[go: up one dir, main page]

WO1990001947A1 - Affinity associated vaccine - Google Patents

Affinity associated vaccine Download PDF

Info

Publication number
WO1990001947A1
WO1990001947A1 PCT/US1989/003657 US8903657W WO9001947A1 WO 1990001947 A1 WO1990001947 A1 WO 1990001947A1 US 8903657 W US8903657 W US 8903657W WO 9001947 A1 WO9001947 A1 WO 9001947A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
liposome
composition
affinity
chs
Prior art date
Application number
PCT/US1989/003657
Other languages
French (fr)
Inventor
Mircea C. Popescu
Original Assignee
The Liposome Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Liposome Company, Inc. filed Critical The Liposome Company, Inc.
Publication of WO1990001947A1 publication Critical patent/WO1990001947A1/en
Priority to KR1019900700840A priority Critical patent/KR900701316A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers comprising non-phosphatidyl surfactants as bilayer-forming substances, e.g. cationic lipids or non-phosphatidyl liposomes coated or grafted with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16111Human Immunodeficiency Virus, HIV concerning HIV env
    • C12N2740/16134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention concerns a vaccine against an infective agent, the vaccine comprising a liposome having an exterior and an interior and having externally disposed affinity (noncovalently) associated •J ⁇ antigen material of at least one, preferably nonpartitioning, antigen representative of said infective agent. Also disclosed is a method of preparation and use of this vaccine.
  • antigens are introduced into an organism in a manner so as to stimulate an immune response in the host organism.
  • T_ ⁇ _ induction of an immune response depends on many factors among which are believed to be the chemical composition and configuration of the antigen, the potential of the immune system of the challenged organism, and the manner and period of administration of the antigen.
  • An immune response has many aspects some of which are 5 exhibited by the cells of the immune system, (e.g. ,B-lymphocytes,
  • Immune system cells may participate in the immune response through interaction with antigen, interaction with other cells of the immune system, the release of cytokines and reactivity to those cytokines. Immune response is conveniently (but arbitrarily) divided into two main categories — humoral and cell-mediated.
  • the humoral component of the immune response includes production of immunoglobulins specific for the antigen.
  • the cell-mediated component includes the generation of delayed-type hypersensitivity and cytotoxic effector cells against the antigen.
  • immune response is the result of an initial or priming dose of an antigen that is followed by one or more booster exposures to the antigen.
  • an antigen will exhibit two properties, the capacity to stimulate the formation of the corresponding antibodies and the propensity to react specifically with these antibodies.
  • Antigens bear one or more epitopes which are the smallest part of an antigen recognizable by the combining site of an antibody.
  • antigens or fractions of antigens or with particular presenting conditions the immune response precipitated by the desired antigen is inadequate or nonexistent and insufficient immunity is produced. This is particularly the case with peptide or other small molecules used as antigens.
  • the vaccine art recognizes the use of substances called adjuvants to potentiate an immune response when used in conjunction with an antigen or immunogen.
  • adjuvants are further used to elicit immune response sooner, or a greater response, or with less antigen or immunogen or to increase production of certain antibody subclasses that afford immunological protection, or to enhance components of the immune response (e.g., humoral, cellular).
  • Liposomal vaccines and adjuvancy are further discussed in U.S. Patent Application Ser. No. [Docket TLC-160/1A] toffy et al., filed on date even herewith the teachings of which are incorporated herein by reference.
  • adjuvants are Freund's Adjuvants (and other oil emulsions), Bortedella Pertussis, Lipid A (the glycophospholipid moiety of lipopolysaccharide found in Gram-negative bacteria), aluminum salts (and other metal salts), Mycobacterial products (including muramyl dipeptides), and liposomes.
  • adjuvant will be understood to mean a substance or material administered together or in conjunction with an antigen which increases the immune response to that antigen.
  • Adjuvants may be in a number of forms including emulsion (e.g., Freund's adjuvant) gels (aluminum hydroxide gel) and particles (liposomes) or as a solid material.
  • adjuvant activity can be affected by a number of factors. Among such factors are (a) carrier effect, (b) depot formation, (c) altered lymphocyte recirculation, (d) stimulation of T-lymphocytes, (e) direct stimulation of B-lymphocytes and (f) stimulation of macrophages.
