WO1994011539A1 - A method of producing metallic magnesium, magnesium oxide or a refractory material - Google Patents
A method of producing metallic magnesium, magnesium oxide or a refractory material Download PDFInfo
- Publication number
- WO1994011539A1 WO1994011539A1 PCT/DK1992/000339 DK9200339W WO9411539A1 WO 1994011539 A1 WO1994011539 A1 WO 1994011539A1 DK 9200339 W DK9200339 W DK 9200339W WO 9411539 A1 WO9411539 A1 WO 9411539A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mole
- plus
- zone
- mgo
- starting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/20—Obtaining alkaline earth metals or magnesium
- C22B26/22—Obtaining magnesium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
- C01B32/963—Preparation from compounds containing silicon
- C01B32/97—Preparation from SiO or SiO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/02—Magnesia
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/88—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the present invention relates to methods of processing a starting material selected from the group consisting of magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine, by carbothermal reduction and methods of producing metallic magnesium, pure magnesium oxide (MgO) and refractory masses consisting of MgO, Mg-SiO. and SiC by carbothermal reduction of starting materials selected from the above- mentioned group.
- a starting material selected from the group consisting of magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine
- the first group in which magnesium oxide is bound to carbon dioxide includes i.a. the minerals magnesite and dolomite.
- the second group in which magnesium oxide is bound to silicon dioxide includes i.a. the mineral olivine.
- the direct methods may be classified in two groups.
- reducing agents are employed forming gaseous oxygen containing reaction products, for example reduction of MgO with carbon as reducing agent forming Mg and CO as gaseous oxygen- containing reaction product at atmospheric pressure and a temperature about 1850 °C, or other carbothermal reduction methods, vide e.g. US PS 2 268 779 (SEIFERT), and US PS 2 582 119 and 2 582 120 (HANSGIRG).
- magnesium silicate e.g. olivine
- Mg(g) and SiO(g) transport of Mg and SiO may occur within the reaction mixture and Mg and SiO may even be removed therefrom by evaporation.
- solid Mg may be collected by condensation of evaporated metallic Mg in a separate condensation zone, i.e. in a condenser positioned at a distance from the reaction mixture.
- a problem inherently associated with the first group of direct methods consists in the possibility of back- reaction, vide equation (2), between magnesium and the gaseous oxygen containing reaction product whereby magnesium is oxidized to magnesium oxide.
- reaction pressure is decreased during carbothermal reduction of Mg 2 SiO.
- increasing amounts of SiO will evaporate from the reaction mixture resulting in an increasing SiO/Mg ratio in the exit gas from the reaction mixture.
- the first problem to be solved by the present invention is to provide a carbothermal process for producing Mg from starting materials selected from the group consisting of magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine, avoiding contamination of the Mg end product
- magnesium oxide i.e. magnesium oxide containing impurities such as oxides of Fe, Si, Ca and Al, are produced by calcining magnesium hydroxide, magnesium carbonate or basic magnesium carbonate.
- Magnesium hydroxide is produced from seawater on a large scale by a process wherein Mg(0H) 2 is precipitated by addition of calcium hydroxide.
- the precipitated magnesium hydroxide usually contains trace amounts of oxides of B, Ca, Si, Al and Fe as impurities. These contaminants have a deleterious effect on the behaviour of the magnesium oxide product during sintering and in its subsequent applica ⁇ tions and considerable efforts are put into the removal of these impurities, leading to high processing costs.
- High purity magnesium oxide is produced by fusing basic magnesia (MgO) by electric arc melting.
- MgO basic magnesia
- this method which is described, i.a. in Radex Rundschau 1958, Heft 2, p. 92-104 (EIPE TAUER et al. )
- refining of the MgO is achieved through the migration of impurities via liquid or gaseous phases towards the surface before or during cooling of the melted MgO charge.
- the impure parts of the solid MgO block is removed by mechanical means.
- a disadvantage of these prior art methods of producing high purity magnesium oxide consists in the necessity of using expensive magnesium as starting material.
- the second problem to be solved by the present invention is to provide a process for producing high purity magnesium oxide from inexpensive starting materials, said high purity magnesium oxide products being essentially free of oxides of Ca, Si, Al and Fe.
- SiC is an example of a high performance refractory material. It may be produced in an electric furnace by reduction of Si0 2 with carbon at a temperature of about 2200-2400 °C.
- Technical grade magnesium oxide is further processed by sintering at temperatures up to 1900 °C to dead-burned magnesia, which is an important refractory material used in the steel industry.
- the third problem to be solved by the present invention is to provide a simple and inexpensive process for producing high performance refractories using inexpensive raw materials, selected from the group, consisting of magnesium oxide, containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine.
- the first problem can be solved by a method of producing metallic magnesium by carbo ⁇ thermal reduction of a starting material selected from the group consisting of magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine, which comprises mixing the starting material with carbon in an amount of
- p r l. is in kPa, and below (Tmi.n + 100 °C), preferably ⁇ *
- Tr (Tmi.n + 50 °C) t,i in pt?articular (T m ⁇ . n + 25 °C) and in any.. case below Tr;
- the basic philosophy behind this first aspect of the present invention is: Control the processes of transport of gaseous magnesium and SiO by carbothermal reaction of crude magnesium oxide and magnesium silicate minerals, i.e. control the location of formation of products and by ⁇ products by selecting appropriate values and gradients of the following process parameters: Pressure (value and gradient), temperature (value and gradient) , and carbon percentage of charge (value) in the reaction zone and in the first and second condensation zone.
- the evaporated material is recovered by condensation at lower temperatures.
- the evaporated SiO(g) is recovered, essentially as Si(s) or SiC(s) in a suitably designed first condenser operating at a temperature lower than the bed temperature and higher than the temperature ⁇ T m " n ⁇ ' here MgO(s) can form by back-reaction according to:
- the evaporated Mg(g) may then be recovered in a suitably designed second condenser operating at a temperature below T . as Mg(s), back-reaction (2') being avoided by operating at low pressure and by keeping a steep temperature gradient between the first and the second condenser.
