate Polymers 0.000 title claims abstract description 400
- 239000004417 polycarbonate Substances 0.000 title claims abstract description 389
- 239000007788 liquid Substances 0.000 title claims abstract description 239
- 239000000203 mixture Substances 0.000 title claims abstract description 200
- 238000009472 formulation Methods 0.000 title claims abstract description 177
- 229920006289 polycarbonate film Polymers 0.000 title claims abstract description 121
- 239000000126 substance Substances 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 67
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims abstract description 160
- 239000000463 material Substances 0.000 claims abstract description 87
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims abstract description 81
- 239000007787 solid Substances 0.000 claims abstract description 63
- 239000002245 particle Substances 0.000 claims abstract description 55
- 238000009835 boiling Methods 0.000 claims abstract description 41
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical class C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims abstract description 33
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims abstract description 32
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical class C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims abstract description 27
- 150000003222 pyridines Chemical class 0.000 claims abstract description 21
- 150000003233 pyrroles Chemical class 0.000 claims abstract description 20
- 238000005530 etching Methods 0.000 claims abstract description 18
- FKCMADOPPWWGNZ-YUMQZZPRSA-N [(2r)-1-[(2s)-2-amino-3-methylbutanoyl]pyrrolidin-2-yl]boronic acid Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1B(O)O FKCMADOPPWWGNZ-YUMQZZPRSA-N 0.000 claims abstract description 9
- 239000012669 liquid formulation Substances 0.000 claims description 85
- 239000012298 atmosphere Substances 0.000 claims description 80
- 125000001424 substituent group Chemical group 0.000 claims description 45
- 239000004094 surface-active agent Substances 0.000 claims description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 33
- 238000012545 processing Methods 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 230000009477 glass transition Effects 0.000 claims description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims description 26
- 238000001035 drying Methods 0.000 claims description 23
- 238000004528 spin coating Methods 0.000 claims description 23
- 239000000470 constituent Substances 0.000 claims description 22
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 19
- 229910052805 deuterium Chemical group 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 17
- 125000004432 carbon atom Chemical group C* 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 14
- 239000007864 aqueous solution Substances 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 13
- 238000010494 dissociation reaction Methods 0.000 claims description 13
- 230000005593 dissociations Effects 0.000 claims description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 8
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 229910052801 chlorine Inorganic materials 0.000 claims description 7
- 239000000460 chlorine Substances 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 239000011737 fluorine Substances 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000002318 adhesion promoter Substances 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 6
- 230000001070 adhesive effect Effects 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 5
- 150000001975 deuterium Chemical group 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- MBVFRSJFKMJRHA-UHFFFAOYSA-N 4-fluoro-1-benzofuran-7-carbaldehyde Chemical group FC1=CC=C(C=O)C2=C1C=CO2 MBVFRSJFKMJRHA-UHFFFAOYSA-N 0.000 claims description 4
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- 229910052736 halogen Inorganic materials 0.000 claims description 4
- 150000002367 halogens Chemical class 0.000 claims description 4
- 125000002560 nitrile group Chemical group 0.000 claims description 4
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 claims description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 3
- 125000001174 sulfone group Chemical group 0.000 claims description 2
- 125000000101 thioether group Chemical group 0.000 claims description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 2
- 230000001131 transforming effect Effects 0.000 claims 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 claims 1
- 229910052740 iodine Inorganic materials 0.000 claims 1
- 125000002577 pseudohalo group Chemical group 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 19
- 239000002904 solvent Substances 0.000 description 147
- 239000010408 film Substances 0.000 description 121
- 229920004042 Makrolon® 2608 Polymers 0.000 description 40
- 239000000243 solution Substances 0.000 description 34
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 26
- 238000002474 experimental method Methods 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 16
- 229910052804 chromium Inorganic materials 0.000 description 16
- 239000011651 chromium Substances 0.000 description 16
- 239000011521 glass Substances 0.000 description 16
- 238000000137 annealing Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 150000003235 pyrrolidines Chemical class 0.000 description 13
- 239000004425 Makrolon Substances 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 238000009736 wetting Methods 0.000 description 11
- OXHNLMTVIGZXSG-UHFFFAOYSA-N 1-Methylpyrrole Chemical compound CN1C=CC=C1 OXHNLMTVIGZXSG-UHFFFAOYSA-N 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical group [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 239000004020 conductor Substances 0.000 description 8
- 238000010981 drying operation Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- 125000005843 halogen group Chemical group 0.000 description 6
- -1 i.e. Polymers 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000011343 solid material Substances 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 5
- 150000001721 carbon Chemical group 0.000 description 5
- 239000012212 insulator Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000003341 Bronsted base Substances 0.000 description 4
- 229920004142 LEXAN™ Polymers 0.000 description 4
- 239000004418 Lexan Substances 0.000 description 4
- 229920004066 Makrolon® 3208 Polymers 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- 239000007848 Bronsted acid Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 3
- 238000003760 magnetic stirring Methods 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 239000000615 nonconductor Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- HPYNZHMRTTWQTB-UHFFFAOYSA-N 2,3-dimethylpyridine Chemical compound CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 description 2
- WFGFGSWFQKXOAE-UHFFFAOYSA-N 2-ethyl-4-methylpyridine Chemical compound CCC1=CC(C)=CC=N1 WFGFGSWFQKXOAE-UHFFFAOYSA-N 0.000 description 2
- PFYPDUUXDADWKC-UHFFFAOYSA-N 2-propan-2-ylpyridine Chemical compound CC(C)C1=CC=CC=N1 PFYPDUUXDADWKC-UHFFFAOYSA-N 0.000 description 2
- NURQLCJSMXZBPC-UHFFFAOYSA-N 3,4-dimethylpyridine Chemical compound CC1=CC=NC=C1C NURQLCJSMXZBPC-UHFFFAOYSA-N 0.000 description 2
- JDQNYWYMNFRKNQ-UHFFFAOYSA-N 3-ethyl-4-methylpyridine Chemical compound CCC1=CN=CC=C1C JDQNYWYMNFRKNQ-UHFFFAOYSA-N 0.000 description 2
- HJKGBRPNSJADMB-UHFFFAOYSA-N 3-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CN=C1 HJKGBRPNSJADMB-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 125000004431 deuterium atom Chemical group 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- IIYSNNBEZBAQCQ-UHFFFAOYSA-N 1-butylpyrrole Chemical compound CCCCN1C=CC=C1 IIYSNNBEZBAQCQ-UHFFFAOYSA-N 0.000 description 1
- MFGOZCIHXVFZBC-UHFFFAOYSA-N 1-propylpyrrole Chemical compound CCCN1C=CC=C1 MFGOZCIHXVFZBC-UHFFFAOYSA-N 0.000 description 1
- GJIRIQBRSTYPSF-UHFFFAOYSA-N 1-tert-butylpyrrole Chemical compound CC(C)(C)N1C=CC=C1 GJIRIQBRSTYPSF-UHFFFAOYSA-N 0.000 description 1
- MFFMQGGZCLEMCI-UHFFFAOYSA-N 2,4-dimethyl-1h-pyrrole Chemical compound CC1=CNC(C)=C1 MFFMQGGZCLEMCI-UHFFFAOYSA-N 0.000 description 1
- OIALIKXMLIAOSN-UHFFFAOYSA-N 2-Propylpyridine Chemical compound CCCC1=CC=CC=N1 OIALIKXMLIAOSN-UHFFFAOYSA-N 0.000 description 1
- IMRWILPUOVGIMU-UHFFFAOYSA-N 2-bromopyridine Chemical compound BrC1=CC=CC=N1 IMRWILPUOVGIMU-UHFFFAOYSA-N 0.000 description 1
- OKDGRDCXVWSXDC-UHFFFAOYSA-N 2-chloropyridine Chemical compound ClC1=CC=CC=N1 OKDGRDCXVWSXDC-UHFFFAOYSA-N 0.000 description 1
- MTAODLNXWYIKSO-UHFFFAOYSA-N 2-fluoropyridine Chemical compound FC1=CC=CC=N1 MTAODLNXWYIKSO-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical class CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- VJXRKZJMGVSXPX-UHFFFAOYSA-N 4-ethylpyridine Chemical compound CCC1=CC=NC=C1 VJXRKZJMGVSXPX-UHFFFAOYSA-N 0.000 description 1
- XQABVLBGNWBWIV-UHFFFAOYSA-N 4-methoxypyridine Chemical compound COC1=CC=NC=C1 XQABVLBGNWBWIV-UHFFFAOYSA-N 0.000 description 1
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 description 1
- NTSLROIKFLNUIJ-UHFFFAOYSA-N 5-Ethyl-2-methylpyridine Chemical compound CCC1=CC=C(C)N=C1 NTSLROIKFLNUIJ-UHFFFAOYSA-N 0.000 description 1
- KNCHDRLWPAKSII-UHFFFAOYSA-N 5-ethyl-2-methylpyridine Natural products CCC1=CC=NC(C)=C1 KNCHDRLWPAKSII-UHFFFAOYSA-N 0.000 description 1
- 206010010144 Completed suicide Diseases 0.000 description 1
- 125000003625 D-valyl group Chemical group N[C@@H](C(=O)*)C(C)C 0.000 description 1
- PAPNRQCYSFBWDI-UHFFFAOYSA-N DMP Natural products CC1=CC=C(C)N1 PAPNRQCYSFBWDI-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- DZPJVKXUWVWEAD-UHFFFAOYSA-N [C].[N].[Si] Chemical compound [C].[N].[Si] DZPJVKXUWVWEAD-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical class [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- HGLDOAKPQXAFKI-OUBTZVSYSA-N californium-252 Chemical compound [252Cf] HGLDOAKPQXAFKI-OUBTZVSYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000004925 dihydropyridyl group Chemical group N1(CC=CC=C1)* 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 150000002537 isoquinolines Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- PZYDAVFRVJXFHS-UHFFFAOYSA-N n-cyclohexyl-2-pyrrolidone Chemical compound O=C1CCCN1C1CCCCC1 PZYDAVFRVJXFHS-UHFFFAOYSA-N 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920000379 polypropylene carbonate Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- ILVXOBCQQYKLDS-UHFFFAOYSA-N pyridine N-oxide Chemical compound [O-][N+]1=CC=CC=C1 ILVXOBCQQYKLDS-UHFFFAOYSA-N 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 239000005336 safety glass Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/05—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
- C08J3/091—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
- C08J3/096—Nitrogen containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2369/00—Characterised by the use of polycarbonates; Derivatives of polycarbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2329/00—Electron emission display panels, e.g. field emission display panels
Definitions
- FIELD OF USE This invention relates to the formation of thin polycarbonate films, including the formulation of apertures through polycarbonate films.
- Polycarbonate is a colorless thermoplastic polymer, i.e., polycarbonate softens when heated and hardens when cooled.
- Polycarbonate is commonly used in applications which take advantage of its outstanding impact resistance and toughness, such as molded helmets, battery cases, bottles and packaging, and in applications which also demand optical transparency, such as bullet-proof and safety glass, eyewear, compact discs and automobile lenses.
- polycarbonate is used for a variety of applications ranging from precision filters to electron-emitting devices.
- Polycarbonate membranes used as commercial filters are described in the 1990 Nucleopore ® Labora tory Products Catalog, Costar Corp., 1990, pp. 3, 8 and 9.
- the membranes are created by subjecting stretched, crystalline polycarbonate film to irradiation, followed by etching to form pores.
- the Costar process is similar to that disclosed in Price et al . , U.S. Patent 3,303,085.
- the thickness of commercial membrane filters is typically 6 to 11 ⁇ m.
- Bassiere et al . provide a polycarbonate layer over a sandwich consisting of an upper conductor, an insulator and a patterned lower conductor.
- the multi-layer structure is irradiated with heavy ions to create radiation tracks through the polycarbonate layer.
- the tracks are etched to form pores through the polycarbonate layer down to the upper conductor.
- suitable etchants the pore pattern in the polycarbonate layer is transferred to the upper conductor and then to the insulator, after which conical electron-emissive elements are formed in the resulting openings in the insulator.
- Bassiere et al indicate that the thickness of their polycarbonate layer is approximately 2 ⁇ m. This is significantly less than the thickness of the commercial polycarbonate membrane filters in the Costar product catalog. While Bassiere et al . specify that the polycarbonate layer in their structure can be created by spin coating, Bassiere et al . do not provide any further information on how to make the polycarbonate layer.
- Macaulay et al . PCT Patent Publication WO 95/07543, disclose a similar fabrication technique in which electron-emissive features in an electron- emitting device are defined by way of charged-particle tracks formed in a track layer.
- Polycarbonate is one of the materials that Macaulay et al . consider for the track layer.
- the thickness of the track layer in Macaulay et al . is 0.1 to 2 ⁇ m, typically 1 ⁇ m. Consequently, the thickness of the track layer in Macaulay et al . is typically less than that of the polycarbonate layer in Bassiere et al . by a factor of up to twenty.