  • adverse reactions include granuloma formation at the site of injection, severe inflammation at the site of injection, pyrogenicity, adjuvant induced arthritis or other autoimmune response, or oncogenic response. Such reactions have hampered the use of adjuvants such as Freund's adjuvant.
  • liposome adjuvants are utilized.
  • U.S. Patent No. 4,053,585 issued October 17, 1977 to Allison et al. states that liposomes of a particular charge are adjuvants.
  • immunomodulators e.g., cytokines such as the interleukins
  • cytokines such as the interleukins
  • Humoral immune response may be measured by many well known methods.
  • Single Radial Immunodifussion Assay (SRID), Enzyme Immunoassay (EIA) and Hemagglutination Inhibition Assay (HAI) are but a few of the commonly used assays.
  • EIA also known as ELISA (Enzyme Linked Immunoassay) is used to determine total antibodies in a sample.
  • the antigen is adsorbed to the surface of a microtiter plate.
  • the test serum is exposed to the plate followed by an enzyme linked immunogloublin, such as IgG.
  • the enzyme activity adherent to the plate is quantified by any convenient means such as spectrophotometry and is proportional to the concentration of antibody directed against the antigen present in the test sample.
  • Tests to measure cellular immune response include determination of delayed-type hypersensitivity or measuring the proliferative response of lymphocytes to target antigen.
  • Liposomes are completely closed lipid bilayer membranes containing an entrapped aqueous volume. Liposomes may be unilamellar vesicles (possessing a single bilayer membrane ) or multilameller vesicles (onion-like structures characterized by multiple membrane bilayers, each separated from the next by an aqueous layer).
  • the bilayer is composed of two lipid monolayers having a hydrophobic "tail” region and a hydrophilic "head” region.
  • the structure of the membrane bilayer is such that the hydrophobic (nonpolar) "tails" of the lipid monolayers orient toward the center of the bilayer while the hydrophilic "head” orient towards the aqueous phase.
  • the original liposome preparation of Bangham, et al. involves suspending phospholipids in an organic solvent which is then evaporated to dryness leaving a phospholipid film on the reaction vessel. Next, and appropriate amount of aqueous phase is added, the mixture is allowed to "swell,” and the resulting liposomes which consist of multilamellar vesicles (MLVs) are dispersed by mechanical means.
  • MLVs multilamellar vesicles
  • Unilamellar vesicles may be produced using an extrusion apparatus by a method described in Cullis et al., PCT Application No. WO
  • LUVETS Vesicles made by this technique, called LUVETS, are extruded under pressure once or a number of times through a membrane filter.
  • LUVETs will be understood to be included in the term "unilamellar vesicle”.
  • Another class of liposomes are those characterized as having substantially equal lamellar solute distribution. This class of liposomes is denominated as stable plurilamellar vesicles (SPLV) as defined in U.S. Patent No.
  • Lipids of net negative charge are well known in the art and include for example, phosphatidyserine, phosphatidic acid, phosphatidylglycerol.
  • Lipids of net positive charge are well known in the art and include for example, aminodiglycerides, glyceridecholine, sterylamine, trimetylsterylamine, dioctadecyl trimethylamonnio propane or in general any bilayer forming amphiphile while has a charged hydrophilic moiety.
  • lipid charge may be manipulated by a number of methods well known in the art, such as by linking the lipid to a moiety of appropriate net charge.
  • the neutral lipid cholesterol may be linked to succinic acid (negative charge) to yield cholesterol hemisuccinate (CHS) of negative charge.
  • CHS cholesterol hemisuccinate
  • the tris(hydroxymethyl)aminomethane form of CHS is designated CHS as well as CHS ,. and its application to liposomes more fully sodium discussed in U.S. Patent No. 4,721,612 the teachings of which are incorporated herein by reference. Summary of the Invention
  • This invention includes a composition comprising a liposome in noncovalent association with an externally disposed antigen and in one embodiment further comprising adjuvant or further comprising aluminum hydroxide or Lipid A.
  • Preferred antigens are nonpartitioning.
  • the antigen is hydrophilic or lipophilic.
  • the affinity association is noncovalent association and the like such as electrostatic, hydrophilic, hydrogen bonding, or other bonding related to van der Waals forces such as configurational stickiness.
