WO1994013623A1 - Synthesis of encoded polymers - Google Patents
Synthesis of encoded polymers Download PDFInfo
- Publication number
- WO1994013623A1 WO1994013623A1 PCT/US1993/012013 US9312013W WO9413623A1 WO 1994013623 A1 WO1994013623 A1 WO 1994013623A1 US 9312013 W US9312013 W US 9312013W WO 9413623 A1 WO9413623 A1 WO 9413623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active
- polymer
- encoding
- carbon atoms
- conjugate
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 101
- 238000003786 synthesis reaction Methods 0.000 title abstract description 33
- 230000015572 biosynthetic process Effects 0.000 title abstract description 32
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 84
- 239000000178 monomer Substances 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 59
- 239000000203 mixture Substances 0.000 claims abstract description 34
- 238000005859 coupling reaction Methods 0.000 claims abstract description 31
- 230000008878 coupling Effects 0.000 claims abstract description 30
- 238000010168 coupling process Methods 0.000 claims abstract description 30
- 108010043958 Peptoids Proteins 0.000 claims abstract description 28
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 23
- 238000003556 assay Methods 0.000 claims abstract description 4
- 150000001413 amino acids Chemical class 0.000 claims description 45
- 235000001014 amino acid Nutrition 0.000 claims description 44
- 229940024606 amino acid Drugs 0.000 claims description 43
- 125000004432 carbon atom Chemical group C* 0.000 claims description 36
- 239000011324 bead Substances 0.000 claims description 19
- 102000039446 nucleic acids Human genes 0.000 claims description 12
- 108020004707 nucleic acids Proteins 0.000 claims description 12
- 150000007523 nucleic acids Chemical class 0.000 claims description 12
- 239000007787 solid Substances 0.000 claims description 11
- 125000005647 linker group Chemical group 0.000 claims description 10
- 230000002194 synthesizing effect Effects 0.000 claims description 10
- 239000002773 nucleotide Substances 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 4
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 4
- 125000001475 halogen functional group Chemical group 0.000 claims description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004472 Lysine Substances 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 239000004475 Arginine Substances 0.000 claims description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 2
- 239000004471 Glycine Substances 0.000 claims description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004473 Threonine Substances 0.000 claims description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 2
- 235000004279 alanine Nutrition 0.000 claims description 2
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 2
- 125000000304 alkynyl group Chemical group 0.000 claims description 2
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 235000009582 asparagine Nutrition 0.000 claims description 2
- 229960001230 asparagine Drugs 0.000 claims description 2
- 235000003704 aspartic acid Nutrition 0.000 claims description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 claims description 2
- 235000018417 cysteine Nutrition 0.000 claims description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 2
- 235000013922 glutamic acid Nutrition 0.000 claims description 2
- 239000004220 glutamic acid Substances 0.000 claims description 2
- 125000001188 haloalkyl group Chemical group 0.000 claims description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 2
- 125000002883 imidazolyl group Chemical group 0.000 claims description 2
- 125000001041 indolyl group Chemical group 0.000 claims description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 2
- 229960000310 isoleucine Drugs 0.000 claims description 2
- 229930182817 methionine Natural products 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 2
- 235000008729 phenylalanine Nutrition 0.000 claims description 2
- 125000005936 piperidyl group Chemical group 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 2
- 239000004474 valine Substances 0.000 claims description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims 1
- 229920001184 polypeptide Polymers 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 15
- 102000004169 proteins and genes Human genes 0.000 abstract description 11
- 102000014914 Carrier Proteins Human genes 0.000 abstract 1
- 108091008324 binding proteins Proteins 0.000 abstract 1
- 239000011347 resin Substances 0.000 description 29
- 229920005989 resin Polymers 0.000 description 29
- 108020004414 DNA Proteins 0.000 description 22
- 239000000562 conjugate Substances 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 17
- 239000012071 phase Substances 0.000 description 16
- 108091034117 Oligonucleotide Proteins 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 102000005962 receptors Human genes 0.000 description 11
- 108020003175 receptors Proteins 0.000 description 11
- 238000012163 sequencing technique Methods 0.000 description 11
- 108010067902 Peptide Library Proteins 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 108010038807 Oligopeptides Proteins 0.000 description 8
- 102000015636 Oligopeptides Human genes 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000010647 peptide synthesis reaction Methods 0.000 description 7
- 108091033380 Coding strand Proteins 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 108091093037 Peptide nucleic acid Proteins 0.000 description 3
- 238000005284 basis set Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000010511 deprotection reaction Methods 0.000 description 3
- 238000009510 drug design Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 239000012508 resin bead Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- YLOCGHYTXIINAI-XKUOMLDTSA-N (2s)-2-amino-3-(4-hydroxyphenyl)propanoic acid;(2s)-2-aminopentanedioic acid;(2s)-2-aminopropanoic acid;(2s)-2,6-diaminohexanoic acid Chemical compound C[C@H](N)C(O)=O.NCCCC[C@H](N)C(O)=O.OC(=O)[C@@H](N)CCC(O)=O.OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 YLOCGHYTXIINAI-XKUOMLDTSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000016726 Coat Protein Complex I Human genes 0.000 description 2
- 108010092897 Coat Protein Complex I Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 241001122767 Theaceae Species 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- -1 isobutyryl Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 241000720950 Gluta Species 0.000 description 1
- HQMLIDZJXVVKCW-REOHCLBHSA-N L-alaninamide Chemical compound C[C@H](N)C(N)=O HQMLIDZJXVVKCW-REOHCLBHSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 108010049175 N-substituted Glycines Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 102000012740 beta Adrenergic Receptors Human genes 0.000 description 1
- 108010079452 beta Adrenergic Receptors Proteins 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- AQEFLFZSWDEAIP-UHFFFAOYSA-N di-tert-butyl ether Chemical compound CC(C)(C)OC(C)(C)C AQEFLFZSWDEAIP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002332 glycine derivatives Chemical class 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- GHLZUHZBBNDWHW-UHFFFAOYSA-N nonanamide Chemical compound CCCCCCCCC(N)=O GHLZUHZBBNDWHW-UHFFFAOYSA-N 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000000863 peptide conjugate Substances 0.000 description 1
- 108010083127 phage repressor proteins Proteins 0.000 description 1
- 230000004526 pharmaceutical effect Effects 0.000 description 1
- 108010094020 polyglycine Proteins 0.000 description 1
- 229920000232 polyglycine polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/04—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/0054—Means for coding or tagging the apparatus or the reagents
- B01J2219/00572—Chemical means
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B70/00—Tags or labels specially adapted for combinatorial chemistry or libraries, e.g. fluorescent tags or bar codes
Definitions
- This invention relates to the fields of biopolymer synthesis and drug design. More particularly, the invention relates to methods for synthesizing libraries of biologically active polymers in association with an included polymer which is encoded to facilitate deciphering.