- the present invention involves the preparation of polycarbonate films. More particularly, the invention provides properties and compositions for a polycarbonate-containing liquid chemical formulation from which a thin polycarbonate film of highly uniform thickness can be made. The invention also furnishes processing techniques for making polycarbonate films. Apertures are created through a so-prepared polycarbonate film by etching along substantially parallel charged-particle tracks. The aperture- containing polycarbonate film is typically used in fabricating a gated electron-emitting device.
- a liquid chemical formulation suitable for making a polycarbonate film is formed with polycarbonate material dissolved in an appropriate liquid.
- the present liquid chemical formulation may have one or more other constituents such as a surfactant or an adhesive or adhesion promoter. Each other such constituent is typically present at a lower mass fraction than the mass fraction of the polycarbonate material .
- the polycarbonate-dissolving liquid used in the present liquid chemical formulation typically has the following properties.
- the minimum solubility of the polycarbonate material in the liquid is 1% by mass at a temperature of 20 °C and a pressure of 1 atmosphere.
- the boiling point of the liquid is at least 80°C at 1 atmosphere. Also, the boiling point of the liquid is preferably no greater than (T g + 15°C) at a pressure of approximately 0.001 atmosphere, where T g is the glass transition temperature of the polycarbonate material.
- the protonated form of the liquid is normally a sufficiently strong Bronsted acid, i.e., a proton donor, in aqueous solution that the acid dissociation constant of the protonated liquid in aqueous solution exceeds IO "8 at 20°C and 1 atmosphere.
- the polycarbonate can form up to 50% by mass of the liquid chemical formulation.
- the molecular weight of the polycarbonate is usually at least 10,000, preferably 30,000 to 35,000.
- the liquid formulation of the invention typically has a kinematic viscosity of no more than 100 centistokes, preferably 2 to 25 centistokes when the solution is used for spin coating.
- the liquid can be formed with pyridine or/and a ring- substituted pyridine derivative.
- the liquid may include pyrrole, a ring- substituted pyrrole derivative, pyrrolidine, or/and a pyrrolidine derivative.
- the liquid may alternatively or additionally include chlorobenzene or/and cyclohexanone.
- the liquid preferably has the polycarbonate-solubility, minimum boiling-point and Bronsted acid characteristics given above.
- the manufacture of a polycarbonate film in accordance with the invention is accomplished by first providing a polycarbonate-containing liquid chemical formulation of the above type.
- a liquid film of the formulation is formed over a substructure to create an intermediate structure in accordance with the invention.
- the liquid film is typically produced by spin coating.
- the liquid film is further processed to remove volatile components.
- the material remaining after such processing is the solid polycarbonate film.
- the polycarbonate film may include, as minor components, one or more other non-volatile constituents of the liquid formulation and/or their reaction products.
- the film is subjected to charged particles to form charged-particle tracks at least partway through the film.
- the polycarbonate film then serves as a track layer.
- Corresponding apertures are subsequently created at least partway through, typically all the way through, the track layer by etching along the charged-particle tracks.
- an electrically non- insulating layer of the substructure is etched through the apertures in the track layer to form corresponding openings in the non- insulating layer.
- the openings in the non-insulating layer can then be used to define locations for electron-emissive elements in an electron emitter.
- the non- insulating layer can be a gate layer that overlies an electrically insulating layer below which there is a lower electrically non- insulating emitter region.
- the insulating layer is etched through the openings in the gate layer (or gate electrode) to form corresponding dielectric open spaces in the insulating layer.
- Electron-emissive elements that contact the lower emitter region are then formed in the dielectric open spaces.
- the electron-emissive elements can take various shapes such as cones or filaments.
- the film thickness is highly uniform. For example, comparing film thicknesses at any two points on a planar substructure separated by up to 10 cm, the total percentage deviation in thickness from a perfectly uniform film is normally less than 10% (i.e., less than ⁇ 5%) and is typically less than 5% (i.e., less than ⁇ 2.5%) . This amounts to a maximum point-to- point thickness variation of less than ⁇ 50 nm, typically less than ⁇ 25 nm, for a polycarbonate film of 500-nm mean thickness.
- the polycarbonate film serves as a track layer in fabricating an electron emitter according to the foregoing process
- providing the track layer with uniform thickness and uniform physical properties enables etching of the charged-particle tracks to be isotropic.
- the size of the gate openings created by using the aperture-containing polycarbonate track layer varies little from opening to opening.
- the emission of electrons across the electron-emitting area of the electron emitter is quite uniform. A high quality electron-emitting device is thereby formed.
- the invention provides a substantial technological advance over the prior art.
- Figs, la and lb are graphs which illustrate kinematic viscosity of polycarbonate-containing solutions as a function of polycarbonate concentration.
- Fig. la presents data at 20°C for pure solutions of two polycarbonates of different molecular weight dissolved in dry pyridine.
- Fig. lb presents data at 20°C for pure solutions of one polycarbonate dissolved in two different solvents.
- Fig. 2 is a graph of vapor pressure, plotted logarithmically as a function of temperature, for two different polycarbonate solvents which conform to the criteria outlined below and which are suitable for forming a polycarbonate-containing liquid chemical formulation in accordance with the invention.
- Fig. 3 is a flow chart of a process for producing a polycarbonate-containing liquid chemical formulation in accordance with the invention and then utilizing the liquid formulation so produced to make a solid polycarbonate film according to the invention.
- Fig. 4 is a graph which illustrates the dependence of solid polycarbonate film thickness on the rotational speed of the substructure for polycarbonate films formed by spin coating polycarbonate-containing liquid chemical formulations onto a planar substructure. Curves are shown for five solutions of different polycarbonate concentration but made from the same molecular weight polymer, and using the same polycarbonate-containing solvent .
- Fig. 5 is a graph which shows the dependence of solid polycarbonate film thickness on the radial coordinate of sampled points for polycarbonate films made by spin coating a polycarbonate-containing solution onto a planar, generally circular substructure according to the invention.
- Figs. 6a - 6d are cross-sectional views illustrating operations performed on a substructure to create a polycarbonate film according to the process of Fig. 3.
- Fig. 7 is a flow chart of a set of processing steps performable on the polycarbonate film of Fig. 3 for providing the film with apertures in accordance with the invention.
- Figs. 8a and 8b are cross-sectional views illustrating operations performable on the structure of Fig. 6d for providing a polycarbonate film with apertures according to the further processing steps of Fig. 7.
- Figs. 9a - 9c are cross-sectional views illustrating part of the steps by which an electron- emitting device is created from the structure of Fig. 8b in accordance with the invention.
- Figs. 10a - 10c are cross-sectional views illustrating a sequence of steps that utilize the invention's teaching for creating a gated electron- emitting device from the structure of Fig. 9c.
- Figs. 11a - lie are cross-sectional views illustrating another sequence of steps that utilize the invention's teaching for creating a gated electron- emitting device from the structure of Fig. 9c.
- Fig. 12 is a cross-sectional view of a flat-panel CRT display that incorporates a gated field emitter, such as that of Fig. 10c or lie, fabricated according to the invention.
- a liquid chemical formulation consisting of polycarbonate material, a liquid that dissolves the polycarbonate material and one or more other constituents that may be liquid or solid in standard form (i.e., at standard temperature and pressure) is provided in accordance with the invention for making thin solid polycarbonate films of highly uniform thickness.
- the liquid used for dissolving the polycarbonate in the present liquid chemical formulation is often termed the "polycarbonate solvent" herein.
- the polycarbonate- containing liquid chemical formulation yields a solid polycarbonate film whose thickness is substantially constant, ranging in value from 0.1 to 2 ⁇ m.
- the total percentage deviation in thickness from a perfectly uniform film is less than 10%, i.e., less than ⁇ 5% from the average thickness.
- the polycarbonate films are typically employed in fabricating electron-emitting devices for flat-panel cathode-ray tube ("CRT") devices.
- CRT cathode-ray tube
- Such a flat-panel CRT device can be a flat-panel television or a flat- panel video monitor for a personal computer, a lap-top computer, or a workstation.
- the polycarbonate films can also be utilized in other applications such as physical filters, optical coatings or devices, and protective coatings.
- composition and density of the polycarbonate films are normally as uniform as the film thickness. Consequently, the optical properties of transparent polycarbonate films also meet similar uniformity criteria.
- optical quantities defined by the complex refractive index are uniform within similar tolerances .
- the manufacture of a thin polycarbonate film according to the invention normally entails forming a liquid film of the present liquid chemical formulation over a substructure and removing the polycarbonate solvent and any other volatile components from the polycarbonate-containing liquid film.
- the non-volatile components of the original liquid formulation and any non-volatile reaction products of the original liquid formulation components then form the solid polycarbonate film.
- electrically insulating generally applies to materials having a resistivity greater than 10 10 ohm-cm.
- electrically non-insulating thus refers to materials having a resistivity below 10 10 ohm-cm. Electrically non-insulating materials are divided into (a) electrically conductive materials for which the resistivity is less than 1 ohm-cm and (b) electrically resistive materials for which the resistivity is in the range of 1 ohm-cm to 10 10 ohm-cm. These categories are determined at an electric field of no more than 1 volt/ ⁇ m.
- electrically conductive materials are metals, metal-semiconductor compounds (such as metal suicides) , and metal- semiconductor eutectics. Electrically conductive materials also include semiconductors doped (n-type or p-type) to a moderate or high level. Electrically resistive materials include intrinsic and lightly doped (n-type or p-type) semiconductors. Further examples of electrically resistive materials are (a) metal- insulator composites, such as cermet (ceramic with embedded metal particles) , (b) forms of carbon such as graphite, amorphous carbon, and modified (e.g. doped or laser-modified) diamond, (c) and certain silicon-carbon compounds such as silicon-carbon-nitrogen.
- metal-insulator composites such as cermet (ceramic with embedded metal particles)
- carbon such as graphite, amorphous carbon, and modified (e.g. doped or laser-modified) diamond
- silicon-carbon compounds such as silicon-carbon-nitrogen.
- the polycarbonate-containing liquid film is formed on the substructure using a method, typically spin coating, which enables the liquid film to have approximately the same uniformity as that of the final solid polycarbonate film.
- Spin coating can be controlled with sufficient precision for this purpose, being dependent primarily upon the solution viscosity, the angular velocity and angular acceleration of the substructure, and the length of time the substructure is spun.
- the kinematic viscosity of the polycarbonate-containing liquid chemical formulation of the invention is no more than 100 centistokes at a temperature of 20°C and a pressure of 1 atmosphere, where 1 centistoke equals lxlO "6 m 2 /s and 1 atmosphere equals 101,325 Pa. Normally, the kinematic viscosity of the liquid formulation at 20°C and 1 atmosphere is in the range of 2 to 25 centistokes for spin coating applications.
- the rotation speed can be varied usefully from as little as 100 revolutions per minute ("rpm") to as much as 8,000 rpm. For a preferred rotation speed in the range of 1,000 to 3,000 rpm, the preferred kinematic viscosity of the liquid formulation lies in the range 8 to 12 centistokes at 20°C and 1 atmosphere.
- the percentage of water in the liquid chemical formulation should be quite low.
- the liquid formulation should have no more than 1% water by mass of the liquid formulation, preferably no more than 0.1%.
- the mass percentage of water in the liquid formulation is typically on the order of 0.01% or less.
- a high concentration of water in the liquid formulation causes precipitation of the polycarbonate material, which can lead to the formation of poor-quality polycarbonate films.
- a high water concentration also causes generally undesired hydrolysis of the polycarbonate. Hydrolysis results in a change in the mean molecular weight of the polycarbonate dissolved in liquid formulation.
- the liquid chemical formulation of the invention has the following broad properties: la. Aside from the polycarbonate solvent
- the principal constituent of the liquid formulation is polycarbonate having a molecular weight of at least 10,000.
- the molecular weight of the polycarbonate is usually at least 20,000 and is normally no more than 100,000.
- the molecular weight of the polycarbonate is 30,000 to 35,000.
- Fig. la presents data obtained at 20 °C for pure solutions of: (1A) MAKROLON ® 2608 polycarbonate (specifically MAKROLON 2608-1000N polycarbonate) having a molecular weight of approximately 33,000 and (IB) MAKROLON CD2005 polycarbonate having a molecular weight of approximately 18,000. Both polycarbonate polymers, made by Bayer, were dissolved in dry pyridine, i.e., pyridine processed to reduce the water content to a very low level, typically no more than 0.01% by mass. Fig. la also illustrates, as expected, that the kinematic viscosity increases non- linearly with increasing polycarbonate concentration in pyridine.
- kinematic viscosity/polycarbonate mass concentration data obtained at 20°C for pure solutions of MAKROLON 2608 polycarbonate dissolved in: (1C) pyridine and (ID) l-methylpyrrolidinone commonly known as NMP .
- the solvents used in generating the data in Fig. lb were processed to reduce the water content to a very low level.
- v is the kinematic viscosity of the solution
- v 0 is the kinematic viscosity of the pure solvent
- a is a constant which depends upon the chemical composition of the polycarbonate, upon its molecular weight and upon the identity of the solvent
- c is the concentration of polycarbonate.
- the glass transition temperature T g of the polycarbonate is normally at least 65 °C.