  • Liposomes of this invention may be unilamellar or multilamellar.
  • liposomes comprises cholesterol hemisuccinate, phosphatidylserine, phosphatidic acid, or phosphatidylglycerol as well as aminodiglyceride, glyceridecholine, sterylamine, trimethylstearylamine, dioctadecyl trimethylammonio deravitives (e.g., 1,2 bis(oleoyloxy)-3-dioctadecyl trimethylammonio propane — "D0TAP”) or any bilayer forming amphiphile having a charged hydrophilic moiety.
  • D0TAP dioctadecyl trimethylammonio deravitives
  • Antigens include HIV or portion thereof with particular reference to PB1.
  • Antigen includes peptide, glycopeptide or glycoprotein.
  • the antigen is influenza or fragments thereof, herpes or fragments thereof, haemophilus B or fragments thereof or malaria or fragments thereof.
  • Antigens also include isolated or bioengineered fragments of viruses, bacteria, cancer cells, hormoral cells and body fluid components.
  • the invention includes a method of producing an vaccine composition comprising a liposome in affinity (noncovalent) association with an externally disposed and preferably nonpartitioning antigen comprising contacting in an aqueous solution antigen and a liposome comprising said bilayer forming material of reciprocal affinity to said antigen, such that the antigen and the liposome forms an affinity association; as well as potentially removing non-affinity associated antigen.
  • the affinity between antigen and liposome is electrostatic or hydrogen bonding or is configurational stickiness.
  • the liposome is of net negative charge and the antigen of net positive charge or the liposome is of net positive charge and the antigen of net negative charge.
  • the liposome comprises CHS.
  • the antigen comprises PB1.
  • the liposomes are subjected to shearing force.
  • This invention yet further includes a method of inducing an immune response in an animal, including a human, comprising administering to said animal a therapeutically effective amount of a composition comprising a liposome in noncovalent affinity association with an externally disposed preferably nonpartitioning antigen.
  • the method can further utilize adjuvant such as aluminum hydroxide or Lipid A.
  • adjuvant such as aluminum hydroxide or Lipid A.
  • antigen is hydrophilic or lipophilic.
  • the affinity is electrostatic, hydrogen bonding or configurational stickiness.
  • the liposome comprises cholesterol hemisuccinate, phosphatidylserine, phosphatidic acid, phosphatidylglycerol as well as aminodiglyceride, glyceridecholine, stearylamine, trimetylstearylamine, dioctadecyl trimethylammonio derivatives or any bilayer forming amphiphile having a charged hydrophilic moiety.
  • Antigens can comprise HIV or portion thereof or PB1.
  • Variously antigens are noted to be protein, peptide glycopeptide or glycoprotein, polypeptide, poly(amino acid) and will be termed, collectively, "peptide”.
  • antigens influenza or fragments thereof herpes or fragments thereof, haemophilus B or fragments thereof or malaria or fragments thereof as well as isolated or bioengineered fragments of viruses, bacteria, cancer cells, hormoral cells and body fluid components.
  • Adjuvant shall mean a substance or material to potentiate an immune response when used in conjunction with an antigen or immunogen. Adjuvants are further used to elicit immune response
  • Antigen shall mean a substance or material that is recognized specifically by an antibody and/or combines with an antibody. Particular note is made of both natural and bioengineered antigens
  • j _5 such as peptides, glycopeptides and glycoproteins.
  • Specific antigens include antivirals such as herpes, hepatitis, rabies, parainfluenza, measles, mumps, respiratory syncytial virus; antibacterials such as pneumonia, haemophilis B, .staphylococcus, meningococcus, Neisseria gonorrhea; and protozoa such as malaria or 0 fragments thereof.
  • Epitope shall mean the smallest part of an antigen recognizable by the combining site of an immunoglobulin.
  • Externally disposed shall, in referring to antigen or immunogen, mean, positioned by an "affinity association" so as to bear an epitope external to the outermost lamella of an associated liposome. Included are epitopes ionically associated with the liposome, nonpartitioned into the outermost lamellae, and with 0 epitope exposed.