- the present invention for production of pure Mg(s) is based on purification of the gas phase formed by carbo ⁇ thermal processing of magnesium silicate minerals and rocks as well as impure magnesium oxide by condensation of the evaporated SiO(g) as Si(s) or SiC(s) in a suitably designed first condenser. This is most efficiently done by the formation of SiC(s) according to:
- T . is given by the following equation (P. in kPa) :
- the SiO is reacted with carbon in the first condensation zone.
- Said zone is advantageously shaped as as single tube or as an array of parallely arranged tubes manufactured of or coated with reactive carbon.
- magnesia i.e. magnesia containing minor amounts of impurities such as oxides of Fe, Si, Ca and Al, and
- magnesium silicates i.e. natural or industrially manufactured magnesium silicate minerals.
- Crude magnesia comprises calcined (heat treated at approx.
- the crude magnesia should contain more than 50% MgO, in particular more than 80% MgO.
- the content of CaO should be less than 1%, in particular less than 0.5%.
- the content of alkali metals should be less than 1%, in particular less than 0.3% calculated as oxides.
- the sum of other volatile elements such as S and Cl and metals like Zn, Cd, Hg, etc. should be less than 1%, in particular less than 0.5%.
- Magnesium silicates include natural or calcined (heat treated at 1000 °C) silicate minerals such as olivines, serpentines, vermiculites, anthophyllites, cummingtonites, enstatites, pyropes, spinels and similarly composed industrially derived compounds with Mg as a major component as defined below.
- magnesium silicates should contain more than 25% MgO, in particular more than 40% MgO.
- the content of CaO should be less than 1%, in particular less than 0.5%.
- the content of alkali metals should be less than 1%, in particular less than 0.3% calculated as oxides. If the content of A1 waive0._ is higher than 3%, reaction temperatures in the reduction zone should be lower than 1550 °C to avoid formation of aluminium carbide.
- the sum of other volatile elements such as S and Cl and metals like Zn, Cd, Hg, etc. should be less than 1%, in particular less than 0.5%.
- Magnesium silicates further include natural rocks composed of more than 50% Mg silicates as defined above, preferably more than 80%, in particular rocks composed of more than 90% silicates, and upgraded magnesium silicate rich industrial waste products, such as used forsterite furnace linings.
- carbon is intended comprise carbon rich materials, such as antracite, carbon black and coke.
- the starting material is preferentially ground to an average particle size less than about 45 ⁇ m.
- the carbon rich material has preferentially an average particle size about 100 nm.
- the reaction mixture is preferentially introduced into the reduction zone as briquettes having a porosity of about 57%.
- the steep temperature gradient between the first and the second condensation zone may be obtained by means of quenching methods suggested for use in carbothermal processing technique as described in the patent specifica- tions cited above.
- the steep temperature gradient between the first and second condensation zone is provided by rapid cooling comprising introducing the gas from the first condensation zone into a divergent nozzle operated under the condition of underexpansion, ejecting said mixed gas through said divergent nozzle, and enabling said mixed gas to adiabatically expand at a supersonic velocity, whereby the expansion ratio in the nozzle is selected within the interval 12.5 - 2, preferably within the interval 12.5 - 6;
- the silica component of the starting material is essentially converted to SiC in the reaction mixture by operating with an amount of added carbon within the interval 3-4 moles, C/mole SiOhold plus 1-2 moles C/mole FeO plus 3-4 moles C/mole Fe 2 0 3 plus 1-2 moles C/mole MgO;
- the temperature gradient between the reduction zone and the first condensation zone is kept as steep as possible
- magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al is used as starting material; olivine is used as starting material;
- T ' is less than 1550 °C, when the A1 2 0 ⁇ content of the reaction mixture is greater than 1 wt%;
- the “Si Fe” and the metallic iron are separated from the residue in the reduction zone by conventional methods, such as magnetic or electrostatic separation or flotation, whereafter Au and siderophilic elements, such as Mn, Cr, Ni and metals from the platinum group are recovered by conventional methods, such as leaching; and
- the SiC formed in the reduction zone and the first condensation zone is recovered as a by-product from the residue in the reduction zone and the first condensation zone, respectively.
- the recovered SiC is a micro-size product of high purity.
- the magnesium may, depending on the conditions in the second condensation zone, precipitate as macro-size crystals, but also as a pyrophoric mass, which can be melted and moulded into ingots by conventional methods.
- the second problem can be solved by a method of producing pure magnesium oxide by carbothermal reduction of a starting material selected from the group consisting of magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine, which comprises
- p c x n is in kPa, and below (Tmi.n + 100 °C), preferably
- the second problem can also be solved by a method of producing pure magnesium oxide by carbothermal reduction of a starting material selected from the group consisting of magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine, which comprises
- p. is in kPa, and below (T . + 100 °C), preferably (Tmm. + 50 °C) i,r in p farticular (vT m ⁇ . n + 25 °C) i and in any i case below T ;
- the evaporated material is recovered by condensation at lower temperatures.
- the evaporated SiO(g) may be recovered as Si(s) or SiC(s) in a suitably designed first condenser operating at a temperature lower than the bed temperature and higher than the temperature (T . ), where MgO(s) can form by back-reaction according to:
- the evaporated Mg(g) may then be recovered in a suitably designed second condenser operating at a temperature below T .
- C carbon
- the reaction will then proceed according to:
- Si Fe when iron is present.
- the present invention for production of pure MgO(s) is based on purification of the gas phase formed by carbo ⁇ thermal processing of magnesium silicate minerals and rocks as well as impure magnesium oxide by condensation of the evaporated SiO(g) as Si(s) or SiC(s) in a suitably designed first condenser. This is most efficiently done by the formation of SiC(s) according to:
- T . is given by the following equation (P in kPa):
- Tm. °C -32217(21og 3 (P . t_otA-19.92 "1 - 273.15
- the SiO is reacted with carbon in the first condensation zone.