- Rational drug design achieves results by intensive analysis of the molecular structure of binding sites, and designing compounds specifically to complement a desired binding site.
- one interested in preparing new antihypertensive compounds might analyze the molecular structure of the ⁇ - adrenergic receptor binding site using X-ray crystallography and/or advanced NMR techniques, and then synthesize compounds calculated to fit within the binding site and complement the charge distribution.
- the other approach is to prepare an enormous library of compounds and select only those compounds which exhibit a desired activity.
- This approach differs from the traditional pharmaceutical cycle of design/synthesize/test/synthesize variants by conducting the screening step in a massively parallel fashion, screening an enormous number of different compounds simultaneously.
- the challenge to this approach is first to provide a group of compounds for screening that is sufficiently numerous and diverse to insure that the activity sought is represented in the group, and second to identify the active compounds at low concentration within the group.
- Rutter et al., US 5,010,175 disclosed a method of making diverse mixtures of peptides by adjusting the concentration of each activated peptide in proportion to its reaction rate, in order to obtain a substantially eguimolar mixture of peptides. Rutter also disclosed the process of providing a mixture of peptides (having at least 50 different peptides) , and selecting one or more peptides having a desired property and separating them from the rest of the peptides.
- This method also facilitates the preparation of oligopeptides wherein some positions within the peptide chain are held constant, and where some posi ⁇ tions are restricted to less than all amino acids.
- this method may use this method to prepare a pep ⁇ tide of the formula X ⁇ X ⁇ X j -Glu-Ala-X ⁇ Xs-X, ; , where X,. can be any amino acid. If desired, one could limit, for example, X 3 and X 5 to hydrophobic residues.
- this method may be applied to the synthesis of oligonucleotides, which may then be inserted into cloning and expression vectors for biological expression.
- Peptoids sample a different region of physico-chemical parameter space than traditional oligopeptides, depending on the type of linkage between monomers, and may be able to exhibit activities unavailable to peptide libraries due to the diversity (or difference) in side chains.
- Houghten US 4,631,211 disclosed a "tea-bag” peptide synthesis method.
- the "tea bags” are mesh bags containing resin beads for peptide synthesis. Houghten's method enables one to add the same amino acid to a number of different oligopeptides without mixing the products: a number of "tea bags” may be reacted with an amino acid in a common pot, then separated physically.
- Cook, EP 383620 described synthesis of COP-
- COP-1 a random polymer of Ala, Glu, Lys, and Tyr, having an average molecular weight of 23 kDa having activity in the treatment of multiple sclerosis.
- COP-1 is made in the prior art by chemical polymerization of the amino acids. However, Cook described expression from genes made by random polymerization of oligonucleotides, and selection for those clones expressing COP-1 with the highest activity.
- Lebl et al., EP 445915 described a machine for performing multiple simultaneous peptide syntheses using a planar support surface.
- the planar support is, for example, paper or cotton.
- Kauffman et al., O86/05803 disclosed production of peptide libraries by expression from synthetic genes which are partially or wholly "stochastic.”
- Stochastic genes are prepared by polym- erizing a mixture of at least three oligonucleotides (at least heptamers) to form a double-stranded stochastic sequence, and ligating the stochastic sequence into an expression vector.
- Lam et al., WO92/00091 disclosed libraries of oligonucleotides, oligopeptides, and peptide/nucleotide chimeras, and methods for screening the libraries for active compounds. However, Lam did not disclose conjugates having an active sequence and a coding sequence. K.M. Derbyshire et al.. Gene (1986) 46:145-
- J.F. Reidhaar-Olson et al.. Science (1988) 241:53-57 disclosed the generation of mutant ⁇ repressor proteins by replacing two codons with random nucleotides (NNG/C) .
- NNG/C random nucleotides
- A.R. Oliphant & K. Struhl, Nuc Acids Res (1988) JL6:7673-83 disclosed the use of random poly- nucleotides to investigate promoter function.
- a section of random polynucleotide was inserted into the -35 to -10 region of a gene conferring drug resistance in E. coli, and the transformants screened for resis ⁇ tance. Survivors were cloned and sequenced to provide a functional consensus sequence.
- Oligopeptides are typically sequenced by stepwise cleavage of each amino acid from the parent compound (which is usually immobilized on a resin) , with chromatographic analysis of the cleaved moiety. Sensitive techniques are required to distinguish between twenty or more amino acids. Analysis is further complicated when uncommon amino acids are employed (using current techniques) , especially when monomers are linked without using amide bonds.
- the present invention provides a method of synthesizing true mixtures of diverse oligopeptides and/or peptide-like compounds along with an associated encoding polymer making it possible to easily analyze those compounds exhibiting a desired activity.