- the resulting polycarbonate film would be formed in an undesirable rubbery or molten state if the film temperature were more than approximately 15 °C above the polycarbonate glass transition temperature T g at the end of the polycarbonate solvent removal process . Unacceptable variations in film thickness would occur as the rubbery-to-molten polycarbonate film is cooled down to form a solid hard film.
- the 65 °C minimum T g value for the polycarbonate is derived from the specifications, described further below, that the boiling point T b (l atm) of the polycarbonate solvent at 1 atmosphere be at least 80°C to avoid having the polycarbonate solvent evaporate too quickly at an ambient temperature T amb in the vicinity of 20 °C and that the intermediate liquid film be capable of being dried under 1 -atmosphere conditions at a temperature as low as the 1-atmosphere boiling point T b (l atm) of the polycarbonate solvent in order to achieve a drying time short enough to be commercially acceptable while simultaneously avoiding undesirable thickness variations in the solid polycarbonate film due, for example, to a need for excessively high temperature at the end of the drying procedure.
- the glass transition temperature T g of the polycarbonate is typically in the range of 120 - 170°C.
- T g for MAKROLON 2608 polycarbonate is 145 ⁇ 2°C. lc.
- the polycarbonate material is substantially water-free (anhydrous) immediately prior to being dissolved in the polycarbonate solvent during the preparation of the liquid chemical formulation.
- the polycarbonate contains no more than 0.1% water by mass, preferably less than 0.01%. If the polycarbonate initially contains a higher mass percentage of water, the polycarbonate is suitably dried to reduce the water content below this value. The higher the water content of the polycarbonate, the higher the water content of the liquid formulation prepared from it.
- the liquid chemical formulation may include a surfactant, i.e., a soap-like material which exhibits a positive surface-excess concentration in the liquid formulation of the invention.
- the surfactant decreases the contact angle between the liquid formulation and the substructure, thereby improving the wetting of the substructure by the liquid formulation.
- the surfactant may be in liquid or solid form prior to being introduced into the polycarbonate solvent. If the surfactant is non-volatile, it will remain as a minor component of the solid polycarbonate film after the liquid film is processed to remove volatile components.
- the surfactant may or may not exhibit a positive surface-excess concentration in the solid polycarbonate film. le .
- the liquid chemical formulation may include an adhesive or adhesion promoter, i.e., a material which increases the energy per unit area necessary to separate the polycarbonate film from the substructure.
- the adhesive or adhesion promoter may be in liquid or solid form prior to being introduced into the polycarbonate solvent. If the adhesive or adhesion promoter is non-volatile, it likewise remains as a minor component of the solid polycarbonate film after the liquid film is processed to remove volatile components. The adhesive or adhesion promoter may also react with the substructure and/or the polycarbonate film at the substructure/film interface, leaving non-volatile products which form part of the polycarbonate film. If.
- the liquid chemical formulation may include a dye that dissolves in the polycarbonate solvent. The soluble dye may likewise remain as part of the solid polycarbonate film after processing the liquid film to remove volatile components.
- the polycarbonate in the liquid chemical formulation of the invention can be chemically represented by the polymer formula:
- n is the number of repetitions of the monomeric repeating unit, represented as the segment within the parentheses in formula 2.
- Standard polycarbonate terminating groups T 1 and T 2 are present at both ends of the polymer chain.
- the "core" of the polymer molecule is the segment of n monomeric repeating groups falling between terminating groups T x and T 2 .
- Each of terminating groups T x and T 2 is typically a methoxy (CH 3 0) , ethoxy (C 2 H 5 0) , T-butyl (C 4 H g O) group, or an acetyloxy ("AcO") group where the termination link is made through the oxygen atom.
- T x and T 2 can also be ester groups that, for example, include aliphatic alcohols.
- Repetition integer n is normally at least 10, typically at least 100.
- the molecular weight of the polycarbonate increases linearly with increasing n.
- bivalent group R is typically configured as:
- each of ⁇ A and ⁇ B represents a phenylene group or a ring-substituted phenylene group
- X is typically an alkylene group but can be an ether group, a sulfide group or a sulfone group.
- formula 3 for bivalent group R can be modified to give R as:
- each of R A and R B represents a hydrogen or deuterium atom, or a monovalent hydrocarbon group.
- R A and R B represents a hydrogen or deuterium atom, or a monovalent hydrocarbon group.
- the number of carbon atoms in the alkylene group typically varies from one to four.
- a preferred form of the polycarbonate is poly (bisphenol A carbonate) , in which ⁇ A and ⁇ B are both unsubstituted 1 , 4 -phenylene groups and R A and R B are both methyl groups.
- the polymeric core of the polycarbonate is :
- H represents a hydrogen atom
- CH 3 represents a methyl group
- ⁇ represents an unsubstituted 1,4- phenylene group.
- the preferred polycarbonate in formula 5 is usually a MAKROLON polycarbonate made by Bayer.
- the MAKROLON polycarbonate is MAKROLON 2608, whose molecular weight is approximately 33,000.
- the number n of repeating units is approximately 125.
- a surfactant is present in the preferred formulation of the present liquid chemical formulation for the reasons outlined previously.
- the preferred surfactant is FluoradTM FC-430 surfactant, a viscous liquid mixture of fluoroaliphatic polymeric esters made by Minnesota Manufacturing and Mining Co. and present at a concentration sufficient to act as a wetting agent.
- the concentration of Fluorad FC-430 surfactant in the liquid chemical formulation is 0.001 - 1 g surfactant/kg polycarbonate solvent, typically 0.22 g surfactant/kg polycarbonate solvent.
- the polycarbonate solvent is capable of dissolving sufficient polycarbonate to achieve a final polycarbonate film thickness between 0.1 and 2 ⁇ m, and a final thickness uniformity better than 10% ( ⁇ 5%) , preferably better than 5% ( ⁇ 2.5%), for thicknesses measured at points on a planar substructure separated by up to 10 cm.
- the solubility of polycarbonate in the solvent is normally at least 1% by mass of the liquid chemical formulation at 20°C and 1 atmosphere, but may be as low as 0.5%.
- the solvent is preferably capable of dissolving at least 5% polycarbonate by mass at 20 °C and 1 atmosphere.
- the liquid chemical formulation solution normally contains no more than 50% polycarbonate by mass of the liquid formulation when spin coating is used to make polycarbonate films.
- Liquid formulations with high polycarbonate concentration e.g., greater than 50% by mass, can exhibit viscous fingering and slow surface wetting during spin coating, thereby yielding polycarbonate films of poorer uniformity in their physical properties.
- the percentage of polycarbonate in liquid formulations used for spin coating is typically no more than 20% by mass.
- the polycarbonate concentration ranges of 1% to 10% by mass, preferably 5% to 10% by mass, are especially useful for the formation of polycarbonate films of final thickness between 0.1 and 2 ⁇ m by spin coating.
- the polycarbonate solvent has the following properties:
- the melting point T m (l atm) of the solvent at 1 atmosphere is less than 20°C.
- the ambient temperature T amb at which the liquid chemical formulation is coated onto the substructure in the process of making the polycarbonate film is approximately 20 °C. Consequently, the condition that T m (l atm) be less than T amb ensures that the liquid chemical formulation of the invention is indeed a liquid at the conditions specified.
- T b (l atm) of the polycarbonate solvent at 1 atmosphere is at least 80 °C.
- T b (l atm) of the solvent is normally greater than or equal to (T amb + 60°C) . This ensures that the rate of evaporation of the polycarbonate solvent from the liquid chemical formulation is sufficiently low at the ambient temperature T amb to permit the formation of a uniform liquid film of the formulation over the substructure in the process of making the polycarbonate film.
- the boiling point T b ( 0.001 atm) of the polycarbonate solvent at 0.001 atmosphere is less than or equal to (T g + 15°C) , where T g is the glass transition temperature of the polycarbonate, and 0.001 atmosphere is the lowest pressure to which the polycarbonate-containing liquid film is typically subjected by the manufacturing equipment employed in processing the liquid film to form a solid polycarbonate film according to the invention.
- the viscosity of a polycarbonate film decreases precipitously as the film temperature increases from approximately 15 °C above the polycarbonate glass transition temperature T g to increasingly higher values, causing the film to go from a hard state (at no more than approximately 15 °C above T g ) to a rubbery state (at slightly more than 15°C above T g ) and then to a molten state (at considerably more than 15 °C above T g ) .
- the polycarbonate film flows under the influence of gravity, the geometry of the structure underlying the film, and the composition of the underlying substructure. Film thickness variations which are unacceptably high for many commercial applications are produced in the flowing film and remain in the film after it is cooled down to a hardened state.
- Setting T b ( 0.001 atm) at no more than
- T g + 15°C enables the liquid film to be dried under 0.001-atmosphere conditions at a temperature as high as T b ( 0.001 atm) without significantly changing the thickness uniformity of the polycarbonate film during the drying procedure.
- the polycarbonate solvent can be evaporatively removed from the uniform liquid film at the condition of highest temperature and lowest pressure typically encountered in processing of the liquid film to form the solid polycarbonate film.
- Fig. 2 summarizes conditions 2b and 2c graphically by plotting the vapor pressure of pure polycarbonate solvent logarithmically as a function of temperature. Specifically, condition 2b relates to point 2E, and condition 2c relates to point 2G.
- Line 2A at 80°C is the low-temperature limit for the boiling point T b (l atm) of the solvent at 1 atmosphere given in condition b.
- Line 2B at 160°C is the high-temperature limit for the boiling point T b ( 0.001 atm) of the solvent at 0.001 atmosphere, given in condition 2c, for the specific case of MAKROLON 2608 polycarbonate whose glass transition temperature T g is approximately 145°C.
- Line 2C denotes 1 atmosphere, the typical ambient pressure at which the solution of the invention is coated onto a substructure.
- Line 2D denotes 0.001 atmosphere, the lowest pressure typically encountered during the processing of the liquid film to form the solid polycarbonate film of the invention.
- Line 21 is a plot of the vapor pressure curve for pure pyridine
- line 2J is a plot of the vapor pressure curve for pure 1-methylpyrrolidinone (NMP) .
- NMP 1-methylpyrrolidinone
- the polycarbonate solvent does not polymerize or chemically react with the polycarbonate material at a significant rate. 2e .
- the polycarbonate solvent is substantially water-free.
- the solvent contains no more than 0.1% water by mass. If the solvent initially contains a higher percentage of water, the solvent is suitably dried to reduce the percentage of water to an appropriately low level.
- the polycarbonate solvent does not significantly promote or catalyze chemical reactions between the polycarbonate and other constituents of the liquid chemical formulation, such as water.
- the polycarbonate solvent does not react with water in the liquid chemical formulation to form significant concentrations of hydroxide ion, OH " .
- the solvent is a relatively weak Bronsted base compared to hydroxide ion.
- hydroxide ion reacts with the polycarbonate, resulting in scission of the polymer molecule and a decrease in the mean molecular weight of the polycarbonate.
- Reaction of a solvent with water to form hydroxide ion is a conventional Bronsted acid-base reaction :
- B represents the solvent acting as a Bronsted base. If the solvent is a relatively weak Bronsted base compared to hydroxide ion, the solvent is also a weak Bronsted base in aqueous solution. Equivalently stated, the protonated form of the solvent molecule BH + is a weak Bronsted acid in aqueous solution.
- the preferred upper limit for the concentration of hydroxide ion in the polycarbonate- containing liquid chemical formulation of the invention is approximately IO "3 mol/dm 3 , i.e., 1 mM.
- K a (BH + ) is the thermodynamic equilibrium constant for the reaction:
- the polycarbonate solvent does not substantially chemically or physically alter the substructure onto which the liquid chemical formulation is coated.
- the polycarbonate solvent is non- pyrophoric, i.e., it does not ignite spontaneously upon exposure to air. The solvent should not oxidize to a significant extent when exposed to air. 2j .
- the polycarbonate solvent may itself include a surfactant component to improve the wetting characteristics of the liquid chemical formulation on the substructure. The surfactant component of the solvent should conform to the reactivity and composition conditions 2d to 2i given above.
- the polycarbonate solvent typically consists primarily of pyridine, a liquid which meets the polycarbonate solubility requirements given above.
- Pyridine can dissolve considerably more than 10% polycarbonate by mass at 20°C and 1 atmosphere.
- solubility of a MAKROLON polycarbonate such as MAKROLON 2608 can exceed 40% by mass in pyridine at 20 °C and 1 atmosphere.
- the melting point T m (l atm) of pyridine at 1 atmosphere is approximately -42°C. This is less than 20 °C, thereby enabling pyridine to meet condition 2a above.
- the boiling point T b (l atm) of pyridine at 1 atmosphere is approximately 115°C, which is greater than 80°C, as specified in condition 2b above.
- the boiling point T b ( 0.001 atm) of pyridine at 0.001 atmosphere is approximately 5°C. This is less than the 160°C value of (T g + 15°C) for MAKROLON 2608 polycarbonate, thereby satisfying condition 2c above for MAKROLON 2608.