  • Affinity association shall mean noncovalent intermolecular associations such as electrostatic association, hydrogen bonding, and configurational stickiness. 5
  • Nonpartitioning refering to antigen or immunogen refers to hydrophilic immunogens and those lipophilic immunogens the epitopes of which are not substantially incorporated into the outermost lamella of a liposome. Those lipophilic immunogens that can be separated from liposomes by physical manipulation such as by dialysis, charge manipulation or other equilibrium based separations are deemed to be not substantially incorporated into the lamellae and nonpartitioning.
  • Immune response shall mean a specific response of the immune system of an animal to antigen or immunogen. Immune response may include the production of antibodies.
  • Immunity shall mean a state of resistance of a subject animal to a infecting organism or substance. It will be understood that infecting organism or substance is defined broadly and includes parasites, toxic substances, cancers and cells as well as bacteria and viruses. A Therapeutically Effective Immunization Course will be described.
  • Immunization conditions shall mean factors which affect an immune response including amount and kind of antigen or adjuvant 25 delivered to a subject animal, method of delivery, number of inoculations, interval of inoculation, the type of subject animal and its presenting condition.
  • Immunization dose shall mean the amount of antigen or 30 immunogen needed to precipitate an immune response. This amount will vary with the presence and effectiveness of various adjuvants. This amount will vary with the animal and immunogen or antigen or adjuvant but will generally be between about 0.lug/ml or less to about 500ug per inoculation.
  • the immunization dose is easily ⁇ ⁇ ' determined by methods well known to those skilled in the art, &uch as by conducting statistically valid host animal immunization and challenge studies. See, for example, Manual of Clinical Immunology. H.R. Rose and H. Friedman, American Society for Microbiology, Washington, D.C. (1980). In some instances several immunization doses including booster doses will be administered to provide immunity.
  • Immunogen shall mean a substance or material (including antigens) that is able to induce an immune response alone or in conjunction with an adjuvant. This will generally be a protein, peptide, polysaccharide, nucleoprotein, lipoprotein, synthetic polypeptide, or hapten linked to a protein, peptide, polysaccharid ⁇ , nucleoprotein, lipoprotein or synthetic polypeptide or other bacterial, viral or protozoal fractions.
  • immunogen includes substances which do not generate an immune response (or generate a only therapeutically ineffective immune response) unless associated with an adjuvant (e.g., small peptides) which will be referred to as "adjuvant-obligatory" immunogens.
  • adjuvant e.g., small peptides
  • infectious agent shall mean an disease causing agent including fungi, bacteria, viruses and parasites.
  • “Mimetic”, in relation to antigens, immunogens and epitopes, shall mean that refers to a moiety (either natural or synthetic) that duplicates by structure, accessibility or reactivity the response of B-cell immuno-receptors to the subject antigen in native state configuration or epitope in native state configuration.
  • “Native state configuration” shall mean that organization of a moiety as it is when present in situ in its usual condition, to be distinguished from non-native state configuration (denatured) wherein the moiety is altered as to immuno-reactivity from that of the in situ organization.
  • Vaccine shall mean a pharmaceutical formulation which induces immune response or immunity in a subject animal.
  • Antigens or immunogens may have a net positive or negative charge, or be neutral.
  • the net charges are easily determined by a number of techniques well known in the art. For peptides the net charge may assessed through determination of the isoelectric point. Peptides of isoelectric points of about 5 or less have net negative charge and the peptides are soluble in basic solution. Isoelectric points of about 8 or more indicate a net positive charge and the peptides are soluble in acid solution. Isoelectric points from 5 to 8 indicate generally neutral peptides (frim slightly acidic to slightly basic).
  • Net charges on peptides can be manipulated by a number of methods well known in the art including adding charge bearing amino acids or amino acid segments.
  • lysine and arginine add positive charge while aspartic and glutamic acid add negative charge.
  • antigens or immunogens including addition of amino acids or exposure to acidic or basic solutions or temperature variation or light that conditions must not be such as to compromise immunogenicity or native state configuration.
  • a particularly useful immunogen is the PB1 fraction of the HIV 1 virus (Repligen Corporation, Cambridge, MA). This fraction is characterized in "HTLV-III/LAV-Neutralizing Antibodies of an E. coli-Produced Fragment of the Virus Envelope", Putney, et al., Science. 234:1392-5 (1986) the teachings of which are incorporated herein by reference.