- the invention involves synthesizing an encoding DNA strand simultaneously with the peptide/peptoid. Each unique peptide/peptoid sequence associated with its own unique DNA strand to provide the conjugates of the invention.
- conjugates are screened to determine which peptide/ peptoid compounds exhibit a desired activity, and the active conjugates analyzed by DNA sequencing methods to determine the attached peptide/peptoid sequence by deduc-tion, i.e., since each DNA sequence is associated with a known peptide/peptoid, once the DNA sequence is deter ⁇ mined, the sequence of the peptide/peptoid can be deduced.
- Another aspect of the invention is a conjugate comprising a peptide or peptoid coupled to and/or directly associated with a coding polymer (CP) , e.g. a nucleic acid (NA) .
- CP coding polymer
- NA nucleic acid
- the peptide/peptoid/CP conjugate may be linked directly (i.e., covalently bound either directly or through a small organic mol- ecule) , or by linkage to the same support (e.g., by synthesizing both peptide/peptoid and CP strand on the same particle or bead of resin) .
- An important object of the invention is to provide a chemical synthesis method which allows the production of libraries of peptides and/or peptoids along with a unique encoded polymer such as a DNA strand which makes it possible to readily determine the sequence of the peptide or peptoid.
- An advantage of the present invention is that the methodology makes it possible to readily identify and sequence peptides and/or peptoids having desirable biological activities.
- a feature of the present invention is that sequences of peptoids or peptides which contain nonconventional amino acids can still be readily determined by sequencing associated polymers such as DNA sequences which are simultaneously synthesized with the peptoids and encode them.
- Figure 1 is a schematic diagram showing a specific embodiment of a conjugate of the invention which conjugate includes a "binding" strand or active polymer attached to a solid-support substrate which substrate is also bound to an information storage or "coding" strand;
- Figure 2 is a schematic flow diagram demonstrating how encoded libraries can be synthesized on beads as the solid-support substrate;
- Figure 3 is a schematic diagram showing methods of the synthesis of both solid-phase and solution-phase libraries
- Figure 4 is a schematic diagram showing resin-bound libraries generated by the derivatization of non-hydrolyzable resins
- Figure 5 is an HPLC chromatogram of binding and coding peptide strands simultaneously synthesized via non-hydrolyzable resin linkage
- Figure 6 is an HPLC chromatogram of a coding and binding strand adduct which was synthesized via a hydrolyzable resin linker
- Figure 8 is a schematic diagram showing the analysis of a solid-phase amptide.
- Figure 9 is a schematic flow diagram showing the analysis of a solution-phase amptide.
- the invention provides a rapid method of synthesizing large numbers of conjugates which conjugates are comprised of a peptide/peptoid sequence, e.g., an amino acid sequence associated with a unique encoding sequence, e.g., a DNA sequence.
- the conjugates can be readily synthesized and thereafter screened for biological activity, and when activity is found, the particular peptide/peptoid sequence found to be active can be readily identified by its associated encoding (DNA) strand.
- Each conjugate of the invention is comprised of at least two components with one of the components being the peptide or peptoid sequence which binds to a receptor of interest and the other sequence being a polymer which encodes the binding sequence.
- the invention may utilize standard amino acids and DNA as encoding monomers to produce a chemically diverse library of solution-phase or solid-phase conjugates. In order to further describe the invention in detail, the following definitions are provided.
- nucleic acid and nucleic acid refer to oligomers constructed from DNA and/or RNA bases which may be sequenced using standard DNA sequencing tech ⁇ niques.
- the NAs used herein may include uncommon bases so long as such bases are distinguishable from the other bases employed under the DNA sequencing methods to be used and include peptide-nucleic acids (PNAs) (disclosed by Nielsen, P.E., Egholm, M. , Berg, R.H. & Buchardt, 0. , Science (1991) 254, 1497-1500).
- PNAs peptide-nucleic acids
- Such PNAs could serve as coding strands and the detection would be by hybridi-zation.
- NAs will usually be constructed from monomers linked by phos- phodiester bonds, but other similar linkages may be substituted if desired.
- phosphorothioates may be employed to reduce lability.
- the term "peptide” as used herein refers to the 20 commonly-occurring amino acids: alanine (A) , cysteine (C) , aspartic acid (D) , glutamic acid (E) , phenylalanine (F) , glycine (G) , histidine (H) , isoleucine (I) , lysine (K) , leucine (L) , methionine (M) , asparagine (N) , proline (P) , gluta ine (Q) , arginine (R) , serine (S) , threonine (T) , valine (V) , tryptophan ( ) , and tyrosine (Y) .
- eptoid refers to a non-peptide monomer of the general formula (R) n -X- (L) m , where R is a side chain group, n is at least 1, L is a linking group, m is at least 2, and X is a small organic radical. It is preferred to select L radicals that may be individually protected and deprotected. Preferably n will be 1 or 2 and m will be 2. Monomers wherein m is 3 or greater may be used to form branched active polymers. Presently preferred monomers are N-substituted glycine derivatives of the formula
- R is alkyl of 2-6 carbon atoms, haloalkyl of 1-6 carbon atoms wherein halo is F, Cl, Br, or I, alkenyl of 2-6 carbon atoms, alkynyl of 2-6 carbon atoms, cyclolkyl of 3-8 carbon atoms, alkoxyalkyl of 2-8 carbon atoms, aryl of 6-10 carbon atoms, arylalkyl of 7-12 carbon atoms, arylalkyl of 7-12 carbon atoms substituted with 1-3 radicals independently selected from halo and nitro and hydroxy, aminoalkyl of 1-6 carbon atoms, hydroxyalkyl of 1-6 carbon atoms, carboxy, carboxyalkyl of 2-6 carbon atoms, carboalkoxy-alkyl of 3-10 carbon atoms, carbamyl, carbamylalkyl of 2-6 carbon atoms, imidazolyl, imid- azolylalkyl of 4-10 carbon atoms
- coding and “encoding” indicated that one or more coding monomers corresponds directly and uniquely to a given active monomer, e.g., conventional nucleic acids encode (in groups of three) the 20 natural amino acids.