- Said zone is advantageously shaped as as single tube or as an array of parallely arranged tubes manufactured of or coated with reactive carbon.
- magnesia i.e. magnesia containing minor amounts of impurities such as oxides of Fe, Si, Ca and Al, and
- magnesium silicates i.e. natural or industrially manufactured magnesium silicate minerals.
- Crude magnesia comprises calcined (heat treated at approx. 1000 °C) compounds derived from magnesite, brucite, kieserite, or similar industrially derived materials, such as waste periclase furnace lining and filter dust from magnesite calcining plants'.
- the crude magnesia should contain more than 50% MgO, in particular more than 80% MgO.
- the content of CaO should be less than 1%, in particular less than 0.5%.
- the content of alkali metals should be less than 1%, in particular less than 0.3% calculated as oxides.
- the sum of other volatile elements such as S and Cl and metals like Zn, Cd, Hg, etc. should be less than 1%, in particular less than 0.5%.
- Magnesium silicates include natural or calcined (heat treated at 1000 °C) silicate minerals such as olivines, serpentines, vermiculites, anthophyllites, cummingtonites, enstatites, pyropes, spinels and similarly composed industrially derived compounds with Mg as a major component as defined below.
- the magnesium silicates should contain more than 25% MgO, in particular more than 40% MgO.
- the content of CaO should be less than 1%, in particular less than 0.5%.
- the content of alkali metals should be less than 1%, in particular less than 0.3% calculated as oxides.
- reaction temperatures in the reduction zone should be lower than 1550 °C to avoid formation of aluminium carbide.
- the sum of other volatile elements such as S and Cl and metals like Zn, Cd, Hg, etc. should be less than 1%, in particular less than 0.5%.
- Magnesium silicates further include natural rocks composed of more than 50% Mg silicates as defined above, preferably more than 80%, in particular rocks composed of more than 90% silicates, and upgraded magnesium silicate rich industrial waste products, such as used forsterite furnace linings.
- carbon is intended comprise carbon rich materials, such as antracite, carbon black and coke.
- the starting material is preferentially ground to an average particle size less than about 45 urn.
- the carbon rich material has preferentially an average particle size about 100 nm.
- the reaction mixture is preferentially introduced into the reduction zone as briquettes having a porosity of about 57%.
- the silica component of the starting material is essentially converted to SiC in the reaction mixture by operating with an amount of added carbon within the interval 3-4 moles C/mole Si0 2 plus 1-2 moles C/mole FeO plus 3-4 moles C/mole Fe 0 ⁇ plus 1-2 moles C/mole MgO;
- the temperature gradient between the reduction zone and the first condensation zone is kept as steep as possible
- the temperature gradient between the first condensation zone and the oxidation and condensation zone is kept as steep as possible
- magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al is used as starting material
- olivine is used as starting material; - T is less than 1550 °C, when the AAO.- content of the reaction mixture is greater than 1 wt%;
- the “Si Fe” and the metallic iron are separated from the residue in the reduction zone by conventional methods, such as magnetic or electrostatic separation or flotation, whereafter Au and siderophilic elements, such as Mn, Cr, Ni and metals from the platinum group are recovered by conventional methods, such as leaching; and
- the SiC formed in the reduction zone and the first condensation zone is recovered as a by-product from the residue in the reduction zone and the first condensation zone, respectively.
- the recovered SiC is a micro-size product of high purity.
- the third problem can be solved by a method of processing a starting material selected from the group consisting of magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al; natural and industrially produced magnesium silicate minerals; and mixtures thereof, e.g. olivine, which comprises
- the iron oxide component of the starting material is reduced to iron in the reaction mixture
- the silica component of the starting material is at least partially converted to SiC and an alloy of Si and Fe, "Si ___Fe", in the reaction zone, and
- the magnesium oxide component of the starting material is at least partially converted to magnesium oxide (periclase);
- magnesia i.e. magnesia containing minor amounts of impurities such as oxides of Fe, Si, Ca and Al, and
- magnesium silicates i.e. natural or industrially manufactured magnesium silicate minerals.
- Crude magnesia comprises calcined (heat treated at approx. 1000 °C) compounds derived from magnesite, brucite, kieserite, or similar industrially derived materials, such as waste periclase furnace lining and filter dust from magnesite calcining plants.
- the crude magnesia should contain more than 50% MgO, in particular more than 80% MgO.
- the content of CaO should be less than 1%, in particular less than 0.5%.
- the content of alkali metals should be, less than 1%, in particular less than 0.3% calculated as oxides.
- the sum of other volatile elements such as S and Cl and metals like Zn, Cd, Hg, etc. should be less than 1%, in particular less than 0.5%.
- Magnesium silicates include natural or calcined (heat treated at 1000 °C) silicate minerals such as olivines, serpentines, vermiculites, anthophyllites, cummingtonites, enstatites, pyropes, spinels and similarly composed industrially derived compounds with Mg as a major component as defined below.
- magnesium silicates should contain more than 25% MgO, in particular more than 40% MgO.
- the content of CaO should be less than 1%, in particular less than 0.5%.
- the content of alkali metals should be less than 1%, in particular less than 0.3% calculated as oxides.
- reaction temperatures in the reaction zone should be lower than 1550 °C to avoid formation of aluminium carbide.
- the sum of other volatile elements such as S and Cl and metals like Zn, Cd, Hg, etc. should be less than 1%, in particular less than 0.5%.
- Magnesium silicates further include natural rocks composed of more than 50% Mg silicates as defined above, preferably more than 80%, in particular rocks composed of more than 90% silicates, and upgraded magnesium silicate rich industrial waste products, such as used forsterite furnace linings.
- carbon is intended comprise carbon rich materials, such as antracite, carbon black and coke.
- the starting material is preferentially ground to an average particle size less than about 45 ⁇ m.
- the carbon rich material has preferentially an average particle size about 100 nm.
- the reaction mixture is preferentially introduced into the reaction zone as briquettes having a porosity of about 57%.