- Pyridine is a nucleophile and thus can react with electrophilic moieties in polycarbonate to catalyze polycarbonate hydrolysis. However, the rates of these reactions are insignificant, and the extent of reaction is insignificant over time scales of months at the typical ambient temperature of 20 °C, provided the water content of the liquid chemical formulation is sufficiently low. Storing the liquid chemical formulation of the invention at temperatures lower than 20°C increases the shelf life of the liquid formulation. Pyridine can be dried by standard methods to water concentrations less than 0.001% by mass. Although hygroscopic, pyridine is typically treated and handled in such a manner in the invention for the percentage of water in the composition solution to be less than 0.01% by mass.
- the acid dissociation constant K a of protonated pyridine (the pyridinium ion) in aqueous solution at 20°C is approximately 6xl0 "6 .
- pyridinium satisfies condition 2g that the acid dissociation constant of the protonated form of the polycarbonate solvent in aqueous solution be greater than 10 "8 at 20°C.
- Pyridine is not pyrophoric . It can be oxidized to form pyridine N-oxide. However, this reaction requires strong oxidizing agents, and the rates of air oxidation are insignificant at the typical ambient temperature of 20°C.
- Pyridine is surface-active on many metals, semiconductors and insulators, typically acting as a corrosion inhibitor. Consequently, pyridine does not significantly alter the physical or chemical composition of many practical substructure materials.
- the polycarbonate solvent may alternatively or additionally (i.e., in addition to what has previously been identified here for dissolving polycarbonate according to the invention's teachings) be formed with one or more ring-substituted pyridine derivatives (hereafter, for simplicity, generally referred to in the singular as a ring-substituted pyridine derivative) .
- a ring-substituted pyridine derivative When a ring-substituted pyridine derivative is employed, the solvent likewise meets all the polycarbonate solvent criteria given above.
- Either pyridine or the ring-substituted pyridine derivative may be the primary constituent of the solvent when both constituents are present in the solvent. Both pyridine and the ring-substituted pyridine derivative can be chemically represented as:
- each of R l f R 2 , R 3 , R 4 and R 5 represents a monovalent substituent bonded covalently to the aromatic ring.
- Each of R to R 5 is typically a hydrogen atom, a deuterium atom, a monovalent hydrocarbon group, a monovalent substituted hydrocarbon group, an acetyl group, a carboxaldehyde group, a halogen atom, or a monovalent pseudo-halogen substituent.
- a substituted hydrocarbon group is a hydrocarbon group in which at least one of the hydrogen (or deuterium) atoms is replaced with another chemical species.
- the number of carbon atoms for each of R through R 5 normally ranges from one to four. The same range applies to the substituted monovalent hydrocarbon group .
- Formula 8 yields pyridine when each of R 1 through R 5 is hydrogen or deuterium.
- the empirical formula for pyridine is C 5 H 5 N in the fully hydrogen-substituted molecule.
- a ring-substituted pyridine derivative is produced when at least one of R 1 through R 5 in formula 8 is a substituent other than hydrogen or deuterium, preferably one from the above list.
- Several types of ring-substituted pyridine derivatives are of special interest for use as the solvent .
- One type is the case in which one of R x to R 5 is an alkyl group, preferably having from one carbon atom (the picolines) to four carbon atoms.
- the remainder of R 1 through R 5 may consist of any of the monovalent covalent substituents given above, including hydrogen and deuterium.
- a second type of pyridine derivative of special interest consists of those derivatives in which two adjacent substituent positions are taken up by a fused ring, i.e., a ring substituent which shares a carbon- carbon-bonded (non-nitrogen) edge with the pyridine ring.
- Two benz-fused examples of this type of pyridine derivatives are given below:
- intersection of two or more straight lines in a chemical formula such as formula 9 or 10 indicates the presence of a carbon atom.
- each ring carbon outside the fused edge is covalently bonded to a monovalent substituent.
- each ring carbon outside the fused edge is covalently bonded to a pair of monovalent substituents or to a bivalent substituent. Consequently, the ring substituent in a fused-ring substituent derivative of pyridine may itself be substituted. The remainder of the substituent positions may be taken up by one or more of the substituent groups listed above for R 1 through R 5 in formula 8. Examples of appropriate benz-fused derivatives of special interest are the substituted quinolines, formula 9, and the substituted isoquinolines, formula 10.
- the halogen can be fluorine, chlorine, bromine or iodine, with fluorine or chlorine being preferred substituents.
- the substituent is typically a nitrile group.
- pyridine derivatives of interest for use as the polycarbonate solvent in the present liquid chemical formation include the liquids given in the following table :
- the polycarbonate solvent may alternatively or additionally be formed with pyrrole or/and one or more ring-substituted pyrrole derivatives (hereafter, for simplicity, generally referred to in the singular as a ring-substituted pyrrole derivative) .
- the solvent utilizes pyrrole or/and a ring-substituted pyrrole derivative, the solvent likewise meets all the polycarbonate solvent criteria given above.
- Either pyrrole or the ring-substituted pyrrole derivative may be the primary constituent of the solvent when both constituents are present in the solvent and any other polycarbonate-dissolving constituent candidate is present at a lower mass fraction.
- Both pyrrole and the ring-substituted pyrrole derivative can be chemically represented as:
- each of R 1# R 2 , R 3 , R 4 and R 5 represents a monovalent substituent bonded covalently to the ring.
- Each of R to R 5 is typically a hydrogen atom, a deuterium atom, a monovalent hydrocarbon group, a monovalent substituted hydrocarbon group, an acetyl group, a carboxaldehyde group, a halogen atom, or a monovalent pseudo-halogen substituent.
- the number of carbon atoms for each of R 1 through R 5 normally ranges from one to four.
- Formula 11 yields pyrrole when each of R x through R 5 is hydrogen or deuterium.
- the empirical formula for pyrrole is C 4 H 5 N in the fully hydrogen-substituted molecule.
- a ring-substituted pyrrole derivative is produced when at least one of R ⁇ through R 5 is a substituent other than hydrogen or deuterium, preferably one from the above list.
- R is an alkyl group, preferably having from one to four carbon atoms.
- the remainder of R 2 through R 5 may consist of any of the monovalent covalent substituents given above, including hydrogen and deuterium.
- one ring-substituted pyrrole derivative having R x as an alkyl group is 1-methylpyrrole (or N-methylpyrrole) for which the alkyl group is a methyl group (one carbon atom) .
- the empirical formula for 1-methylpyrrole is C 5 H 7 N in the fully hydrogen-substituted molecule.
- 1-methylpyrrole has a melting point T m (l atm) of approximately -57°C at 1 atmosphere and a boiling point T b (l atm) of approximately 113 °C at 1 atmosphere. Consequently, conditions 2a and 2b are met with 1-methylpyrrole.
- the boiling point of a liquid decreases with decreasing pressure. Since the boiling point T b (l atm) of 1-methylpyrrole at 1 atmosphere is approximately 113°C and is therefore less than (T g + 15°C) for MAKROLON 2608 polycarbonate whose glass transition T g is approximately 145°C, 1-methylpyrrole necessarily satisfies condition 2c when the polycarbonate is MAKROLON 2608.
- 1-methylpyrrole a much weaker base than pyridine, satisfies solvent condition 2g and the polycarbonate solubility requirements given above.
- a second type of pyrrole derivative of special interest consists of those derivatives in which two adjacent substituent positions are taken up by a fused ring, i.e., a ring substituent which shares an edge with the pyrrole ring.
- a benz- fused example of this type of pyrrole derivative is given below:
- Substituents suitable for each ring carbon outside the fused edge in a fused-ring substituent derivative of pyrrole are the same as those described above for the fused-ring substituent derivatives of pyridine. Consequently, the substituent ring in a fused-ring substituent derivative of pyrrole may itself be substituted. The remainder of the substituent positions may be taken up by one or more of the substituent groups listed above for R through R 5 in formula 11. Examples of appropriate benz -fused derivatives of special interest are the substituted indoles, formula 12.
- the halogen can be fluorine, chlorine, bromine or iodine, with fluorine or chlorine being preferred substituents.
- the substituent is typically a nitrile group .
- the polycarbonate solvent may alternatively or additionally be formed with pyrrolidine or/and one or more pyrrolidine derivatives (hereafter, for simplicity, generally referred to in the singular as a pyrrolidine derivative) .
- a pyrrolidine derivative a pyrrolidine derivative
- the solvent likewise meets all the polycarbonate solvent criteria given above.
- Pyrrolidine and pyrrolidine derivatives can be chemically represented in general as:
- R 1 through R 9 represent covalently bonded substituents, with the maximum possible number of substituents being depicted in formula 13.
- R-_ through R 9 are hydrogen or deuterium atoms .
- Substituents for R-_ through R 9 in formula 13 are typically chosen from hydrogen atoms, deuterium atoms, oxygen atoms, monovalent or bivalent hydrocarbon groups, monovalent or bivalent substituted hydrocarbon groups, acetyl groups, carboxaldehyde groups, halogen atoms, or monovalent pseudo-halogen substituents.
- the number of carbon atoms for each of R 1 through R 9 normally ranges from one to four.
- Pyrrolidine derivatives which include one endocyclic double bond between ring atoms are also of interest .
- pyrrolidine derivatives are of special interest for use as the polycarbonate solvent .
- pyrrolidine derivatives of particular interest include those in which the ring nitrogen participates in, or is conjugated with, a multiple covalent bond, either endocyclicly or exocyclicly.
- Pyrrolidine derivatives having a covalent substituent (R other than hydrogen or deuterium at the nitrogen position are also of particular interest.
- the nitrogen atom may also be conjugated with a multiple covalent bond. All of these situations lead to a significant decrease in the basicity of the solvent compared to the parent compound, pyrrolidine.
- substituents for R 2 through R 9 in formulas 14 through 16 can be chosen from any of those described above in connection with formula 13.
- Formula 14 illustrates the case in which the ring nitrogen participates in a double covalent bond.
- Formulas 15 and 16 illustrate the situations in which the ring nitrogen is conjugated respectively with an endocyclic double covalent bond and an exocyclic double covalent bond.
- R 1 is not hydrogen or deuterium
- formulas 15 and 16 constitute pyrrolidine derivatives in which a covalent substituent other than hydrogen or deuterium is at the nitrogen position.
- one pyrrolidine derivative chemically arranged according to formula 16 is 1-methylpyrrolidinone (or 1-methylpyrrolidone or N-methylpyrrolidone from which comes the common name NMP) whose empirical formula is C 5 H 9 NO.
- 1-methylpyrrolidinone has a methyl substituent (R x ) on the ring nitrogen, and one of the carbon atoms in the alpha position relative to the nitrogen atom is bonded to an oxygen atom via a conjugated exocyclic double bond as shown below:
- 1-methylpyrrolidinone has a melting point T m (l atm) of approximately -24°C at 1 atmosphere and a boiling point T b (l atm) of approximately 202 °C at 1 atmosphere. Conditions 2a and 2b are therefore satisfied with 1-methylpyrrolidinone.
- the boiling point of 1-methylpyrrolidinone at 0.018 atmosphere is approximately 84 °C. Since boiling point decreases with decreasing pressure, the boiling point T b (0.001 atm) of 1-methylpyrrolidinone at 0.001 atmosphere is less than 84 °C.
- 1-methylpyrrolidinone For dissolving a polycarbonate such as MAKROLON 2608 whose glass transition T g temperature is approximately 145°C, 1-methylpyrrolidinone satisfies condition 2c above that the boiling point T b ( 0.001 atm) of the polycarbonate solvent at 0.001 atmosphere be no more than (T + 15°C) .
- 1-methylpyrrolidinone is a much weaker base than pyridine and satisfies the polycarbonate solubility requirements given above.
- the halogen can be fluorine, chlorine, bromine or iodine, with fluorine or chlorine being preferred substituents.
- the substituent is typically a nitrile group.
- the polycarbonate solvent may alternatively or additionally be formed with either or both of chlorobenzene and cyclohexanone.
- the respective empirical formulas for these two liquids are C 6 H 5 C1 and C 6 H 10 O.
- Chlorobenzene and cyclohexanone can be chemically represented respectively as:
- intersection of two or more lines again represents a carbon atom.
- the solvent When the solvent utilizes chlorobenzene or cyclohexanone, the solvent meets all of the polycarbonate solvent criteria given above. Either of these liquids may be the primary constituent of the solvent when the other liquid is present in the solvent and any other polycarbonate-dissolving constituent candidate is present at a lower mass fraction.
- Chlorobenzene a monohalogenated benzene ring
- Chlorobenzene is a weak (or soft) base. Chlorobenzene is largely insoluble in water. Nonetheless, the protonated form of chlorobenzene appears to have an acid dissociation constant greater than IO "8 in aqueous solution at 20°C. Accordingly, chlorobenzene satisfies condition 2g that the acid dissociation constant of the protonated form of the polycarbonate solvent in aqueous solution be greater than IO "8 at 20°C.
- the 1 -atmosphere melting point T m (l atm) of chlorobenzene is approximately -46°C. Chlorobenzene therefore meets condition 2a that the 1-atmosphere melting point T m (l atm) of the polycarbonate solvent be less than 20°C.