- the number of coding monomers used for each code depends on the number of different coding mono ⁇ mers and the number of different active monomers. Typically, the number of different active monomers used will range from about 5 to about 30.
- a basis set of 4 coding monomers can encode up to 16 active monomers taken in "codons" of 2 coding monomers. By increasing the coding monomer basis set to five distinct monomers, one can encode up to 25 different peptide/peptoid monomers.
- a basis set of 4 coding monomers can encode up to 64 peptide/peptoid monomers taken in "codons" of 3 coding monomers. Note that one can make the code degenerate or nondegenerate, and can insert additional coding information into the sequence. For example, one may wish to begin each codon with the same base (e.g. , G) , using that base only in the first position, thus unambiguously identi ⁇ fying the beginning of each codon.
- the group of monomers selected for use as coding monomers will form polymers that are easier to sequence than the active polymers, i.e., the coding monomers may be more readily identified using present day sequencing technology as compared to the monomer of the active polymers.
- nucleic acids With current technology, the order of preference for coding monomers is nucleic acids > peptides > peptoids. Nucleic acids have the additional advantage that the coding sequence may be amplified by cloning or PCR (polymerase chain reaction) methods known in the art.
- active polymer and/or “binding polymer” refers to a polymer having a desired biological activity. Suitable biological activities include binding to natural receptors, pharmaceutical effects, immunogenicity/antigenicity, and the like. "Immunogenicity” refers to the ability to stimulate an immune response (whole or partial serum-mediated immunity and/or cell-mediated immunity) in a bird or mammal following administration.
- Antigenicity requires only that the active polymer bind to the antigen-binding site of an antibody.
- Pharmaceutical activities will generally depend on the ability of the active polymer to bind a protein, carbohydrate, lipid, nucleic acid, or other compound present in the subject.
- an active polymer may bind to a cell surface receptor and compete with the receptor's natural ligand, with or without activation of the receptor.
- Other useful pharmaceutical activities include cleavage of endogenous molecules (e.g.
- Active polymers comprise a series of monomers which are linked sequentially.
- the monomers will generally be peptides, peptoids, or carbohydrates in the practice of the instant invention.
- mixture refers to a composition having a plurality of similar components in a single vessel.
- Couple refers to formation of a covalent bond.
- Coupled moiety refers to a soluble or insoluble support to which can be attached one or more active monomers and the corresponding encoding monomers.
- Insoluble supports (“solid support means") may be any solid or semi-solid surface which is stable to the reaction conditions required for synthesis of the active and coding polymers, and is suitable for covalently attaching and immobilizing both polymers, for example, most resins commonly employed in DNA and peptide synthesis, such as MBHA, Rink, and the like. The particular resin used will depend upon the choice of coding and active polymers and their associated synthetic chemistries.
- Soluble coupling moieties are molecules having functional groups to which active and coding monomers may be attached.
- Each soluble coupling moiety must be able to accommodate at least one coding polymer and at least one active polymer, although the active and coding polymers need not be present in a 1:1 ratio.
- the soluble coupling moiety may be as simple as an amino acid having an functional group in its side chain, or may be as complex as a functionalized (soluble) polymer.
- conjugate refers to the combination of any "active polymer” and its associated “coding” polymer.
- the conjugate may be formed using a “coupling moiety” or by binding both the “active polymer” and “encoding polymer” to the same support surface in close proximity with each other so that the two polymers are “associated” with each other.
- both polymers are bound to the same support surface, such as a small bead, the encoding polymer can be readily sequenced off of the bead and the other "active polymers” remaining on the bead will be identified once the encoding sequence is known.
- Filamentous bacteriophage libraries offer the largest source of peptide diversity ( «10 7 -10 8 different components) of any current technology to date (Scott, J. & Smith, G. , Science. (1990), 249, 386-390; Devlin, J. , Panganiban, L. & Devlin, P., Science. (1990), 249, 404-406; Cwirla, S., Peters, E., Barret, R. & Dower, W. , Proc. Natl. Acad. Sci. U.S.A.. (1990), 87, 6378-6382).
- the sequence of a biologically active protein can be determined even without isolating the protein of interest. This can be done by synthesizing large numbers of different proteins on large numbers of different support surfaces such as small beads. An encoding polymer is attached to beads to identify each protein. A sample to be tested is then brought into contact with the beads and the beads are observed with respect to which proteins bind to a receptor site in the sample. The bead having the receptor bound thereon is analyzed by sequencing the coding polymer which has also been synthesized on the bead. When the encoding polymer has been sequenced, the sequence of the active polymer, which may be a peptide, can be readily deduced. Thus, the present invention makes it possible to determine the activity and sequence an active polymer, such as a biologically active peptide, without ever isolating the peptide.
- This invention describes a methodology for the synthesis and screening of large synthetic polymer libraries that contain non-standard amino acids and even non-amide based polymers.
- the strategy utilizes a modified mixed-resin peptide synthesis methodology to simultaneously synthesize two polymer sequences: one polymer strand (the "binding" strand) is synthesized for the intended purpose of receptor binding, and the second strand (the "coding” strand) contains standard amino acids or deoxyribonucleotides that encodes for the binding strand ( Figure 1) .
- the ability to decipher the binding sequence by analysis of the coding strand with standard peptide or oligonucleotide techniques allow the inclusion of a wide variety of novel building blocks and conformational constraints into a diverse ligand library.