  • PB1 peptide is soluble in aqueous solution containing solubilizing substances such as urea and detergents and was supplied in such solution. Such solubilization substances were incompatible with pharmaceutical preparations and a dialysis process was utilized to remove them.
  • Antigens or immunogens which partition into the liposome lamellae such as melanoma antigen in CHS liposomes may not yield a sufficient immunogenic response with out repeated inoculation and additional adjuvant. Without being bound by any particular theory it is believed that this partitioning results in the limitation of exposure of epitopes externally to the adjuvant liposomes. Modification (e.g., conjugation with a nonpartitioning moiety) of such an antigen or immunogen while preserving native state configuration acts so as to prevent partitioning. In addition it can be advantageous to utilize both affinity associated antigen and entrapped antigen in a particular composition, vaccine or dosage form.
  • a preferred vaccine of this invention is a liposome organized so as to have an immunogen in electrostatic association with the exterior of said liposome.
  • the preferred liposome may be multilamellar (e.g., multilamellar vesicles or stable plurilamellar vesicles).
  • the vaccine contains externally disposed antigen or immunogen in such electrostatic association.
  • the most successful immunogens will be those purified from (or duplicative or mimetic of) the infective agent while maintaining immunogen native state configuration. It is understood that some vaccines are prepared without resort to living infective organisms due the potential for contamination of the final vaccine. It is thus useful to produce immunogens synthetically (including bioengineering) such as through techniques of recombinant DNA technology, recombinant RNA technology or other synthesis in host cells, but it is preferable that even synthetically produced immunogens be of native state configuration.
  • lipid and antigen of reciprocal affinity is simply accomplished by those skilled in the art. Depending upon the type of noncovalent affinity association applicable various association techniques are used. For hydrogen bonding the elevation of temperature of the aqueous solution suspending antigen and liposomes above the transition temperature of the affinity bonded entities is effective. For van der Waals, or electrostatic or configurational stickiness admixing of the antigen and liposomes in aqueous solution is sufficient, but as to electrostatic affinity the liposome and antigen are of opposite charge. Degree of affinity association of nonpartitioning antigen or immunogen is simply determined by methods well known in the art.
  • the relative attachment and nonattachment is determined by centrifuging the liposomes and antigen or immunogen admixture and then determining the amount of antigen or immunogen in the supernatant. The amount not in the supernatant being a measure of the amount affinity attached.
  • a vaccine may generate a weak immune response that is not greatly potentiated on secondary challenge. However, after a first administration of the adjuvant-associated immunogen, a substantial immune response is generated upon application of a second inoculation of the adjuvant free immunogen in solution.
  • Table 1 presents the data of an experiment in which CHS. . tris formulation was compared with other liposome formulations.
  • Liposomes made of CHS . (Table 1, group F) were prepared by _.r s multilamellar vesicles (MLV) procedure. This formulation involves the coating of the surface of negatively charged liposomes with the positively charged antigen.
  • Liposomes made of dimyristolyphosphatidylcholine/cholesterol were prepared using either stable plurilamellar vesicle (SPLV) procedure (D-W, D) or monophasic vesicle (MPV) procedure (D-E, D-T).
  • SPLV plurilamellar vesicle
  • MPV monophasic vesicle
  • DMPC (80 mg) and cholesterol (20 mg) in 1 ml chloroform were rotoevaporated under vacuum to a dry film and further solubilized in 5 ml ether + 0.5 ml ethanol at 40°C for a few seconds until the solution was clear.
  • the PB1 antigen (100 ug) in 0.5 ml 1% acetic acid was added to this solution and the resulting mixture was sonicated under a stream of N at 40°C for about 1 minute until dryness under stream (2-3 minutes).
  • the resulting dry material was resuspended in 10 ml phosphate buffered saline minus Ca ++ and Mg++ (KC1 2g/L,
  • This liposome was prepared as described above for the D-W liposome except that the centrifugation step was omitted. Subsequently the material dried by N law stream was resuspended in 2 ml PBS minus to a final concentration of 50 mg lipid and 50 ug antigen/ml.
  • Cholesterol (20 mg) was dissolved in 1 ml ethanol containing 80 mg solubilized DMPC by brief heating to 40°C (10-20 sec.) and stirring.