- reaction temperature T is kept within the interval 1400 - 1500 °C and MgO and Mg 2 Si0 4 are precipitated in the condensation zone by injection of an oxygen-containing gas, such as molecular oxygen, air, C0 2 , CO, H 2 0 and mixtures thereof;
- an oxygen-containing gas such as molecular oxygen, air, C0 2 , CO, H 2 0 and mixtures thereof;
- magnesium oxide containing minor amounts of oxides of Fe, Si, Ca and Al is used as starting material
- olivine is used as starting material
- the “Si Fe” and the metallic iron are separated from the residue in the reduction zone by conventional methods, such as magnetic or electrostatic separation or flotation, whereafter Au and siderophilic elements, such as Mn, Cr, Ni and metals from the platinum group are recovered by conventional methods, such as leaching;
- the SiC formed in the reduction zone and the first condensation zone is recovered as a by-product from the residue in the reduction zone and the first condensation zone, respectively;
- the MgO formed in the reduction zone and the first condensation zone is recovered as a by-product from the residue in the reduction zone and the first condensation zone, respectively.
- fig. 1 shows a laboratory scale experimental apparatus used for experiments reported in Examples 1-5,
- fig. 2 shows a laboratory scale experimental apparatus used for experiments reported in Example 6,
- fig. 3 shows an apparatus' for carbothermal processing of magnesium silicate minerals and rocks
- fig. 4 shows SEM photoes of the reacted bed material from Example 1,
- fig. 5 shows SEM photoes of columnar crystals of magnesium metal from Example 5,
- fig. 6 shows diagrams illustrating the yield of MgO(s) from the bed, and MgO transferred to the vapour phase as a function of the reduced pressure for the carbotermal con ⁇ version of olivine 613 at 1508 ⁇ 2 °C (Examples 1, 4 and 5).
- Fig. 1. shows a laboratory scale experimental apparatus used for experiments reported in Examples 1-5 having
- thermocouple for measurement of furnace temperature
- thermocouple 3 a millivoltmeter 4 connected to the thermocouple 3
- a reactor and condenser tube 5 consisting of a close end graphite tube arranged inside a close end alumina tube,
- Fig. 2. shows a laboratory scale experimental apparatus used for experiments reported in Example 6 having
- an electrically heated furnace 2 rated to 1400 °C to heat a first condenser part of the reactor/condenser tube
- an electrically heated furnace 3 rated to 1200 °C to heat a second condenser part of the reactor/condenser tube
- a reactor and condenser tube 5 consisting of a close end graphite tube arranged inside a close end alumina tube,
- a vacuum line 11 leading to a pneumatic valve controlled by a pressostat between the condenser and a vacuum pump.
- Fig. 3 shows an apparatus for carbothermal processing of magnesium silicate minerals and rocks having
- an electrically heated furnace 2 rated to at least 1400 °C and preferably to 1800 °C with a graphite lining for carbothermal processing of the raw mix
- a vacuum lock system 3 for unloading the residual bed material from the furnace 2
- an electrically heated second condenser 5 for the production of fine MgO powder or metallic magnesium.
- the second condenser is equipped with a temperature control system for maintaining a constant temperature in the range from 600 °C - 1500 °C, and a filter system for the collection of fine particles, and optionally a system for controlled introduction of an oxygen containing gas.
- the second condenser is equipped with a temperature control system for maintaining a constant temperature in the range from 200 °C to 650 °C, and a system for collection of the condensed metal.
- the apparatus has also a steep temperature gradient zone 6 arranged between the first condenser 4 and the second condenser 5.
- This zone may be designed as a divergent nozzle for supersonic adiabatic cooling of the gas passing from the first condenser 4 to the second condenser 5.
- the apparatus has a cyclone 7 for precipitating particles entrained with the exhaust gas from the second condenser 5,
- a fine particle filter 8 capable of maintaining a pressure in the range 10-10 ⁇ Pa in the furnace 2, in the first condenser 4 and in the second condenser 5, and
- Fig. 5 shows SEM photoes of columnar crystals of magnesium mmeettaall ffrroomm EExxaammppli
- the Mg-crystals were formed by vapour deposition in the coldest part of the condenser ( ⁇ 650 °C).
- Fig. 6 shows diagrams illustrating the yield of MgO(s) from the bed, and MgO transferred to the vapour phase as a function of the reduced pressure for the carbotermal con ⁇ version of olivine 613 at 1508 ⁇ 2 C C (Examples 1, 4 and 5).
- reaction products formed upon suitable heating of mixtures of e.g. olivine (Mg 2 SiO.) and carbon (C) depend on the molar ratio between the reactants and the gas pressure during processing.
- a mixture of 1 mole olivine (Mg 2 SiO. ) and 3 mole carbon (C) may react according to reaction ( 1 ' ) or (1" ) depending on the total gas pressure.
- reaction (1 ' ) will proceed from left to right in the temperature range 1400 °C to 1750 °C if the partial pressure of CO (P co ) is less or equal to the pressure (kPa) defined by equation (a) in Table A.
- the simultaneous partial pressures of all the other important gas , species (Mg(g), SiO(g), OAg)) involved in the reaction are defined by equation (b), (c) and (d) in Table A.
- the total gas pressure (P ) the composition and amount of volatilized material, and the residual composition of the bed can be calculated for equilibrium conversion of Mg SiO.(s) into MgO(s) and SiC(s) according to equation (1' ) with the minimum excess carbon necessary for the formation of equilibrium amount of Mg(g) and SiO(g) added.
- the total equilibrium gas pressure Peq thus calculated is given by:
- reaction (1" As Pt.ot. is reduced below Peq further evaporation of the charge will occur according to reaction (1") and the yield of MgO(s) and SiC(s) in the bed is reduced. Thus, as the pressure is reduced progressively below Peq, reaction (1") becomes more and more important relative to reaction (1' ) .