- This invention also describes a methodology to increase the size (>10 8 ) and screening rate of a ligand library.
- the method uses two polymers as above, but specifically utilizes an oligodeoxyribonucleotide for the "coding" strand.
- the use of DNA as the coding strand allows for an increased sensitivity of detection (fmol vs pmol for peptide analysis) .
- This increased sensitivity allows for a larger library size since the amount of polymer needed for detection is reduced dramatically.
- the rate of sequence determination of receptor binders is increased since many samples can be analyzed in parallel.
- Two synthesis formats are possible for amptide libraries, one that generates resin-bound libraries and one that generates solution-phase libraries ( Figure 3) .
- Resin-bound libraries can be synthesized using non-hydrolyzable linkers that are derivatized with the "binding" and "coding" monomers strands.
- Solution-phase libraries can be synthesized as a 1:1 polymer:peptide/DNA conjugate via a hydrolyzable linker attached to the resin.
- Peptide as the "Coding" strand
- base-labile Fmoc-protected monomers and acid-labile (l-P-Ddz-protected amino acids (Birr, C, Nassal, M. , Pipkorn, R. , Int. J. Peptide Protein Res.. (1979), 13, 287-295), for example, allow for selective deprotection and coupling to two individual polymer strands.
- Resin-bound libraries can be generated by the derivatization of non-hydrolyzable resins with a 1:1 ratio (or any desired ratio) of Fmoc:Ddz monomers ( Figure 4) . This introduces two differently protected amino acids that an be extended independently.
- Solution-phase libraries that contain a 1:1 ratio of binding:coding strands can be synthesized by using a hydrolyzable Fmoc-Lysine(Moz)- OH linker that allowed for chain growth at both the ⁇ - and ⁇ -amino groups. Amino acids which do not contain functional groups are preferred for the "coding" strand in order to minimize unwanted binding interactions.
- the receptor-binding ligand can be identified by bead staining techniques (Lam, K. , Salmon, S., Hersh, E., Hruby, V., Kazmiersky, W. & Knapp, R. , Nature, (1991), 354, 82-84) and the sequence determined by N-terminal Edman degradation. In order to ensure that only the "coding" strand is sequenced, it is essential that the N-terminus of the "binding" strand be acetylated or otherwise made non- sequencable.
- the construction of libraries with DNA as the coding strand is similar to those with peptides but offers several advantages: the information storage and replicative properties of DNA allow for increased sensitivity of detection, a larger library size and an increased rate of sequence determination.
- the synthesis of DNA as the coding polymer requires compatibility between the assembly of Fmoc- based monomers and standard DNA chemistry. These synthesis strategies are likely to be compatible ((a) Juby, C, Richardson, C. & Brousseau, R., Tet. Letters. (1991), 32, 879-882. (b) Haralambidis, J. , Duncan, L., Angus, B. & Tregear W., Nucleic Acid Res.. (1990), 18, 493-499) (see Table 2) .
- allyl-based protection strategies exists for both peptide (Lyttle, M.H.; Hudson, D. , Peptides: Chemistry and Biology fProceedings of the 12th American Peptide Sym osiuml.: Smith, J. and Rivier, J.E., Eds.; ESCOM, Leiden, 1992, pp. 583-584) and oligodeoxyribonucleotide (Hayakawa, Y., Wakabayashi, S., Kato, H. & Noyori, R. , J. Am. Chem. Soc. r (1990), 112, 1691-1696) synthesis.
- the assay of solution- phase libraries can be facilitated by using only pyrimidines in the coding strand, thereby avoiding the potential problem of base pairing between individual strands.
- SUBSTITUTE SHEET Resin-bound libraries can be synthesized by using non-hydrolyzable linkers to attach both the C- terminus of the peptide and the 3'-end of the oligonucleotide to the same bead.
- Solution-phase libraries can be synthesized as a 1:1 peptide- oligonucleotide conjugate, in which the C-terminus of the peptide is attached to the 3'-end of the oligonucleotide through a hydrolyzable Fmoc-Ser(O-Dmt) linker which is attached to the resin.
- the identification of binders in the resin- bound peptide libraries can be detected by the bead staining methodology (Lam, K.
- Example 1 The independent synthesis of two unambiguously correlated sequences has been successfully completed. The subsequent sequence analysis of the "coding" strand has also been demonstrated. For convenience, two peptide sequences were chosen. The "binding" strand was synthesized with N ⁇ -Fmoc-protected amino acids and the "coding” strand was synthesized with IT-Ddz-protected amino acids.
- the model library bead has two independently synthesized sequences and is ready for assay. Only the coding strand has a free ⁇ -amino group and can be characterized by N-terminal Edman degradation. The binding strand is acetylated and there-fore will not interfere with the sequencing. The two peptides were cleaved from the resin with HF thereby providing both the "binding" and "coding" sequences as free peptides. The amino acid composition, mass spectro-scopy and N- terminal sequencing data are consistent with the correct products. (See Figures 5, 6 and 7.) Mass Spectrometry:
- the model solution-phase library contains a 1:1 Fmoc/Ddz conjugate peptide.
- One peptide sequence was synthesized and not a mixture in order to fully characterize the reaction product. The amino acid composition and mass spectroscopy data are consistent with the correct product.