  • the solution of antigen (1 ml) was prepared separately by mixing 100 ug PB1 in 0.13 ml 1% acetic acid and 0.87 ml ethanol and immediately mixed with the lipid solution. The mixture was rotoevaporated under vacuum at 40°C and the resulting material was resuspended in 2 ml PBS minus by sonication for 10 seconds at 40°C to a final suspension of 50 mg lipid and 50 ug antigen/ml.
  • This liposome was prepared as described above for the D-E liposome except that the ethanol was replaced by Tert-butyl-alcohol (TBA) .
  • TSA Tert-butyl-alcohol
  • This preparation was done by mixing 0.5 ml of SPLV, liposome D made of DMPC/CHOL and 0.5 ml of empty MLV liposome H made of
  • the mixture contained 75 mg tris lipids (50 mg CHS , 25 mg DMPC/CHOL) and 25 ug PBl
  • CFA complete Freund's adjuvant
  • This emulsion was prepared as described above except that PBl antigen was not dialyzed.
  • PBl ata concentration of 0.77 mg/ml in a 50 mM phosphate buffer, pH 6.8, containing 2 mM EDTA, 10 mM DTT and 8 M urea was diluted in PBS minus to 50 ug/ml.
  • Stock PBl solution (0.77mg/ml in a 50 mM phosphate buffer, pH _ 6.8, containing 2 mM EDTA, 10 mM dithiothetrol and 8 m urea) was dialyzed against 1% acetic acid (pH 2.5) and the dialyzed antigen diluted before use in PBS minus at 50 ug/ml.
  • mice Balb/C (Jakson), 6-8 weeks old female mice were inoculated intramuscularly ("IM") at day 0, 15, 35 and blood was taken at day 0, 14, 28, 49, 63 and 79.
  • the dose of antigen was 5 ug/0.1 ml/inoculum except group E which received 2.5 ug.
  • PBl specific antibody IgG and IgM was determined by a standard ELISA procedure.
  • the amount of Alum was kept constant at 0.4 mg/ml of physiological saline (USP).
  • the CHS liposome-PBl formulations were prepared as described previously (group F, table 3).
  • a formulation containing 50 ug antigen/ml was further diluted in a suspension of empty CHS liposomes in PBS minus such that the amount of lipids was kept constant at 50 mg/ml and the antigen decreased to 2.5, 1.25 and 0.31 ug/ml.
  • Another CHS formulation at 50 mg lipid and 20 ug antigen was subjected to shearing force via vortexing and sonicating at low energy intermittently for 2 hours at room temperature in order to achieve a suitable suspension.
  • Vaccines are conveniently administered in a dosage form.
  • a "dosage form” will be understood to mean any pharmaceutically form of administering a vaccine including subcutaneous, oral, intramuscular, and ocular administration and utilizing vaccines in live, attenuated or synthetic or bioengineered or partial forms along with adjuvants and optionally immunomodulators such as cytokines.
  • the combinations of the foregoing elements are prepared so that the dosage form is adapted to produce a therapeutically effective immune response in the subject animal including a human as easily and effectively as possible.
  • the dosage forms including liposomal dosage forms resulting from the method of the present invention can be used therapeutically in mammals, including a human, in the treatment of infections or conditions which require the delivery of immunogen in its bioactive form. Such conditions include but are not limited to disease states such as those that can be treated or prevented with vaccines.
  • Dosage forms also include use of adjuvant as well as vaccine incorporated into gel such as aluminum gels, lipids such as Lipid A, liquid crystals, powders, precipitates and solutions.
  • the dosage form can be a unit dosage form configured and adapted to a single administration.
  • the mode of administration of the dosage form may determine the sites and cells in the organism to which the dosage form will be delivered.
  • the dosage forms including liposomal dosage forms of the present invention can be administered alone but will generally be administered In admixture with a pharmaceutical carrier selected with regard to the intended route of administration and standard pharmaceutical practice.
  • the dosage forms may be injected intramuscuarly, subcutaneously or intradermally.
  • the dosage forms may also be administered via oral routes routes.