- the experimental work shows that reaction ( 1" ) is dominating, when (P /P ) ⁇ «0.7, and that the yield of MgO(s) from the bed (reaction 1') is ⁇ 5%, when
- magnesium silicates e.g. olivine
- Refractory masses consisting of periclase, silicon carbide and optionally magnesium oxide enriched forsterite.
- Example 1 to 6 The chemical composition of and physical data for the raw materials used in Example 1 to 6 are given in Table 1.
- composition of and physical data for the granulated carbon-fosterite mixtures prepared from these raw materials and used in the experimental work are given in Table 2.
- reaction products in the bed and the different fractions condensed from the vapour phase were collected separately, weighed and examined by XRD, TG and SEM/EDS.
- reaction products in the bed and the different fractions condensed from the vapour phase were collected separately, weighed and examined by XRD, TG and SEM/EDS.
- the pressure (P. ) was chosen to be 0.84 of the equili ⁇ brium gas pressure (P ) as calculated from thermodynamic data.
- the end of the reaction after 320 min. was defined by a gradual drop in the CO evolution as determined in the pumped out exhaust gas.
- the analytical data on the phase composition of the reacted bed and the deposited products in the condenser are summarized in Table 3.
- the reacted bed consists of highly porous briquettes greenish in colour.
- the phases present were micron sized MgO and SiC, droplets of "Si Fe" and a little residual Mg 2 SiO. (vide fig. 4).
- the yield of MgO(s) from the bed was 67%.
- the pressure (P. . ) was chosen to be 0.97 of the equilibrium gas pressure (P ) as calculated from thermodynamic data.
- the end of the reaction after 260 min. was defined by a gradual drop in the CO evolution as determined in the pumped out exhaust gas.
- the reacted bed consisted of highly porous briquettes greenish in colour.
- the phases present were micron sized MgO and SiC, droplets of "Si Fe" and a little residual
- the bed-yield of MgO(s) was 82%.
- the pressure (P . ) was chosen to be 0.97 of the equili ⁇ brium gas pressure (P ) as calculated from thermodynamic data. The experiment was stopped after 180 min., while CO evolution was still observed as determined in the pumped out exhaust gas.
- the weight loss observed was 18.7 wt% including some MgO which was not recovered.
- the reacted bed consisted of highly porous briquettes black-green in colour.
- the phases present were olivine (39 wt%), periclase (17 wt%), SiC (11 wt%), "Si Fe” (3 wt%) and carbon (11 wt%).
- the bed-yield of MgO(s) was 44%, while the unreacted olivine contained about 50% of the initial MgO content.
- the pressure (P. ) was chosen to be 0.079 of the equili ⁇ brium gas pressure (P ) as calculated from thermodynamic data.
- the end of the reaction after 103 min. was defined by a gradual drop in the CO evolution as determined in the pumped out exhaust gas.
- the analytical data on the phase composition of the reacted bed and the deposited products in the condenser are summarized in Table 4.
- the residual bed material consists mainly of droplets of "Si Fe” with a little periclase (MgO), traces of SiC and no forsterite. Due to the low pressure and the «-* 1:3 molar ratio between the Mg 2 SiO. part of olivine and the carbon most of the silicon and magnesium from the olivine 613 in the raw mix was volatilized according to the reaction:
- the silicon was redeposited as SiC in the hottest part of the condenser (1480 °C T 20 C C) together with periclase (MgO) and some forsterite formed by back-reaction.
- the yield of metallic magnesium was 28 wt% formed in the coldest part of the condenser ( ⁇ 650 °C).
- the metallic magnesium contained about 4.4 wt% periclase (MgO) as the main impurity.
- the pressure (P. . ) was chosen to be 0.029 of the equili ⁇ brium gas pressure (Peq) as calculated from thermodynamic data.
- the end of the reaction after 115 min. was defined by a gradual drop in the CO evolution as determined in the pumped out exhaust gas.
- the analytical data on the phase composition of the reacted bed and the deposited products in the condenser is summarized in Table 5.
- the residual bed material consists mainly of droplets of "Si Fe" and a little SiC. Due to the low pressure and the « 1:3 molar ratio between the Mg 2 SiO. part of olivine and the, carbon, most of the silicon and magnesium from the olivine 613 in the raw mix was volatilized according to the reaction: Mg 2 Si0 4 (s) + 3C(s) — ⁇ 2Mg(g) + SiO(g) + 3CO(g)
- the silicon was mainly redeposited as Si in the hottest part of the condenser (1300 °C) together with some forsterite formed by back-reaction, a little periclase (MgO) and traces of SiC.
- the yield of metallic magnesium was 74.6 wt% from the coldest part of the condenser ( ⁇ 650 °C).
- the magnesium was deposited as columnar crystals (vide fig. 5).
- the metallic magnesium contained about 4.9 wt% periclase (MgO) as the main impurity.
- the pressure (P. A was chosen to be 0.079 of the equiblibrium gas pressure (P ) as calculated from eq thermodynamic data.
- the end of the reaction after 120 min. was defined by a gradual drop in the CO evolution as determined in the pumped out exhaust gas.
- the analytical data on the phase composition of the reacted bed and the deposited products in the condenser are summarized in Table 6.
- the residual bed material consisted of SiC, droplets of "Si Fe” and a little residual carbon.
- the material collected from condenser II held at 800 °C was a fine black powder composed of periclase (MgO) and carbon (C) .
- the carbon was removed by heating the powder to 800 °C in air for 5 hours.
- the resulting powder was white, and the only phase detected by XRD was periclase (MgO).