- the "binding" and "coding” hybrid peptides were tested in a competition ELISA format. The ELSTRPnL "binding" sequence binds to an anti-gpl20 antibody with submicromolar affinity. This value was not affected by the presence of the "coding" peptide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Peptides Or Proteins (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
Claims
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP94904077A EP0675873A4 (en) | 1992-12-11 | 1993-12-10 | Synthesis of encoded polymers |
| JP6514425A JPH08504444A (en) | 1992-12-11 | 1993-12-10 | Synthesis of encoded polymers |
| AU58272/94A AU5827294A (en) | 1992-12-11 | 1993-12-10 | Synthesis of encoded polymers |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US98827892A | 1992-12-11 | 1992-12-11 | |
| US07/988,278 | 1992-12-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1994013623A1 true WO1994013623A1 (en) | 1994-06-23 |
Family
ID=25534002
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1993/012013 WO1994013623A1 (en) | 1992-12-11 | 1993-12-10 | Synthesis of encoded polymers |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP0675873A4 (en) |
| JP (1) | JPH08504444A (en) |
| AU (1) | AU5827294A (en) |
| CA (1) | CA2151473A1 (en) |
| WO (1) | WO1994013623A1 (en) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0639607A3 (en) * | 1993-08-20 | 1996-07-03 | Biosearch Inc | Method and apparatus for degradation and sequencing of polymers which sequentially eliminate terminal residues. |
| WO1996023749A1 (en) * | 1995-02-04 | 1996-08-08 | Zeneca Limited | Chemical libraries, labelling and deconvolution thereof |
| WO1997003931A1 (en) * | 1995-07-22 | 1997-02-06 | Zeneca Limited | Intrinsically labelled solid support |
| US5776737A (en) * | 1994-12-22 | 1998-07-07 | Visible Genetics Inc. | Method and composition for internal identification of samples |
| US5961923A (en) * | 1995-04-25 | 1999-10-05 | Irori | Matrices with memories and uses thereof |
| US6100026A (en) * | 1995-04-25 | 2000-08-08 | Irori | Matrices with memories and uses thereof |
| US6284459B1 (en) | 1995-04-25 | 2001-09-04 | Discovery Partners International | Solid support matrices with memories and combinatorial libraries therefrom |
| WO2002016574A3 (en) * | 2000-08-22 | 2002-09-06 | Phylos Inc | Method for identifying peptides that can be specifically cleaved and the use of peptide sequences of this type |
| WO2004099441A3 (en) * | 2003-05-09 | 2005-02-03 | Hyscite Discovery As | Selection and evolution of chemical libraries |
| WO2005058479A3 (en) * | 2003-12-17 | 2005-10-13 | Praecis Pharm Inc | Methods for synthesis of encoded libraries |
| WO2007053358A2 (en) | 2005-10-28 | 2007-05-10 | Praecis Pharmaceuticals, Inc. | Methods for identifying compounds of interest using encoded libraries |
| US7422861B2 (en) | 2000-12-23 | 2008-09-09 | Novartis Vaccines And Diagnostics, Inc. | Oligonucleotide transfection screening method |
| EP2258870A2 (en) | 2005-06-09 | 2010-12-08 | Praecis Pharmaceuticals Inc. | Method for identifying compounds which bind to biological target molecule |
| US20110118139A1 (en) * | 1999-02-23 | 2011-05-19 | Caliper Life Sciences, Inc. | Manipulation of Microparticles In Microfluidic Systems |
| US7972994B2 (en) | 2003-12-17 | 2011-07-05 | Glaxosmithkline Llc | Methods for synthesis of encoded libraries |
| US8932992B2 (en) | 2001-06-20 | 2015-01-13 | Nuevolution A/S | Templated molecules and methods for using such molecules |
| US9096951B2 (en) | 2003-02-21 | 2015-08-04 | Nuevolution A/S | Method for producing second-generation library |
| US9109248B2 (en) | 2002-10-30 | 2015-08-18 | Nuevolution A/S | Method for the synthesis of a bifunctional complex |
| US9121110B2 (en) | 2002-12-19 | 2015-09-01 | Nuevolution A/S | Quasirandom structure and function guided synthesis methods |
| US9574189B2 (en) | 2005-12-01 | 2017-02-21 | Nuevolution A/S | Enzymatic encoding methods for efficient synthesis of large libraries |
| US10730906B2 (en) | 2002-08-01 | 2020-08-04 | Nuevolutions A/S | Multi-step synthesis of templated molecules |
| US10731151B2 (en) | 2002-03-15 | 2020-08-04 | Nuevolution A/S | Method for synthesising templated molecules |
| US10760181B2 (en) | 2015-02-24 | 2020-09-01 | City Of Hope | Chemically encoded spatially addressed library screening platforms |
| US11118215B2 (en) | 2003-09-18 | 2021-09-14 | Nuevolution A/S | Method for obtaining structural information concerning an encoded molecule and method for selecting compounds |
| US11225655B2 (en) | 2010-04-16 | 2022-01-18 | Nuevolution A/S | Bi-functional complexes and methods for making and using such complexes |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4359353A (en) * | 1981-05-18 | 1982-11-16 | Hydrocarbon Research, Inc. | Polypeptides as chemical tagging materials |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ATE148889T1 (en) * | 1991-09-18 | 1997-02-15 | Affymax Tech Nv | METHOD FOR SYNTHESIS OF VARIOUS COLLECTIONS OF OLIGOMERS |
| CA2143848C (en) * | 1992-10-01 | 2007-09-11 | W. Clark Still | Complex combinatorial chemical libraries encoded with tags |
-
1993
- 1993-12-10 WO PCT/US1993/012013 patent/WO1994013623A1/en not_active Application Discontinuation
- 1993-12-10 EP EP94904077A patent/EP0675873A4/en not_active Withdrawn