- the 1-atmosphere boiling point T b (l atm) of chlorobenzene is approximately 132°C. Consequently, chlorobenzene meets condition 2b that the 1-atmosphere boiling point T b (l atm) of the solvent be no more than 80°C.
- Chlorobenzene' s boiling point at 0.013 atmosphere is approximately 22°C.
- Condition 2c specifies that the 0.001-atmosphere boiling point T b ( 0.001 atm) of the solvent be no more than (T g + 15°C) . Since boiling point decreases with decreasing pressure, chlorobenzene meets condition 2c for polycarbonates such as MAKROLON 2608 whose glass transition temperature T g is approximately 145 °C. Cyclohexanone is also a weak base. The acid dissociation constant of the protonated form of cyclohexanone in aqueous solution appears to be greater than 108 at 20°C. Hence, cyclohexanone appears to satisfy condition 2g.
- the 1-atmosphere melting point T m (l atm) of cyclohexanone is approximately -16°C, enabling cyclohexanone to meet condition 2a.
- the 1-atmosphere boiling point T b (l atm) of cyclohexanone is approximately 156 °C so that cyclohexanone satisfies condition 2b. With a boiling point of 47°C at 0.020 atmosphere, cyclohexanone also meets condition 2c for polycarbonates such as MAKROLON 2608.
- Fig. 3 presents a flowchart of the primary steps involved in producing a polycarbonate-containing liquid chemical formulation in accordance with the invention and then using the liquid formulation to make a thin, solid polycarbonate film according to the invention's teachings.
- Fig. 3 illustrates the preferred case in which the polycarbonate solvent consists substantially of pyridine or/and a ring-substituted pyridine derivative .
- the first steps in making the polycarbonate film are, as shown in blocks 10, 11 and 12 of Fig. 3, to provide: (a) polycarbonate material, (b) a polycarbonate solvent formed with pyridine or/and a ring-substituted pyridine derivative and (c) a surfactant.
- the solvent preferably consists of essentially 100% pyridine and is substantially water- free.
- the polycarbonate material normally consists of granulated MAKROLON polycarbonate, preferably MAKROLON
- the surfactant preferably is Fluorad FC-430 polymeric ester mixture.
- the polycarbonate material is not water-free, it is dried in a water-free environment, typically overnight in flowing dry nitrogen between 120 °C and
- the solvent is normally dried, block 15. Standard methods may be used.
- the solvent may be treated with vacuum-dried molecular sieves followed by distillation under an inert, dry atmosphere .
- a stock liquid mixture (substantially a solution) of the surfactant and the dried polycarbonate-solvent is prepared by combining a weighed portion of the surfactant with an aliquot of the dry solvent under an inert atmosphere, block 16.
- the liquid chemical formulation is now formed by combining the substantially dry polycarbonate material, possibly one or more other dry solid materials, an aliquot of the stock surfactant/solvent mixture and the substantially dry polycarbonate solvent, all in a water- free environment, typically dry nitrogen.
- the mass percentage of polycarbonate is chosen to yield a solid polycarbonate film thickness in the range 0.1 to 2 ⁇ m and with thickness uniformity described previously. Block 18 in Fig. 3 illustrates this step, described further below.
- the dry polycarbonate solvent is transferred to a clean, dry, weighed container using Schlenck transfer methods, typically under dry nitrogen.
- the container is weighed to determine the mass of solvent .
- the aliquot of surfactant/solvent mixture is also transferred using Schlenck methods, and its mass is determined by a difference technique.
- the dry polycarbonate material is loaded into the container, again using Schlenck transfer techniques, and the mass of the polycarbonate is determined by a difference technique. Any other solids are added, and their masses are determined in a similar manner. If magnetic stirring is to be used to mix the liquid formulation, an appropriate magnetic stirring bar is added at this time. Finally, the container is sealed under a slight positive pressure of inert dry gas, typically dry nitrogen.
- the constituents of the liquid formulation are mixed for a sufficient time to form a homogeneous liquid. Up to 3 days may be needed to dissolve all the dissolvable solid material at an ambient temperature T amb of 20°C using slow magnetic stirring. After all the polycarbonate and other dissolvable solid materials have been dissolved, the kinematic viscosity of the liquid chemical formulation is determined, as indicated in block 20. The kinematic viscosity of the solution may be adjusted, block 21, by adding more of the dry polycarbonate solvent to decrease viscosity, or by adding more dry polycarbonate to increase viscosity, or by changing the temperature of the liquid formulation, or by mixing two or more liquid chemical formulations of different kinematic viscosities made from the same polycarbonate material.
- the fabrication of the polycarbonate film begins with the determination of the kinematic viscosity of the polycarbonate-containing liquid chemical formulation immediately prior to use, block 24. Significant changes in the kinematic viscosity of the liquid formulation during storage are indicative of chemical or physical degradation. Degradation of the formulation may affect the quality of polycarbonate films made with the formulation.
- Measurements of kinematic viscosity can be performed in a number of ways. For example, a sample of the liquid chemical formulation may be removed and tested, a viscosity measurement device may be incorporated into the liquid formulation dispensing equipment, or viscosity may be measured indirectly by the preparation of witness samples of polycarbonate films whose thicknesses are compared to a calibration curve .
- the polycarbonate film is formed on a clean, dry substructure.
- the substructure is cleaned of surface dirt and particles, degreased by washing in appropriate non-aqueous organic solvents and dried at temperature greater than 100°C in a flow of inert gas. If necessary, the surface can be oxidized, once cleaned, to improve wetting by the polar liquid chemical formulation of the invention. It is important that the liquid formulation wet the surface of the substructure at a contact angle significantly less than 90°, preferably approaching 0°.
- a portion of the liquid formulation is delivered to the surface of the substructure in a substantially water- free environment, typically dry nitrogen.
- the volume of formulation so delivered should be in excess of the volume of uniform liquid film prepared in the next step.
- the formulation should be delivered in a slow stream at the center of rotation of the substructure in such a way that gas bubbles are not formed or entrained in the delivered liquid formulation. Gas bubbles adhering to the surface of the substructure or floating on the surface of the delivered formulation lead to inhomogeneities in the thickness of the liquid film produced in the next step and thus are undesirable.
- the substructure may be stationary or slowly rotating during the dispensing of the formulation.
- Fig. 4 illustrates the dependence of solid polycarbonate film thickness on the rotation speed of the substructure, for polycarbonate films formed by spin coating polycarbonate/pyridine solutions.
- Curves are shown for five polycarbonate solutions made from the same molecular weight polymer, MAKROLON 2608 polycarbonate, present at different concentrations in the same solvent, pyridine: (4A) 55 g polycarbonate/kg pyridine, (4B) 65 g/kg pyridine, (4C) 76 g/kg pyridine, (4D) 87 g/kg pyridine, and (4E) 100 g/kg pyridine.
- the points in Fig. 4 are measured values and the curves are model curves fitted to the data points by least-squares regression.
- the model is an extended Prandtl Layer hydrodynamic model defined by the equation:
- Equation 1 may be used to estimate the kinematic viscosity of the solution from the concentration of the polycarbonate, provided the empirical constant a is known.
- the preferred rotation speed ⁇ of the substructure is 1000 to 3000 rpm, typically 1100 to 1200 rpm, when the polycarbonate is MAKROLON 2608 at a concentration of approximately 75 g/kg polycarbonate solvent, and the polycarbonate solvent is pyridine.
- the angular acceleration rate d ⁇ /dt is preferably high enough to prevent uneven spreading of the polycarbonate- containing liquid chemical formulation over the substructure due to "viscous fingering" of the liquid formulation, yet low enough to permit adequate wetting of the substructure as the perimeter of the dispensed formulation spreads over the surface of the substructure.
- angular acceleration d ⁇ /dt is 10 rpm/s when the polycarbonate is MAKROLON 2608, the polycarbonate solvent is pyridine, and the polycarbonate concentration is approximately 75 g polycarbonate/kg pyridine.
- the delivery of liquid formulation and the spin coating operations are preferably done in a continuous sequence.
- Block 26 in Fig. 3 summarizes the operations by which spin coating is used to form the polycarbonate-containing liquid film.
- the liquid film and the underlying substructure are dried to remove the polycarbonate solvent and any other volatile components of the film as indicated in block 28 of Fig. 3.
- the drying operation can be performed at room temperature or at an elevated temperature and/or reduced pressure, typically as low as 0.001 atmosphere, to reduce the drying time.
- the structure is placed on a dry-air-vented hotplate at 125°C for 30 s after MAKROLON 2608 has been spin-coated from the pyridine-based liquid formulation onto a substructure. Since the glass transition temperature T g of MAKROLON 2608 is approximately 145°C, the drying temperature is below the glass transition point for MAKROLON 2608. Accordingly, the polycarbonate film is produced as a microcrystalline solid, i.e., in a glassy state.
- the drying temperature is controlled so as to avoid exceeding the glass transition temperature T g of the polycarbonate by more than approximately 15 °C. This prevents the resultant polycarbonate film (a) from being produced in an undesirable rubbery state, a condition that would arise if the drying temperature at the end of the drying operation were to reach a value slightly more than approximately 15°C above the polycarbonate T g or (b) from being produced in an undesirable molten state, a condition that would occur if the drying temperature to the end of the drying operation were to reach a value considerably greater than 15 °C above the polycarbonate T g .
- the rate at which the volatile components evaporate from the polycarbonate-containing liquid film increases as the drying pressure decreases.
- the polycarbonate-containing liquid film is placed in a vacuum chamber attached to a suitable vacuum pumping system.
- the lowest chamber pressure to which the liquid film is subjected by the vacuum system during the drying operation is, as indicated above, typically in the vicinity of 0.001 atmosphere .
- the vapor pressure of the polycarbonate solvent be at least equal to, normally greater than, 0.001 atmosphere at the drying temperature to ensure that substantially all of the solvent is removed from the liquid film.
- the drying temperature at the end of the drying operation must not be greater than approximately 15 °C above the glass transition temperature T g of the polycarbonate material.
- the boiling point T b (0.001 atm) of the polycarbonate solvent at 0.001 atmosphere should be no more than approximately 15 °C above the polycarbonate glass transition temperature T g .
- the polycarbonate material remaining after the drying step is in the form of a uniform, thin, normally microcrystalline solid film.
- the solid film may also contain other non-volatile solid materials or reaction products as minor components, as described previously. Except when the present liquid chemical formulation has been provided with an additive (e.g., a black dye) to make the solid film opaque, the solid film is normally transparent.
- the thickness and thickness uniformity of the solid polycarbonate film are now tested to determine whether those parameters fall within the desired range of values. In some applications, the drying and testing operations complete the polycarbonate film manufacturing process. If a high degree of uniformity is needed in polycarbonate density, further processing of the film is performed as described below.
- the polycarbonate film is annealed at a temperature T ann sufficiently high to transform the polycarbonate from a glass-like solid having some short-range molecular ordering into a viscous, amorphous, leathery or retarded-elastic (here referred to collectively as "leathery") state, block 29.
- the annealing temperature T ann normally must equal or exceed the glass transition temperature T g of the polycarbonate.
- the annealing temperature T ann should not be high enough to form a rubbery solid or a viscous melt, conditions which could cause significant flow of the polycarbonate. Since these undesirable conditions occur when the polycarbonate is raised to significantly greater than 15 °C above the polycarbonate T g , the annealing temperature T ann lies in a range extending approximately from the polycarbonate T g to approximately 15 °C above the polycarbonate T g . Typically, the annealing temperature T ann is chosen to be close to 15°C above the glass transition temperature T g of the polycarbonate in order to maximize the rate at which the polycarbonate film is transformed to the leathery state without entering the undesirable rubbery state .
- the leathery polycarbonate film is quenched (rapidly cooled) so as to make the film hard again while retaining the largely
- the annealing and quenching of the solid polycarbonate film can encompass the drying operation, or can be performed as a separate annealing/quenching operation after the film is dried.
- the physical microstructure of the polycarbonate changes during the annealing/quenching operation. However, the chemical make-up of the polycarbonate remains substantially the same. If the film was transparent at the end of the drying operation, the film normally remains transparent through the annealing/quenching steps.
- the annealing/quenching operation typically improves the adhesion of the polycarbonate film to the substructure as well as improving the optical uniformity of the film while decreasing birefringence. If the substructure is not perfectly planar, the annealing/quenching operation also improves the degree of planarization of the surface of the polycarbonate film, although at the expense of film thickness uniformity.
- the film it is preferable to anneal the film in a suitable oven, although a hot plate or other method of heating in a controlled environment may be used.
- the annealing is typically done at 160°C. This is approximately 15°C above the glass transition temperature of MAKROLON 2608.
- the structure is annealed for 15 minutes under flowing dry nitrogen at 160°C, and then for 45 minutes under dynamic vacuum at the same temperature.
- the polycarbonate film is then cooled rapidly down to room temperature. That is, the polycarbonate film is quenched, again block 29.
- the cooling rate is typically greater than 0.1°C/s.
- cooling is typically performed under natural convection by placing the structure in dry nitrogen or clean dry air with a relative humidity less than 45%.