- the yield of periclase was 95 wt%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims
Priority Applications (16)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR9207177A BR9207177A (en) | 1992-11-16 | 1992-11-16 | Method to produce magnesium metal magnesium oxide or a refractory material |
| RU95114446A RU2109078C1 (en) | 1992-11-16 | 1992-11-16 | Method for producing metallic magnesium, method for producing pure magnesium oxide (versions) and method for processing initial material |
| DE69224673T DE69224673T2 (en) | 1992-11-16 | 1992-11-16 | METHOD FOR PRODUCING METALLIC MAGNESIUM, MAGNESIUM OXIDE OR REFRACTORY MATERIALS |
| ES93901693T ES2115049T3 (en) | 1992-11-16 | 1992-11-16 | A METHOD FOR PRODUCING METALLIC MAGNESIUM, MAGNESIUM OXIDE OR A REFRACTORY MATERIAL. |
| SK631-95A SK282266B6 (en) | 1992-11-16 | 1992-11-16 | Process for production of metal magnesium, magnesia oxide or heat-resistant material |
| AT93901693T ATE163686T1 (en) | 1992-11-16 | 1992-11-16 | METHOD FOR PRODUCING METALLIC MAGNESIUM, MAGNESIUM OXIDE OR REFRACTIVE MATERIAL |
| DK93901693T DK0668935T3 (en) | 1992-11-16 | 1992-11-16 | Process for producing metallic magnesium, magnesium oxide or refractory material |
| AU32549/93A AU680403B2 (en) | 1992-11-16 | 1992-11-16 | A method of producing metallic magnesium, magnesium oxide or a refractory material |
| CA002149442A CA2149442C (en) | 1992-11-16 | 1992-11-16 | A method of producing metallic magnesium, magnesium oxide or a refractory material |
| UA95062663A UA45307C2 (en) | 1992-11-16 | 1992-11-16 | METHOD OF MANUFACTURE OF METAL MAGNESIUM, METHOD OF MANUFACTURE OF MAGNESIUM OXIDE (VARIANTS) AND METHOD OF MANUFACTURE OF MATHENE MATHENIUM FLAMMABLE |
| JP51160494A JP3612330B2 (en) | 1992-11-16 | 1992-11-16 | Method for producing metal magnesium, magnesium oxide or refractory material |
| EP93901693A EP0668935B1 (en) | 1992-11-16 | 1992-11-16 | A method of producing metallic magnesium, magnesium oxide or a refractory material |
| US08/436,213 US5803947A (en) | 1992-11-16 | 1992-11-16 | Method of producing metallic magnesium, magnesium oxide or a refractory material |
| KR1019950701947A KR100252611B1 (en) | 1992-11-16 | 1992-11-16 | Manufacturing method of metal magnesium, magnesium oxide or refractory material |
| PCT/DK1992/000339 WO1994011539A1 (en) | 1992-11-16 | 1992-11-16 | A method of producing metallic magnesium, magnesium oxide or a refractory material |
| NO951917A NO306959B1 (en) | 1992-11-16 | 1995-05-15 | Process for the preparation of metallic magnesium, magnesium oxide or a refractory material |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002149442A CA2149442C (en) | 1992-11-16 | 1992-11-16 | A method of producing metallic magnesium, magnesium oxide or a refractory material |
| CZ19951253A CZ288531B6 (en) | 1992-11-16 | 1992-11-16 | Process for preparing metallic magnesium, magnesium oxide or refractory material |
| PCT/DK1992/000339 WO1994011539A1 (en) | 1992-11-16 | 1992-11-16 | A method of producing metallic magnesium, magnesium oxide or a refractory material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1994011539A1 true WO1994011539A1 (en) | 1994-05-26 |
Family
ID=27170015
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/DK1992/000339 Ceased WO1994011539A1 (en) | 1992-11-16 | 1992-11-16 | A method of producing metallic magnesium, magnesium oxide or a refractory material |
Country Status (14)
| Country | Link |
|---|---|
| US (1) | US5803947A (en) |
| EP (1) | EP0668935B1 (en) |
| JP (1) | JP3612330B2 (en) |
| AT (1) | ATE163686T1 (en) |
| AU (1) | AU680403B2 (en) |
| BR (1) | BR9207177A (en) |
| CA (1) | CA2149442C (en) |
| DE (1) | DE69224673T2 (en) |
| DK (1) | DK0668935T3 (en) |
| ES (1) | ES2115049T3 (en) |
| NO (1) | NO306959B1 (en) |
| RU (1) | RU2109078C1 (en) |
| SK (1) | SK282266B6 (en) |
| WO (1) | WO1994011539A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008029754B3 (en) * | 2008-06-25 | 2009-12-17 | Find, Josef, Dr. | Technical process e.g. meteorological data determining process, optimizing method, involves utilizing result of vapor pressure calculation with equation during optimization of technical process |
| US9163298B2 (en) | 2009-10-27 | 2015-10-20 | Boulle Carbothermic Metals Ltd | Method and apparatus for condensing metal vapours using a nozzle and a molten collector |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3331408B2 (en) * | 1999-02-24 | 2002-10-07 | メタルサイエンス有限会社 | A method for measuring magnesium content in molten aluminum alloy |
| US6528033B1 (en) | 2000-01-18 | 2003-03-04 | Valence Technology, Inc. | Method of making lithium-containing materials |
| US6645452B1 (en) * | 2000-11-28 | 2003-11-11 | Valence Technology, Inc. | Methods of making lithium metal cathode active materials |
| US6720112B2 (en) | 2001-10-02 | 2004-04-13 | Valence Technology, Inc. | Lithium cell based on lithiated transition metal titanates |
| US6706445B2 (en) | 2001-10-02 | 2004-03-16 | Valence Technology, Inc. | Synthesis of lithiated transition metal titanates for lithium cells |
| US6908710B2 (en) * | 2001-10-09 | 2005-06-21 | Valence Technology, Inc. | Lithiated molybdenum oxide active materials |
| US20030073003A1 (en) * | 2001-10-09 | 2003-04-17 | Jeremy Barker | Molybdenum oxide based cathode active materials |
| JP3857589B2 (en) * | 2002-01-28 | 2006-12-13 | 同和鉱業株式会社 | High-purity metal purification method and purification apparatus |
| US7666250B1 (en) * | 2003-11-12 | 2010-02-23 | Ut-Battelle, Llc | Production of magnesium metal |