- 1993-12-10 JP JP6514425A patent/JPH08504444A/en not_active Withdrawn
- 1993-12-10 CA CA 2151473 patent/CA2151473A1/en not_active Abandoned
- 1993-12-10 AU AU58272/94A patent/AU5827294A/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4359353A (en) * | 1981-05-18 | 1982-11-16 | Hydrocarbon Research, Inc. | Polypeptides as chemical tagging materials |
Non-Patent Citations (8)
| Title |
|---|
| BioTechniques, Vol. 13, No. 3, issued September 1992, R.A. HOUGHTEN et al., "The Use of Synthetic Peptide Combinatorial Libraries for the Identification of Bioactive Peptides", pages 412-421, see the entire document. * |
| Nature, Vol. 354, issued 07 November 1991, K.S. LAM et al., "A New Type of Synthetic Peptide Library for Identifying Ligand-Binding Activity", pages 82-84. * |
| Proceedings of the National Academy of Sciences USA, Vol. 89, issued June 1992, S. BRENNER et al., "Encoded Combinatorial Chemistry", pages 5381-5383, see the entire document. * |
| Proceedings of the National Academy of Sciences USA, Vol. 90, issued November 1993, M.C. NEEDELS et al., "Generation and Screening of an Oligonucleotide-Encoded Synthetic Peptide Library", pages 10700-10704, see the entire document. * |
| Science, Vol. 249, issued 27 July 1990, J.J. DEVLIN et al., "Random Peptide Libraries: a Source of Specific Protein Binding Molecules", pages 404-406. * |
| Science, Vol. 254, issued 06 December 1991, P.E. NIELSEN et al., "Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide", pages 1497-1500, see page 1498. * |
| Science, Vol. 257, issued 17 July 1992, I. AMATO, "Speeding Up a Chemical Game of Chance", pages 330-331, see the entire document. * |
| See also references of EP0675873A4 * |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0639607A3 (en) * | 1993-08-20 | 1996-07-03 | Biosearch Inc | Method and apparatus for degradation and sequencing of polymers which sequentially eliminate terminal residues. |
| US5776737A (en) * | 1994-12-22 | 1998-07-07 | Visible Genetics Inc. | Method and composition for internal identification of samples |
| WO1996023749A1 (en) * | 1995-02-04 | 1996-08-08 | Zeneca Limited | Chemical libraries, labelling and deconvolution thereof |
| US6284459B1 (en) | 1995-04-25 | 2001-09-04 | Discovery Partners International | Solid support matrices with memories and combinatorial libraries therefrom |
| US5961923A (en) * | 1995-04-25 | 1999-10-05 | Irori | Matrices with memories and uses thereof |
| US6100026A (en) * | 1995-04-25 | 2000-08-08 | Irori | Matrices with memories and uses thereof |
| WO1997003931A1 (en) * | 1995-07-22 | 1997-02-06 | Zeneca Limited | Intrinsically labelled solid support |
| US9101928B2 (en) * | 1999-02-23 | 2015-08-11 | Caliper Life Sciences, Inc. | Manipulation of microparticles in microfluidic systems |
| US20110118139A1 (en) * | 1999-02-23 | 2011-05-19 | Caliper Life Sciences, Inc. | Manipulation of Microparticles In Microfluidic Systems |
| WO2002016574A3 (en) * | 2000-08-22 | 2002-09-06 | Phylos Inc | Method for identifying peptides that can be specifically cleaved and the use of peptide sequences of this type |
| US7422861B2 (en) | 2000-12-23 | 2008-09-09 | Novartis Vaccines And Diagnostics, Inc. | Oligonucleotide transfection screening method |
| US10669538B2 (en) | 2001-06-20 | 2020-06-02 | Nuevolution A/S | Templated molecules and methods for using such molecules |
| US8932992B2 (en) | 2001-06-20 | 2015-01-13 | Nuevolution A/S | Templated molecules and methods for using such molecules |
| US10731151B2 (en) | 2002-03-15 | 2020-08-04 | Nuevolution A/S | Method for synthesising templated molecules |
| US10730906B2 (en) | 2002-08-01 | 2020-08-04 | Nuevolutions A/S | Multi-step synthesis of templated molecules |
| US11001835B2 (en) | 2002-10-30 | 2021-05-11 | Nuevolution A/S | Method for the synthesis of a bifunctional complex |
| US10077440B2 (en) | 2002-10-30 | 2018-09-18 | Nuevolution A/S | Method for the synthesis of a bifunctional complex |
| US9284600B2 (en) | 2002-10-30 | 2016-03-15 | Neuvolution A/S | Method for the synthesis of a bifunctional complex |
| US9109248B2 (en) | 2002-10-30 | 2015-08-18 | Nuevolution A/S | Method for the synthesis of a bifunctional complex |
| US9121110B2 (en) | 2002-12-19 | 2015-09-01 | Nuevolution A/S | Quasirandom structure and function guided synthesis methods |
| US9096951B2 (en) | 2003-02-21 | 2015-08-04 | Nuevolution A/S | Method for producing second-generation library |
| WO2004099441A3 (en) * | 2003-05-09 | 2005-02-03 | Hyscite Discovery As | Selection and evolution of chemical libraries |
| US11118215B2 (en) | 2003-09-18 | 2021-09-14 | Nuevolution A/S | Method for obtaining structural information concerning an encoded molecule and method for selecting compounds |
| US11965209B2 (en) | 2003-09-18 | 2024-04-23 | Nuevolution A/S | Method for obtaining structural information concerning an encoded molecule and method for selecting compounds |
| EP2366705A1 (en) | 2003-12-17 | 2011-09-21 | Praecis Pharmaceuticals Incorporated | Methods for synthesis of encoded libraries |
| US7935658B2 (en) | 2003-12-17 | 2011-05-03 | Praecis Pharmaceuticals, Inc. | Methods for synthesis of encoded libraries |
| WO2005058479A3 (en) * | 2003-12-17 | 2005-10-13 | Praecis Pharm Inc | Methods for synthesis of encoded libraries |