- T g glass transition temperature
- the polycarbonate material returns to a hard solid condition while retaining the microstructure of a substantially leathery state. Crystallinity (i.e., short-range and long-range molecular ordering) of the final film is kept to a minimum.
- the annealing and quenching of the polycarbonate produces an isotropic glass with highly uniform density and near- minimum birefringence.
- Fig. 5 shows the dependence of dry film thickness on the radial coordinate of the sampled point for a solid polycarbonate film made by spin coating on a planar substructure as described above.
- the substructure was secured to the spinning chuck by applying vacuum to the rear surface of the substructure through a channel at the center of rotation, i.e., at a radial coordinate of 0.
- a compliant O-ring made a seal between the vacuum chuck and the substructure at a radial coordinate of 2 cm.
- film thickness data measured in region 5A were for the part of the substructure in hard mechanical contact with the spinning chuck
- data measured in region 5B were for the part of the substructure in soft mechanical contact with the spinning chuck.
- the film thickness data in region 5A have a 95% confidence interval of 615 ⁇ 6 nm, i.e., this part of the substructure has a film thickness uniformity of ⁇ 0.9%.
- the film thickness data in region 5B have a 95% confidence interval of 599 ⁇ 9 nm, i.e., this part of the substructure has a film thickness uniformity of ⁇ 1.5%.
- the mean values of film thickness in the two regions differ by 2.7%. Considering both regions together gives a 95% confidence interval for the film thickness of 608 ⁇ 20 nm, i.e., the substructure as a whole has a film thickness uniformity of ⁇ 3.2%.
- Fig. 5 The data of Fig. 5 are typical for solid polycarbonate films formed by spin coating. Reproducibility from film to film is a function of the reproducibility of the coating method, but mean film thicknesses typically exhibit variations of no more than ⁇ 2% when spin coating is used to prepare the films, and rotation speeds are maintained constant to a precision better than ⁇ 1%.
- Figs. 6a - 6d (collectively "Fig. 6") pictorially illustrate how the present polycarbonate-containing liquid chemical formulation is applied to the substructure and then processed to make the polycarbonate film. In particular, the processing steps of blocks 26 and 28 of Fig. 3 are largely shown in Fig. 6.
- the starting point in Fig. 6a is a substructure 30 whose primary constituent is typically a body 32 of electrically non-insulating material, i.e., body 32 and substructure 30 typically consist of electrically conductive and/or semiconductive material.
- body 30 may partially or wholly consist of electrically insulating material which may be coated with non- insulating material, or body 30 may be entirely composed of insulating material.
- An adhesion- promoting or wetting layer 34 is optionally situated along the upper surface of body 32.
- substructure 30 is usually in the shape of a plate having a substantially flat upper surface.
- a portion 36 of the polycarbonate-containing liquid chemical formulation is deposited on top of substructure 30 as indicated schematically in Fig. 6b.
- liquid film 36A achieves a highly uniform thickness across the substructure.
- liquid film 36A has substantially all of the characteristics of the liquid chemical formulation of the invention.
- Liquid film 36A is thus converted into a solid polycarbonate film 38 as shown in Fig. 6d. This transformation is accomplished during the drying and/or annealing operations described above. Polycarbonate film 38 is now ready for use in a desired application.
- the kinematic viscosities of formulations SAl - SA5 were respectively measured at 6.2, 8.3, 10.9, 14.4 and 19.8 centistokes.
- the kinematic viscosity data for formulations SAl - SA5 is presented in Fig. la.
- formulations SAl - SA5 were respectively spun onto five of the chromium-coated glass substructures for 30 s at respective spin speeds of 1010, 1010, 1020, 1050 and 1000 rpm to produce five liquid films from formulations SAl - SA5.
- the five liquid films were dried for 10 s at 120°C with a hot plate to produce solid polycarbonate films .
- the dried polycarbonate films were then annealed at 155 °C for 15 minutes under dry nitrogen and then at 155 °C for 45 minutes under a vacuum at approximately 10 torr.
- the thicknesses of the resultant five annealed solid polycarbonate films created from formulations SAl - SA5 were respectively measured at 440, 630, 800, 1,000 and 1320 nm.
- Additional 5-ml portions of formulations SAl - SA5 were respectively spun onto five of the chromium-coated glass substrates for 30 s respectively at spin speeds of 2010, 1990, 1980, 2020 and 2010 rpm to produce five additional liquid films from formulations SAl - SA5.
- the thicknesses of the resultant five additional annealed solid polycarbonate films created from formulations SAl - SA5 at the higher spin speeds were respectively measured at 330, 450, 570, 720 and 930 nm.
- formulations SAl - SA5 were respectively spun onto five of the chromium-coated glass substrates for 30 s respectively at a spin speed of 4,000 rpm to produce five further liquid films from formulations SAl - SA5.
- the thicknesses of the resultant five further annealed solid polycarbonate films created from formulations SAl - SA5 at the even higher spin speed were respectively measured at 240, 320, 400, 510 and 660 nm.
- Fig. 4 presents the film thickness data for these 15 MAKROLON 2608 polycarbonate films as a function of spin speed.
- formulations SB1 - SB5 were respectively spun onto five of the chromium-coated glass substructures for 30 s at respective spin speeds of 1,000, 1,000, 1,010, 990 and 990 rpm to produce five liquid films from formulations SB1 - SB5.
- the thicknesses of the resultant five annealed solid polycarbonate films created from formulations SB1 - SB5 were respectively measured at 380, 480, 640, 750 and 640 nm.
- formulations SB1 - SB4 were respectively spun onto four of the chromium-coated glass substructures for 30 s respectively at spin speeds of 1,620, 2,000, 1,980 and 1,990 rpm to produce four additional liquid films from formulations SB1 - SB4.
- the thicknesses of the resultant four additional annealed solid polycarbonate films created from formulations SB1 - SB4 at the higher spin speeds were respectively measured at 290, 330, 440 and 520 nm.
- formulations SB1 - SB4 were spun onto four of the chromium- coated glass substructures for 30 s respectively at spin speeds of 4,020, 4,000, 4,010 and 3,700 rpm to produce four further liquid films from formulations SB1 - SB4.
- the thicknesses of the resultant four further annealed solid polycarbonate films created from formulations SB1 - SB4 at the even higher spin speeds were respectively measured at 190, 230, 310 and 420 nm.
- Three different samples SCI - SC3 of the present liquid chemical formulation were prepared with MAKROLON 3208 polycarbonate and pyridine to achieve respective polycarbonate mass concentrations of approximately 5, 6 and 9% of the liquid chemical formulation.
- MAKROLON 3208 made by Bayer, has a molecular weight of approximately 33,000. Specifically, 0.79, 0.99, and 1.50 g of MAKROLON 3208 were respectively mixed with 14.7, 15.0 and 15.0 g of dry pyridine until formulations SCI - SC3 were respectively formed as stable solutions at 53.8, 66.2 and 100.1 g polycarbonate/kg pyridine. The kinematic viscosities of formulations SCI - SC3 were respectively measured at 7.4, 9.9, and 25.8 centistokes.
- a sample SD1 of the present liquid chemical formulation was prepared with LEXAN 3810-1111 polycarbonate and pyridine to achieve a polycarbonate mass concentration of approximately 10% of the liquid chemical formulation.
- LEXAN 3810-1111 made by General Electric Co., has a molecular weight of approximately 30,000. Specifically, 1.70 g of LEXAN 3810-1111 was mixed with 15.0 g of dried pyridine until formulation SD1 was formed as a stable solution at 113.6 g polycarbonate/kg pyridine.
- a 5-ml portion of formulation SD1 was spun onto one of the chromium-coated glass substructure for 30 s at a spin speed of 1420 rpm to produce a liquid film from formulation SD1.
- the thickness of the resultant annealed solid polycarbonate film created from formulation SD1 was measured at 700 nm.
- Experiment E- -MAKROLON 2608, pyridine and surfactant A stock solution of MAKROLON 2608 polycarbonate and dry pyridine was prepared to a polycarbonate mass concentration of approximately 7% of the solution, specifically a concentration of 75 g polycarbonate/kg pyridine. Using three different surfactants, three different stock mixtures ME1 - ME3 of pyridine with surfactant were prepared to a concentration of 1.76 g surfactant/kg mixture. In particular, 1.77 g of
- Fluorad FC-430 surfactant was mixed with 1.0 1 of dried pyridine to form mixture ME1.
- 1.77 g of Fluorad FC-431 surfactant was mixed with 1.0 1 of dried pyridine to form mixture ME2.
- 1.77 g of Fluorad FC-740 surfactant was mixed with 1.0 1 of dried pyridine to form mixture ME3.
- each of the FC-431 and FC-740 surfactants is a viscous liquid mixture of fluoroaliphatic polymeric esters made by Minnesota Manufacturing and Mining Co.
- Three samples SE1A - SE1C of the present liquid chemical formulation were prepared with FC-430 surfactant mixture MDl by respectively adding 3.25, 7.5 and 10.0 g of mixture ME1 to three 500-ml aliquots of the stock MAKROLON 2608/pyridine solution.
- Three samples SE2A - SE2C of the liquid chemical formulation were similarly prepared with FC-431 surfactant mixture ME2 by respectively adding 3.25, 7.5 and 10.0 g of mixture ME2 to three 500-ml aliquots of the stock MAKROLON 2608/pyridine solution.
- Three samples SE3A - SE3C of the liquid chemical formulation were prepared with FC-740 surfactant mixture ME3 by respectively adding 3.25, 7.5 and 10.0 g of mixture ME3 to three 500-ml aliquots of the stock MAKROLON 2608/pyridine solution.
- formulations SE1A - SE1C, SE2A - SE2C and SE3A - SE3C were respectively spun at 1120 rpm for 30 s onto nine of the chromium-coated glass substructures to form nine different liquid films.
- the thermal processing steps described in Experiment A were employed to transform the liquid films of formulations SE1A - SE1C, SE2A - SE2C and SE3A - SE3C respectively into nine annealed solid polycarbonate films.
- the film thicknesses for the solid polycarbonate films created from formulations SE1A - SE1C, SE2A - SE2C and SE3A - SE3C all were measured at 750 nm ⁇ 35 nm.
- Fig. lb presents the kinematic viscosity data for formulations SF1 - SF4 along with the kinematic viscosity data for formulations SAl - SA5, also having MAKROLON 2608 as the polycarbonate material, but utilizing pyridine as the polycarbonate solvent rather than 1-methylpyrrolodinone .
- formulations SF1 - SF4 were respectively spun onto four of the chromium-coated glass substructures for 60 s at respective spin speeds of 750, 1000, 1500 and 2000 rpm to produce liquid films from formulations SF1 - SF4.
- the thicknesses from the resultant four annealed solid polycarbonate films created from formulations SF1 - SF4 were respectively measured at 730, 370, 340 and 310 nm.
- each of formulations SGI - SG21 is formed by mixing 0.8 g of MAKROLON 2608 with 15.0 g of a different one of the 21 polycarbonate solvents using standard mixing/homogenization techniques until a stable solution of each of formulations SGI - SG21 is formed at 53.3 g polycarbonate/kg polycarbonate solvent.
- the kinematic viscosities of formulations SGI - SG21 are measured .
- the 21 polycarbonate solvents for formulations SGI - SG21 respectively are 4 -ethylpyridine, 2 , 3 -dimethylpyridine , 3 , 4 -dimethylpyridine , 2 -ethyl-4 -methylpyridine, 3 -ethyl -4 -methylpyridine, 5 -ethyl -2 -methylpyridine , 2 - isopropylpyridine , 2-n-propylpyridine, 3 -phenylpyridine, 2 -fluoropyridine, 2 -chloropyridine, 2 -bromopyridine, 4 -methoxypyridine, 1-methylpyrrole, 2, 4-dimethylpyrrole, 2 -isopropylpyridine, 1-propylpyrrole, 1-butylpyrrole, l-ethyl-2-pyrrolidinone, 1-tert-butylpyrrole, and 1-cyclohexylpyrrolidinone .
- FIG. 7 presents a flow chart of process steps by which etching of charged-particle tracks is employed to create apertures in a solid polycarbonate film or layer made by the process of Fig. 3.
- the track-etching uniformity is greatly improved when the polycarbonate layer has the microstructure of the leathery state (largely no short-range or long-range molecular ordering) compared to when the polycarbonate is in the glassy state with some short-range molecular ordering.
- Block 62 in Fig. 7 basically repeats block 29 of Fig. 3 for converting the solid polycarbonate layer from the glassy state to a hard solid having the microstructure of the leathery state.
- each charged particle track consists of a highly damaged core surrounded by a less damaged region that transitions into undamaged polycarbonate.
- the highly damaged polycarbonate core of each charged- particle track is typically 4 - 10 nm in diameter.
- the charged-particle tracks extend substantially parallel to one another. Although the charged-particle tracks are randomly located across the polycarbonate track (or track- forming) layer, the tracks have a well- defined average spacing. For an average track spacing of 1 ⁇ m, the track density is approximately 10 8 tracks/cm 2 .
- a charged-particle accelerator that forms a well- collimated beam of ions is utilized to form the charged-particle tracks .
- the ion beam is scanned uniformly across the top of the polycarbonate layer.