| US8152895B2 (en) * | 2003-04-23 | 2012-04-10 | Ut-Battelle, Llc | Production of magnesium metal |
| RU2237111C1 (en) * | 2003-06-24 | 2004-09-27 | Открытое акционерное общество "АВИСМА титано-магниевый комбинат" | Method of recovering magnesium from silicon-containing wastes |
| RU2240369C1 (en) * | 2003-10-08 | 2004-11-20 | Открытое акционерное общество "АВИСМА титано-магниевый комбинат" | Method for producing magnesium from silicone containing waste materials |
| WO2005098062A1 (en) * | 2004-04-05 | 2005-10-20 | Hovhannes Hovhannisyan | Waste-free hydrometallurgical extraction of magnesium and other metals from rock formations of varying olivine content |
| RU2290457C2 (en) * | 2005-03-17 | 2006-12-27 | Открытое акционерное общество "Асбестовский магниевый завод" (ОАО "АМЗ") | Method of complex processing of magnesium silicates |
| US20100323253A1 (en) * | 2006-02-22 | 2010-12-23 | University Of Utah Resarch Foundation | Systems and Methods for Hydrogen Storage and Generation from Water Using Lithium Based Materials |
| DE102006036467B4 (en) * | 2006-08-04 | 2008-09-18 | K + S Aktiengesellschaft | Process for the treatment of kieserite-containing ground potash salts |
| JP5560541B2 (en) * | 2008-06-27 | 2014-07-30 | 株式会社オートネットワーク技術研究所 | Flame retardant composition, covered electric wire and wire harness |
| CN102131942B (en) * | 2008-07-31 | 2013-06-05 | 澳大利亚联邦科学与工业研究组织 | Production process of metal |
| WO2010027782A2 (en) * | 2008-08-25 | 2010-03-11 | Orion Laboratories, Llc | Magnesiothermic methods of producing high-purity solution |
| US8673048B2 (en) | 2011-12-12 | 2014-03-18 | GM Global Technology Operations LLC | Magnetic separation of iron from aluminum or magnesium alloy melts |
| RU2618018C2 (en) * | 2012-01-19 | 2017-05-02 | Етх Цюрих | Process and apparatus for vacuum distillation of high-purity magnesium |
| WO2015031682A1 (en) * | 2013-08-29 | 2015-03-05 | Weimer Alan W | Carbothermal reduction reactor system, components thereof, and methods of using same |
| US9938153B2 (en) * | 2016-04-06 | 2018-04-10 | Indian Institute Of Technology Bombay | Method of preparing silicon from sand |
| US20170298284A1 (en) * | 2016-04-19 | 2017-10-19 | Saudi Arabian Oil Company | Vanadium corrosion inhibitors in gas turbine applications |
| CN110097979B (en) * | 2018-01-31 | 2022-11-18 | 中国辐射防护研究院 | Graphite dust collecting device for ball bed high-temperature gas cooled reactor |
| CN120796719A (en) * | 2025-09-12 | 2025-10-17 | 湖南华赞科技有限公司 | Recycling treatment method for waste refractory materials |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4200264A (en) * | 1976-08-16 | 1980-04-29 | Fumio Hori | Apparatus for obtaining Mg and Ca through carbon reduction |
| EP0075836A2 (en) * | 1981-09-21 | 1983-04-06 | Julian M. Avery | Process for recovering magnesium |
| US4437886A (en) * | 1981-05-06 | 1984-03-20 | Toyota Jidosha Kabushiki Kaisha | Process for manufacture of metallic magnesium |
| GB2141701A (en) * | 1983-05-20 | 1985-01-03 | Ube Industries | Process and apparatus for producing a high purity magnesia fine powder |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2257910A (en) * | 1940-02-03 | 1941-10-07 | Dow Chemical Co | Process of condensing magnesium vapors |
| US2268779A (en) * | 1941-01-30 | 1942-01-06 | Electric Heating Equipment Com | Method for the recovery of metallic magnesium from mixtures of elemental magnesium and carbon monoxide, produced by the carboniferous reduction, at high temperatures, of magnesium oxide |
| US2372571A (en) * | 1943-10-19 | 1945-03-27 | North Carolina Magnesium Dev C | Process for manufacturing metallic magnesium from magnesium silicates |
| US2379576A (en) * | 1944-08-18 | 1945-07-03 | North Carolina Magnesium Dev C | Process for producing metallic magnesium from magnesium silicates |
| US2570232A (en) * | 1945-06-26 | 1951-10-09 | North Carolina Magnesium Dev C | Continuous process for recovery of magnesium |
| US2527722A (en) * | 1946-05-27 | 1950-10-31 | North Carolina Magnesium Dev C | Production of magnesium |
| US2527724A (en) * | 1946-05-27 | 1950-10-31 | North Carolina Magnesium Dev C | Production of magnesium |
| US2582119A (en) * | 1946-09-24 | 1952-01-08 | North Carolina Magnesium Dev C | Production of magnesium |
| US2582120A (en) * | 1946-09-24 | 1952-01-08 | North Carolina Magnesium Dev C | Production of magnesium |
| US2582129A (en) * | 1948-09-13 | 1952-01-08 | Nat Aluminate Corp | Prevention of corrosion in aqueous systems |
| JPS5322810A (en) * | 1976-08-16 | 1978-03-02 | Fumio Hori | Method and apparatus for producing metal mg or ca by carbon reduction |
| US5383953A (en) * | 1994-02-03 | 1995-01-24 | Aluminum Company Of America | Method of producing magnesium vapor at atmospheric pressure |
-
1992
- 1992-11-16 JP JP51160494A patent/JP3612330B2/en not_active Expired - Fee Related
- 1992-11-16 AT AT93901693T patent/ATE163686T1/en active
- 1992-11-16 SK SK631-95A patent/SK282266B6/en not_active IP Right Cessation
- 1992-11-16 BR BR9207177A patent/BR9207177A/en not_active IP Right Cessation
- 1992-11-16 RU RU95114446A patent/RU2109078C1/en active
- 1992-11-16 ES ES93901693T patent/ES2115049T3/en not_active Expired - Lifetime
- 1992-11-16 US US08/436,213 patent/US5803947A/en not_active Expired - Lifetime
- 1992-11-16 WO PCT/DK1992/000339 patent/WO1994011539A1/en not_active Ceased
- 1992-11-16 DE DE69224673T patent/DE69224673T2/en not_active Expired - Lifetime
- 1992-11-16 AU AU32549/93A patent/AU680403B2/en not_active Expired