| CN1898257B (en) * | 2003-12-17 | 2010-06-23 | 普雷西斯药品公司 | Method for synthesizing coding library |
| US8410028B2 (en) | 2003-12-17 | 2013-04-02 | Glaxosmithkline Llc | Methods for synthesis of encoded libraries |
| US20110136697A1 (en) * | 2003-12-17 | 2011-06-09 | Praecis Pharmaceuticals Incorporated | Methods for synthesis of encoded libraries |
| US7972992B2 (en) | 2003-12-17 | 2011-07-05 | Praecis Pharmaceuticals, Inc. | Methods for synthesis of encoded libraries |
| US7972994B2 (en) | 2003-12-17 | 2011-07-05 | Glaxosmithkline Llc | Methods for synthesis of encoded libraries |
| EP2311786A2 (en) | 2005-06-09 | 2011-04-20 | Praecis Pharmaceuticals Inc. | Methods for synthesis of encoded libraries |
| EP2258870A2 (en) | 2005-06-09 | 2010-12-08 | Praecis Pharmaceuticals Inc. | Method for identifying compounds which bind to biological target molecule |
| EP2338990A2 (en) | 2005-06-09 | 2011-06-29 | Praecis Pharmaceuticals Inc. | Methods for synthesis of encoded libraries |
| WO2007053358A2 (en) | 2005-10-28 | 2007-05-10 | Praecis Pharmaceuticals, Inc. | Methods for identifying compounds of interest using encoded libraries |
| US7989395B2 (en) | 2005-10-28 | 2011-08-02 | Glaxosmithkline Llc | Methods for identifying compounds of interest using encoded libraries |
| EP2368868A1 (en) | 2005-10-28 | 2011-09-28 | Praecis Pharmaceuticals Inc. | Methods for identifying compounds of interest using encoded libraries |
| AU2006309096B2 (en) * | 2005-10-28 | 2013-07-04 | Glaxosmithkline Llc | Methods for identifying compounds of interest using encoded libraries |
| US20120071329A1 (en) * | 2005-10-28 | 2012-03-22 | Glaxosmithkline Llc | Methods for identifying compounds of interest using encoded libraries |
| US9574189B2 (en) | 2005-12-01 | 2017-02-21 | Nuevolution A/S | Enzymatic encoding methods for efficient synthesis of large libraries |
| US11702652B2 (en) | 2005-12-01 | 2023-07-18 | Nuevolution A/S | Enzymatic encoding methods for efficient synthesis of large libraries |
| US11225655B2 (en) | 2010-04-16 | 2022-01-18 | Nuevolution A/S | Bi-functional complexes and methods for making and using such complexes |
| US10760181B2 (en) | 2015-02-24 | 2020-09-01 | City Of Hope | Chemically encoded spatially addressed library screening platforms |
| US11015266B2 (en) | 2015-02-24 | 2021-05-25 | City Of Hope | Chemically encoded spatially addressed library screening platforms |
| US11015265B2 (en) | 2015-02-24 | 2021-05-25 | City Of Hope | Chemically encoded spatially addressed library screening platforms |
| US10767278B2 (en) | 2015-02-24 | 2020-09-08 | City Of Hope | Chemically encoded spatially addressed library screening platforms |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH08504444A (en) | 1996-05-14 |
| AU5827294A (en) | 1994-07-04 |
| EP0675873A4 (en) | 2000-03-29 |
| EP0675873A1 (en) | 1995-10-11 |
| CA2151473A1 (en) | 1994-06-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1994013623A1 (en) | Synthesis of encoded polymers | |
| Lebl et al. | One‐bead–one‐structure combinatorial libraries | |
| EP0705279B1 (en) | Topologically segregated, encoded solid phase libraries | |
| Jung et al. | Multiple peptide synthesis methods and their applications. New synthetic methods (87) | |
| US5840485A (en) | Topologically segregated, encoded solid phase libraries | |
| Pavia et al. | The generation of molecular diversity | |
| Hudson | Matrix assisted synthetic transformations: a mosaic of diverse contributions. II. The pattern is completed | |
| Lowe | Combinatorial chemistry | |
| US5541061A (en) | Methods for screening factorial chemical libraries | |
| US5510240A (en) | Method of screening a peptide library | |
| US20030228605A1 (en) | Identification of protein binding sites | |
| TW201124726A (en) | Compositions and methods for producing coded peptoid libraries | |
| Dower et al. | The search for molecular diversity (II): recombinant and synthetic randomized peptide libraries | |
| Beck-Sickinger et al. | Combinatorial strategies in biology and chemistry | |
| Ede | Multiple parallel synthesis of peptides on SynPhase™ grafted supports | |
| US6864048B2 (en) | Factorial chemical libraries | |
| US5846841A (en) | Motif Libraries | |
| Groth et al. | PEG based resins for protease drug discovery synthesis, screening and analysis of combinatorial on-bead libraries | |
| Lebl et al. | Felder zyxwvutsrqponmlkj | |
| Marasco | Synthetic Peptide Libraries: Chemical Diversity to Reach Lead Compounds | |
| WO2006018277A1 (en) | Method for rational combinatorial synthesis | |
| Lam et al. | 6 Combinatorial Library Based on the One-Bead-One-Compound Concept | |
| Handbook | Combinatorial Peptide and Nonpeptide Libraries | |
| Sepetov et al. | A One-Bead One-Peptide Combinatorial Library Method for B-Cell Epitope Mapping | |
| Kiely et al. | Rapidly Expanding Molecular Diversity: Libraries from Libraries |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NL NO NZ PL PT RO RU SD SE SK UA UZ VN |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2151473 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1994904077 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWP | Wipo information: published in national office |
Ref document number: 1994904077 Country of ref document: EP |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 1994904077 Country of ref document: EP |