- the charged-particle species is singly ionized argon (Ar + ) at an energy of 2 MeV.
- the charged-particle species can alternatively be quadruply ionized xenon (Xe + ) at an energy of 16 MeV.
- the charged-particle tracks can also be created from a collimated source of nuclear fission particles produced, for example, from the radioactive element Californium 252.
- An operation that improves the wetting characteristics of the upper surface of the polycarbonate track layer is usually performed at this point. See block 66.
- the chemical nature of the polycarbonate layer along its upper surface is changed so that the wetting characteristics are substantially uniform along the entire upper polycarbonate surface. This facilitates later etching along the charged-particle tracks to form apertures through the track layer, and thereby results in more uniform apertures.
- the operation to improve the wetting characteristics is typically performed by subjecting the polycarbonate layer to a plasma to remove a selected thickness of the polycarbonate layer along its upper surface.
- the plasma is preferably an oxygen plasma at a power in the vicinity of 100 W.
- the polycarbonate layer and underlying structure situated on a platen at 60°C the polycarbonate layer is preferably subjected to the oxygen plasma for 20 s to remove approximately 30 nm of polycarbonate.
- An operation that modifies the chemical properties of the polycarbonate track layer can also be performed on the track layer to help reduce the time needed to create the apertures through the polycarbonate along the charged-particle tracks.
- this operation entails exposing the polycarbonate to ultraviolet light.
- the polycarbonate can be exposed to ozone .
- etch is now performed along the charged- particle tracks to create straight parallel apertures through the polycarbonate track layer as indicated in block 68.
- the damaged polycarbonate material which forms the tracks is removed by bringing the polycarbonate layer into contact with a suitable chemical etchant, typically a solution of potassium hydroxide, that attacks the damaged polycarbonate much more than the undamaged polycarbonate.
- a suitable chemical etchant typically a solution of potassium hydroxide
- the etchant is normally at an elevated temperature during the polycarbonate etch.
- the polycarbonate including the underlying substructure
- the polycarbonate is preferably raised to approximately the same temperature as the etchant . This is done to avoid thermal shock, to avoid changing the temperature of the etchant, and to provide better control over the temperature-dependent etch rate.
- the etchant/polycarbonate temperature is typically 35°C.
- the highly damaged polycarbonate cores, again typically 4 - 10 nm in diameter, of the charged- particle tracks are removed rapidly during the etch, normally without significant etching of exposed undamaged polycarbonate.
- the etch rate selectivity of the highly damaged polycarbonate cores to the undamaged polycarbonate is very high, typically on the order of 10,000 to 1.
- the etch is continued into the lesser damaged polycarbonate regions surrounding the highly damaged cores, and typically through the lesser damaged regions into the surrounding undamaged polycarbonate as the lateral etch rate progressively drops to that of undamaged polycarbonate.
- the apertures formed through the polycarbonate layer along the charged-particle tracks normally reach an average diameter of 0.1 - 2.0 ⁇ m, typically 0.12 - 0.16 ⁇ m.
- the thickness of the polycarbonate layer is reduced.
- the thickness of the track layer directly after the plasma operation to improve the wetting characteristics must exceed the desired final track layer thickness by approximately 50% of the desired diameter of the apertures through the polycarbonate layer. For example, a 500-nm post-plasma polycarbonate track layer thickness is needed to achieve a 400-nm final track layer thickness with 200-nm apertures.
- the entire polycarbonate etch to form the apertures along the charged-particle tracks is normally performed with the same etchant.
- the etching of the lesser damaged polycarbonate regions and the undamaged polycarbonate surrounding the lesser damaged regions can be performed with a different etchant than that used to remove the highly damaged cores of the charged-particle tracks.
- the etch occurs in a substantially uniform manner in the lateral direction- -i . e . , perpendicular to the charged- particle tracks. Accordingly, the final straight parallel apertures through the polycarbonate layer are respectively centered on the locations of the charged- particle tracks.
- Figs. 8a and 8b (collectively “Fig. 8") pictorially illustrate the formation and etching of the charged-particle tracks starting from the structure of Fig. 6d at a point subsequent to the drying operation and the transformation of solid polycarbonate film or layer 38 to a largely non-ordered microstructure.
- Fig. 8a charged particles 70 impinge perpendicularly on polycarbonate layer 38 to form charged-particle tracks 72 through layer 38.
- Fig. 8b illustrates the polycarbonate etch along charged-particle tracks 72 to create corresponding apertures 74 through layer 38.
- Item 38A in Fig. 8b is the reduced-thickness remainder of polycarbonate layer 38.
- track apertures 74 are employed in defining the locations for creating electron-emissive elements in an electron-emitting device suitable, for example, for a cathode ray tube of the flat-panel type.
- Apertures 74 can be utilized in a variety of ways to create electron-emissive elements. For example, see U.S. Patents 5,559,389 and 5,564,959. The contents of both of these U.S. patents are incorporated by reference herein.
- Electron-emissive elements can be formed directly in apertures 74, polycarbonate layer 38A thereby typically serving as an inter-electrode dielectric in a gated electron emitter.
- apertures 74 can be used to define openings in an underlying gate electrode layer for a gated electron emitter.
- Figs. 9a - 9c (collectively "Fig. 9") illustrate part of the steps in an example of the latter fabrication process.
- Substructure 30 in the process of Fig. 9 consists of a substrate 80, a lower electrically non- insulating emitter region 82, an electrically insulating layer 84, and an electrically non-insulating gate electrode layer 86 as indicated in Fig. 9a.
- Substrate 80 is formed with electrically insulating material, at least along its upper surface.
- lower non- insulating emitter region 82 preferably consists of a lower electrically conductive layer, typically metal, and an upper electrically resistive layer. At least the lower conductive layer is typically patterned into a group of parallel emitter-electrode lines referred to as row electrodes.
- row electrodes When emitter region 82 is configured in this way, the final field-emission structure is particularly suitable for selectively exciting phosphors in a flat-panel display. Nonetheless, region 82 can be arranged in various other patterns, or can even be unpatterned.
- inter-electrode dielectric layer 84 with charged-particle tracks corresponding to tracks 72 in track layer 38A.
- candidate materials for dielectric layer 84 range from (a) electrical insulators which are trackable--i . e . , readily provide straight parallel charged-particle tracks when suitably bombarded with charged particles- -and for which etchants having a high damaged-material-to-undamaged-material etch selectivity are available to (b) electrical insulators which are substantially non-trackable or/and for which etchants that provide high damaged-material-to-undamaged- material are not readily available.
- the electric layer 84 typically consists of silicon oxide deposited by chemical vapor deposition. While silicon oxide is relatively trackable, it is difficult to etch parallel straight apertures through silicon oxide along charge-particle tracks .
- dielectric layer 84 is typically formed with an electrical insulator, such as polycarbonate, which is trackable and for which an etchant (e.g., a potassium hydroxide solution) that provides a high damaged- material-to-undamaged-material etch selectivity is available.
- etchant e.g., a potassium hydroxide solution
- Fig. 9a depicts this case.
- the charged particles which produced tracks 72 in polycarbonate track layer 38 then also produce corresponding charged-particle tracks 88 through insulating layer 84. Each charged-particle track 88 was in line with corresponding charged-particle track 72 and thus now centers on corresponding aperture 74.
- Gate electrode layer 86 typically consists of metal such as chromium or tantalum. Gate layer 86 may be patterned into a group of gate lines running perpendicular to the emitter row electrodes of lower non-insulating region 82. The gate lines then serve as column electrodes. With suitable patterning being applied to gate layer 86, the field emitter may alternatively be provided with separate column electrodes that contact portions of gate layer 86 and extend perpendicular to the row electrodes. This gate patterning and (when included) column-electrode formation may be done prior to the stage shown in Fig. 9a or at a later point in the fabrication process. In a typical procedure for patterning gate layer 86 and providing separate column electrodes, the following steps are performed prior to the stage shown in Fig. 9a.
- a blanket layer of a column metal such as chromium or nickel is deposited on top of inter- electrode dielectric layer 84.
- the column metal is typically nickel deposited to a thickness of 15 - 250 nm.
- the column metal is patterned into laterally separated parallel column electrodes. In patterning the column metal, openings are also formed through the column electrodes at the desired locations for gate portions that are to contact dielectric layer 84.
- a blanket layer of gate metal is deposited on top of the structure, including into the openings in the column electrodes.
- the gate metal is typically chromium deposited to a thickness of 20 - 50 nm.
- the gate metal is patterned to produce gate electrode layer 86.
- the gate metal removed during this step includes portions corresponding to the column metal portions removed to define the outer edges of the column electrodes.
- Apertures 74 in polycarbonate track layer 38 are then formed utilizing the charged-particle track formation/etching procedure described above to produce the structure of Fig. 9a.
- gate electrode layer 86 is etched through apertures 74 to form corresponding openings 90 through gate electrode 86.
- each gate opening 90 is in line with corresponding aperture 74 in track layer 38A.
- each gate opening 90 is approximately the same size as corresponding aperture 74.
- the gate-layer etch is typically performed with a high-density plasma according to the procedure disclosed in Brigham et al,
- Polycarbonate layer 38A is removed at some point in the process. The latest point for removing layer 38A depends on how gate electrode 86A is utilized and processed. Fig. 9c illustrates the typical case in which track layer 38A is removed directly after forming gate openings 90.
- Fig. 9c The structure of Fig. 9c can be employed to form electron-emissive elements of various shapes.
- Figs. 10a - 10c (collectively “Fig. 10") illustrate how filamentary electron-emissive elements are created from the structure of Fig. 9c.
- Figs. 11a - lie (collectively "Fig. 11") present an example in which the structure of Fig. 9c is utilized to create conical electron-emissive elements.
- the following material presents a brief description of the steps for creating filamentary and conical electron-emissive elements according to the further steps of Figs. 10 and 11. Additional information is given in U.S. Patents 5,559,389 and 5,564,959 cited above. Referring to the processing steps of Fig.
- an etch is performed along charged-particle tracks 88 to produce pores 92 through inter-electrode dielectric layer 84.
- the average diameter of pores 92 is considerably less than the average diameter of apertures 74 through track layer 38A.
- pores 92 can be created according to the same procedure used to create apertures 74, except that the polycarbonate etch is performed for a shorter duration. See Fig. 10a in which item 84A is the remainder of insulating layer 84.
- Electrically non-insulating emitter filament material typically metal is electrochemically deposited into pores 92 to form corresponding electron- emissive filaments 94 that contact lower non-insulating region 82 as shown in Fig. 10b.
- patterned gate electrode layer 86A as an etch mask, the exposed portions of insulating track layer 84A are etched to form cavities 96 that respectively surround electron- emissive filaments 94. See Fig. 10c.
- the upper ends of filaments 94 are electropolished and sharpened to produce sharpened electron-emissive elements 94A.
- Fig. 10c depicts the resultant structure for the case in which the electropolishing step is performed on gate electrode 86A.
- Items 84B and 86B are the respective remainders of polycarbonate track layer 84A and patterned gate electrode 86A in the structure of Fig. 10c.
- patterned gate layer 86A is used as an etch mask for etching the portions of insulating layer 84 exposed through gate openings 90 to form corresponding dielectric open spaces (or cavities) 100 as shown in
- Fig. 11a The etch typically consists of a plasma etch step followed by a chemical etch step. Each dielectric open space 100 extends down to lower non- insulating region 82 and is vertically aligned with corresponding gate opening 90. Item 84C in Fig. 11a is the remainder of inter-electrode insulating layer 84.
- a lift-off layer 102 is formed on gate layer 86A by evaporatively depositing a suitable lift-off material such as aluminum at a low angle, typically in the vicinity of 15 - 30° relative to the upper surface of gate layer 86A. See Fig. lib. Electrically non- insulating emitter cone material, typically a metal such as molybdenum, is evaporatively deposited on top of lift-off layer 102 and through gate openings 90 into dielectric open spaces 100. The cone material deposition is typically performed approximately perpendicular to the upper surface of gate layer 86A.
- the openings through which the cone material enters dielectric open spaces 100 progressively close.
- the cone material deposition is performed for a time sufficiently long to achieve full closure.
- the cone material thereby forms conical electron-emissive elements 104A respectively in dielectric open spaces 100.
- a continuous layer 104B of the cone material simultaneously accumulates on top of the structure as shown in Fig. lib.
- a lift-off etch is performed, typically with a chemical etchant, to remove lift-off layer 102 and overlying cone-material layer 104B.
- the edges of gate electrode 86B can be electropolished to round the gate edges. Fig. lie shows the resultant structure for the case in which the electropolishing step is performed.
- Item 86C is the remainder of gate electrode 86B.
- Each conical electron-emissive element 104A is approximately centered in corresponding dielectric open space 100 and extends close to corresponding gate opening 90, preferably protruding into the center of corresponding opening 90.
- Fig. 12 depicts a typical example of the core active region of a flat-panel CRT display that employs an area field emitter, such as that of Fig. 10c or lie, manufactured according to the invention.
- Substrate 80 forms the backplate for the CRT display.