- 1992-11-16 CA CA002149442A patent/CA2149442C/en not_active Expired - Lifetime
- 1992-11-16 DK DK93901693T patent/DK0668935T3/en active
- 1992-11-16 EP EP93901693A patent/EP0668935B1/en not_active Expired - Lifetime
-
1995
- 1995-05-15 NO NO951917A patent/NO306959B1/en not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4200264A (en) * | 1976-08-16 | 1980-04-29 | Fumio Hori | Apparatus for obtaining Mg and Ca through carbon reduction |
| US4437886A (en) * | 1981-05-06 | 1984-03-20 | Toyota Jidosha Kabushiki Kaisha | Process for manufacture of metallic magnesium |
| EP0075836A2 (en) * | 1981-09-21 | 1983-04-06 | Julian M. Avery | Process for recovering magnesium |
| GB2141701A (en) * | 1983-05-20 | 1985-01-03 | Ube Industries | Process and apparatus for producing a high purity magnesia fine powder |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008029754B3 (en) * | 2008-06-25 | 2009-12-17 | Find, Josef, Dr. | Technical process e.g. meteorological data determining process, optimizing method, involves utilizing result of vapor pressure calculation with equation during optimization of technical process |
| US9163298B2 (en) | 2009-10-27 | 2015-10-20 | Boulle Carbothermic Metals Ltd | Method and apparatus for condensing metal vapours using a nozzle and a molten collector |
| US9970076B2 (en) | 2009-10-27 | 2018-05-15 | Boulle Carbothermic Metals Ltd | Method of apparatus for condensing metal vapours using a nozzle and a molten collector |
Also Published As
| Publication number | Publication date |
|---|---|
| AU680403B2 (en) | 1997-07-31 |
| ATE163686T1 (en) | 1998-03-15 |
| NO951917D0 (en) | 1995-05-15 |
| EP0668935B1 (en) | 1998-03-04 |
| NO306959B1 (en) | 2000-01-17 |
| ES2115049T3 (en) | 1998-06-16 |
| JP3612330B2 (en) | 2005-01-19 |
| EP0668935A1 (en) | 1995-08-30 |
| DE69224673D1 (en) | 1998-04-09 |
| DK0668935T3 (en) | 1998-12-28 |
| BR9207177A (en) | 1995-12-12 |
| RU2109078C1 (en) | 1998-04-20 |
| SK63195A3 (en) | 1996-03-06 |
| NO951917L (en) | 1995-06-30 |
| CA2149442C (en) | 2007-03-13 |
| JPH08503024A (en) | 1996-04-02 |
| AU3254993A (en) | 1994-06-08 |
| DE69224673T2 (en) | 1998-10-15 |
| SK282266B6 (en) | 2001-12-03 |
| CA2149442A1 (en) | 1994-05-26 |
| US5803947A (en) | 1998-09-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0668935B1 (en) | A method of producing metallic magnesium, magnesium oxide or a refractory material | |
| JPH10502127A (en) | Copper conversion | |
| KR100908852B1 (en) | METHOD FOR PRODUCING MAGNESIUM COMPOUND FROM WASTE MAG CARBON REFRACTORY | |
| JPH07309618A (en) | Method for manufacture of aluminium oxide powder, aluminium oxide powder manufactured by said method and use thereof | |
| Ling et al. | Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid | |
| Adedeji et al. | Characterization and reducibility of Itakpe and Agbaja (Nigerian) iron ores | |
| Frank et al. | Physical chemistry of the carbothermic reduction of alumina in the presence of a metallic solvent: Part II. Measurements of kinetics of reaction | |
| US4576636A (en) | Process for beneficiating oxidic ores | |
| US3264124A (en) | Production of ultra-fine alpha alumina and such alpha alumina | |
| GB2155494A (en) | Process for carbothermic production of ferroboron or ferroboronsilicon alloy | |
| KR100252611B1 (en) | Manufacturing method of metal magnesium, magnesium oxide or refractory material | |
| US3848050A (en) | Process of preparing molybdenum trioxide by sublimation | |
| US2372571A (en) | Process for manufacturing metallic magnesium from magnesium silicates | |
| CA1162055A (en) | Method of carbothermically producing aluminum | |
| US5221527A (en) | Process for producing aluminum nitride | |
| US4326884A (en) | Process for obtaining metal values from ores containing such metals as oxides or convertible into such oxides | |
| CZ288531B6 (en) | Process for preparing metallic magnesium, magnesium oxide or refractory material | |
| US2710798A (en) | Method of producing sodium from sodium ferrite | |
| Nagata et al. | Selective removal of iron oxide from laterite by sulphurization and chlorination | |
| CA1093280A (en) | Removal of iron from magnesite ore | |
| US3466168A (en) | Method of smelting tin ores | |
| GB2304104A (en) | Process for producing boron trichloride | |
| CA2804288C (en) | Pyrometallurgical method | |
| US4049425A (en) | Process for the manufacture of aluminum | |
| US1512462A (en) | Process for the manufacture of metals, alloys, and the like |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL RO RU SD SE UA US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| EX32 | Extension under rule 32 effected after completion of technical preparation for international publication | ||
| LE32 | Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 63195 Country of ref document: SK Ref document number: 2149442 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PV1995-1253 Country of ref document: CZ Ref document number: 1019950701947 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1993901693 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 08436213 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 1993901693 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWP | Wipo information: published in national office |
Ref document number: PV1995-1253 Country of ref document: CZ |
|
| WWG | Wipo information: grant in national office |
Ref document number: 1993901693 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: PV1995-1253 Country of ref document: CZ |