- Lower non- insulating region 82 is situated along the interior surface of backplate 80 and consists of electrically conductive layer 82A and overlying electrically resistive layer 82B.
- Column electrodes 110 which extend perpendicular to the plane of Fig. 12, underlie portions of gate layer 86B or 86C.
- One column electrode 110 is depicted in Fig. 12.
- Each column-electrode aperture 112 exposes a multiplicity of electron-emissive elements 94A or 104A.
- a transparent, typically glass, faceplate 114 is located across from backplate 80.
- Light-emitting phosphor regions 116 are situated on the interior surface of faceplate 114 directly across from corresponding column-electrode aperture 112.
- a thin light-reflective layer 118 typically aluminum, overlies phosphor regions 116 along the interior surface of faceplate 114. Electrons emitted by electron-emissive elements 94A or 104A pass through light-reflective layer 118 and cause phosphor regions 116 to emit light that produces an image visible on the exterior surface of faceplate 114.
- the core active region of the flat-panel CRT display typically includes other components not shown in Fig. 12.
- a black matrix situated along the interior surface of faceplate 114 typically surrounds each phosphor region 116 to laterally separate it from other phosphor regions 116. Focusing ridges provided over interelectrode dielectric layer 84B or 84C help control the electron trajectories. Spacer walls are typically utilized to maintain a relatively constant spacing between backplate 80 and faceplate 114.
- Light-reflective layer 118 serves as an anode for the field-emission cathode.
- the anode is maintained at high positive voltage relative to the gate and emitter lines.
- the so-selected gate portion extracts electrons from the electron-emissive elements at the intersection of the two selected electrodes and controls the magnitude of the resulting electron current. Desired levels of electron emission typically occur when the applied gate-to-cathode parallel-plate electric field reaches 20 V/ ⁇ m or less at a current density of 0.1 mA/cm 2 as measured at the phosphor-coated faceplate in a flat-panel CRT display when phosphor regions 116 are high-voltage phosphors. Upon being hit by the extracted electrons, phosphor regions 116 emit light.
- liquid film 36A can be created by dipping substructure 30 into the formulation to form the liquid film.
- film 36A may be created by meniscus coating, by extrusion, by spraying, or by spreading the liquid using a doctor blade or similar device.
- Certain polycarbonate solvents generally suitable for use in the present liquid chemical formulation oxidize to an unacceptable degree during storage of the formulation, thereby reducing the useful storage life of the formulation.
- 1-methylpyrrolidinone (NMP) is such an oxidizable polycarbonate solvent. Oxidation typically occurs due to the formation of free radicals when the formulation is exposed to oxygen or a reactive metal surface .
- a stabilizer--e.g. , 4-tert-butylcatechol or quinone in the case of 1-methylpyrrolidinone- -can be employed in the present polycarbonate-containing liquid chemical formulation to inhibit oxidation of the polycarbonate solvent.
- the stabilizer typically operates by acting preferentially with the free radicals to form stable unreactive products.
- the stabilizer is employed at a low concentration, typically less than 0.0001% by mass (100 parts per million) of the formulation, and thus constitutes a minor component of the formulation.
- the polycarbonate-dissolving liquid chemical formulation of the invention may, as indicated above be formed with two or more polycarbonate solvents.
- a multiple-solvent formulation can be utilized to improve the polycarbonate film-forming properties in extrusion coating applications or in making polycarbonate films of large surface area. All of the polycarbonate solvent candidates described above can be employed in multiple-solvent formulations.
- the solvent mix percentage for each solvent can vary from less than 1% by mass of the formulation to more than 99% by mass of the formulation.
- a two- solvent formulation may contain 1 part of pyridine to 2 parts 1 -methylpyrrolidinone .
- Two or more polycarbonates can similarly be employed to form the polycarbonate material in the present liquid chemical formulation. This includes polycarbonates with the same repeating unit but different molecular weights.
- cone-material layer 104B could be electrochemically removed by using the technique disclosed in Spindt et al, International Patent Application PCT/US97/02973 , filed 5 March 1997.
- Substrate 40 could be deleted if lower non- insulating region 42 is a continuous layer of sufficient thickness to support the structure. Insulating substrate 40 could be replaced with a composite substrate in which a thin insulating layer overlies a relatively thick non- insulating layer that furnishes structural support .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
Claims
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP53773098A JP2001520685A (en) | 1997-02-28 | 1998-02-27 | Polycarbonate-containing liquid chemical formulations and methods for forming polycarbonate films |
| EP98911394A EP0966499A4 (en) | 1997-02-28 | 1998-02-27 | Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/808,363 US6180698B1 (en) | 1997-02-28 | 1997-02-28 | Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film |
| US08/807,456 US5914150A (en) | 1997-02-28 | 1997-02-28 | Formation of polycarbonate film with apertures determined by etching charged-particle tracks |
| US08/808,363 | 1997-02-28 | ||
| US08/807,456 | 1997-02-28 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| WO1998038239A1 true WO1998038239A1 (en) | 1998-09-03 |
| WO1998038239A9 WO1998038239A9 (en) | 1999-02-11 |
| WO1998038239A8 WO1998038239A8 (en) | 2000-08-03 |
Family
ID=27123019
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1998/003370 WO1998038239A1 (en) | 1997-02-28 | 1998-02-27 | Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP0966499A4 (en) |
| JP (1) | JP2001520685A (en) |
| KR (1) | KR20000075833A (en) |
| WO (1) | WO1998038239A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11001588B2 (en) | 2018-09-19 | 2021-05-11 | Forma Therapeutics, Inc. | Activating pyruvate kinase R and mutants thereof |
| US11014927B2 (en) | 2017-03-20 | 2021-05-25 | Forma Therapeutics, Inc. | Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators |
| US11071725B2 (en) | 2018-09-19 | 2021-07-27 | Forma Therapeutics, Inc. | Activating pyruvate kinase R |
| US12128035B2 (en) | 2021-03-19 | 2024-10-29 | Novo Nordisk Health Care Ag | Activating pyruvate kinase R |
| US12161634B2 (en) | 2019-09-19 | 2024-12-10 | Novo Nordisk Health Care Ag | Pyruvate kinase R (PKR) activating compositions |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3303085A (en) * | 1962-02-28 | 1967-02-07 | Gen Electric | Molecular sieves and methods for producing same |
| US5266617A (en) * | 1991-04-22 | 1993-11-30 | Allied-Signal Inc. | Lewis base catalyzed phase transfer coating process for polyanilines |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3612871A (en) * | 1969-04-01 | 1971-10-12 | Gen Electric | Method for making visible radiation damage tracks in track registration materials |
| DE3341557A1 (en) * | 1983-10-22 | 1985-05-02 | Bayer Ag, 5090 Leverkusen | FILLED POLYCARBONATE FILMS, THEIR PRODUCTION AND USE |
| US5041469A (en) * | 1988-03-21 | 1991-08-20 | Arco Chemical Technology, Inc. | Formation of discrete polyalkylene carbonate particles by solvent/non-solvent precipitation |
| US4975228A (en) * | 1988-07-29 | 1990-12-04 | The Dow Chemical Company | Process for preparing membranes from tetrahalobisphenol polycarbonates |
| DE69231630T2 (en) * | 1991-02-22 | 2001-06-13 | Mitsubishi Gas Chemical Co., Inc. | Polycarbonate resin solution for the production of cast films |
| FR2705830B1 (en) * | 1993-05-27 | 1995-06-30 | Commissariat Energie Atomique | A method of manufacturing microtip display devices using heavy ion lithography. |
-
1998
- 1998-02-27 KR KR1019997007908A patent/KR20000075833A/en not_active Ceased
- 1998-02-27 JP JP53773098A patent/JP2001520685A/en active Pending
- 1998-02-27 WO PCT/US1998/003370 patent/WO1998038239A1/en not_active Application Discontinuation
- 1998-02-27 EP EP98911394A patent/EP0966499A4/en not_active Withdrawn
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3303085A (en) * | 1962-02-28 | 1967-02-07 | Gen Electric | Molecular sieves and methods for producing same |
| US5266617A (en) * | 1991-04-22 | 1993-11-30 | Allied-Signal Inc. | Lewis base catalyzed phase transfer coating process for polyanilines |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP0966499A4 * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11014927B2 (en) | 2017-03-20 | 2021-05-25 | Forma Therapeutics, Inc. | Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators |
| US11396513B2 (en) | 2017-03-20 | 2022-07-26 | Forma Therapeutics, Inc. | Compositions for activating pyruvate kinase |
| US11649242B2 (en) | 2017-03-20 | 2023-05-16 | Forma Therapeutics, Inc. | Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators |
| US12071440B2 (en) | 2017-03-20 | 2024-08-27 | Novo Nordisk Health Care Ag | Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators |
| US11001588B2 (en) | 2018-09-19 | 2021-05-11 | Forma Therapeutics, Inc. | Activating pyruvate kinase R and mutants thereof |
| US11071725B2 (en) | 2018-09-19 | 2021-07-27 | Forma Therapeutics, Inc. | Activating pyruvate kinase R |
| US11980611B2 (en) | 2018-09-19 | 2024-05-14 | Novo Nordisk Health Care Ag | Treating sickle cell disease with a pyruvate kinase R activating compound |
| US12053458B2 (en) | 2018-09-19 | 2024-08-06 | Novo Nordisk Health Care Ag | Treating sickle cell disease with a pyruvate kinase R activating compound |
| US12122778B2 (en) | 2018-09-19 | 2024-10-22 | Novo Nordisk Health Care Ag | Activating pyruvate kinase R |
| US12161634B2 (en) | 2019-09-19 | 2024-12-10 | Novo Nordisk Health Care Ag | Pyruvate kinase R (PKR) activating compositions |
| US12128035B2 (en) | 2021-03-19 | 2024-10-29 | Novo Nordisk Health Care Ag | Activating pyruvate kinase R |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0966499A1 (en) | 1999-12-29 |
| EP0966499A4 (en) | 2002-04-10 |
| JP2001520685A (en) | 2001-10-30 |
| KR20000075833A (en) | 2000-12-26 |
| WO1998038239A8 (en) | 2000-08-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5914150A (en) | Formation of polycarbonate film with apertures determined by etching charged-particle tracks | |
| US6500885B1 (en) | Polycarbonate-containing liquid chemical formulation and methods for making and using polycarbonate film | |
| KR100214393B1 (en) | The manufacturing method of an electroluminescent element, the manufacturing method of an electron source and an image forming apparatus using this method, and the manufacturing apparatus used for these methods | |
| US6409567B1 (en) | Past-deposited carbon electron emitters | |
| TWI449664B (en) | Curing binder material for carbon nanotube electron emission cathodes | |
| EP1324366B1 (en) | Electron emitting device, electron source and image display device and methods of manufacturing these devices | |
| US6969536B1 (en) | Method of creating a field electron emission material | |
| JP2005029779A (en) | Pattern forming material, pattern forming method, method for producing porous structure, electrochemical cell, method for producing porous carbon structure, and porous carbon structure | |
| EP1879214A2 (en) | Substrate for mass spectrometry, and method for manufacturing substrate for mass spectrometry | |
| US9761344B2 (en) | Core-shell nano particle for formation of transparent conductive film, and manufacturing method of transparent conductive film using the same | |
| US6565403B1 (en) | Ion-bombarded graphite electron emitters | |
| WO1998038239A1 (en) | Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film | |
| WO1998038239A9 (en) | Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film | |
| EP1965616A1 (en) | Glass substrate having circuit pattern and process for producing the same | |
| US6180698B1 (en) | Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film | |
| EP0861498B1 (en) | Annealed carbon soot field emitters and field emitter cathodes made therefrom | |
| US12243738B2 (en) | Methods for forming a field emission cathode | |
| US20120100774A1 (en) | Transparent substrate with thin film and method for manufacturing transparent substrate with circuit pattern wherein such transparent substrate with thin film is used | |
| CN1149606C (en) | A field emission cathode | |
| EP0639401B1 (en) | Molecular processes and apparatus therefore | |
| KR20010033985A (en) | Plasma Treatment for Producing Electron Emitters | |
| JPH11329258A (en) | Plasma display panel having polymer dielectric | |
| JP3740488B2 (en) | Method for manufacturing electron-emitting device | |
| Yoshida et al. | Increased emission efficiency of gated cold cathode with carbonic nano-pillars | |
| Wijesundara | Fluorocarbon thin-film deposition on polymer surfaces from low-energy polyatomic ion beams |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| COP | Corrected version of pamphlet |
Free format text: INTERNATIONAL SEARCH REPORT ADDED |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1019997007908 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1998911394 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1998911394 Country of ref document: EP |
|
| AK | Designated states |
Kind code of ref document: C1 Designated state(s): JP KR |
|
| AL | Designated countries for regional patents |
Kind code of ref document: C1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
| CFP | Corrected version of a pamphlet front page | ||
| CR1 | Correction of entry in section i | ||
| WWP | Wipo information: published in national office |
Ref document number: 1019997007908 Country of ref document: KR |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1998911394 Country of ref document: EP |
|
| WWR | Wipo information: refused in national office |
Ref document number: 1019997007908 Country of ref document: KR |