  • parenteral administration they can be used, for example, in the form of a sterile aqueous solution which may contain other solutes, for example, enough salts or glucose to make the solution isotonic. Other uses, depending upon the particular properties of the preparation, may be envisioned by those skilled in the art.
  • PBl is a positively charged peptide and thus dialysis of PBl from stock solution was performed against a 1% acetic acid at a pH of 2.5. Upon dialysis the PBl remained soluble for several hours in 1% acetic acid. It was noted that, were the pH to approach neutral pH, the PBl antigen would rapidly preciptiate. Affinity attachment of the PBl to liposomes was accomplished by utilizing a liposome of reciprocal (here negative) charge. CHS . liposomes having a negative charge were used, suspended in neutral (pH 7.2) buffer and then mixed with the PBl in 1% acetic acid solution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Communicable Diseases (AREA)
  • Hematology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Disclosed is a vaccine against an infective agent, the vaccine comprising a liposome having an exterior and an interior and having externally disposed affinity associated antigen material of at least one, preferably nonpartitioning, antigen representative of said infective agent. Also disclosed is a method of preparation and use of this vaccine.

Description

AFFINITY ASSOCIATED VACCINE
FIELD OF THE INVENTION
This invention concerns a vaccine against an infective agent, the vaccine comprising a liposome having an exterior and an interior and having externally disposed affinity (noncovalently) associated •JΛ antigen material of at least one, preferably nonpartitioning, antigen representative of said infective agent. Also disclosed is a method of preparation and use of this vaccine.
5 BACKGROUND OF THE INVENTION
In the vaccine art antigens are introduced into an organism in a manner so as to stimulate an immune response in the host organism. 0 T_ι_ induction of an immune response depends on many factors among which are believed to be the chemical composition and configuration of the antigen, the potential of the immune system of the challenged organism, and the manner and period of administration of the antigen. An immune response has many aspects some of which are 5 exhibited by the cells of the immune system, (e.g. ,B-lymphocytes,
T-lymphocytes, macrophages, and plasma cells). Immune system cells may participate in the immune response through interaction with antigen, interaction with other cells of the immune system, the release of cytokines and reactivity to those cytokines. Immune response is conveniently (but arbitrarily) divided into two main categories — humoral and cell-mediated. The humoral component of the immune response includes production of immunoglobulins specific for the antigen. The cell-mediated component includes the generation of delayed-type hypersensitivity and cytotoxic effector cells against the antigen. In some instances immune response is the result of an initial or priming dose of an antigen that is followed by one or more booster exposures to the antigen. Priming with relatively strong immunogens and liposomes is discussed in "Liposomal Enhancement of the Immunogenicity of Adenovirus Type 5 Hexon and Fiber Vaccines", Kramp, .J. et al., Infection and Immunity. 25:771-773 (1979) and "Liposomes as Adjuvants with Immunopurified Tetanus Toxoid: the Immune Response", Davis, D. et al., Immunology Letters. 14:341-8 (1986/1987).
Ideally, an antigen will exhibit two properties, the capacity to stimulate the formation of the corresponding antibodies and the propensity to react specifically with these antibodies. Antigens bear one or more epitopes which are the smallest part of an antigen recognizable by the combining site of an antibody.
In particular instances antigens or fractions of antigens or with particular presenting conditions the immune response precipitated by the desired antigen is inadequate or nonexistent and insufficient immunity is produced. This is particularly the case with peptide or other small molecules used as antigens.
In such cases the vaccine art recognizes the use of substances called adjuvants to potentiate an immune response when used in conjunction with an antigen or immunogen. Adjuvants are further used to elicit immune response sooner, or a greater response, or with less antigen or immunogen or to increase production of certain antibody subclasses that afford immunological protection, or to enhance components of the immune response (e.g., humoral, cellular). Liposomal vaccines and adjuvancy are further discussed in U.S. Patent Application Ser. No. [Docket TLC-160/1A] to Popescu et al., filed on date even herewith the teachings of which are incorporated herein by reference.
Known adjuvants are Freund's Adjuvants (and other oil emulsions), Bortedella Pertussis, Lipid A (the glycophospholipid moiety of lipopolysaccharide found in Gram-negative bacteria), aluminum salts (and other metal salts), Mycobacterial products (including muramyl dipeptides), and liposomes. As used herein the term "adjuvant" will be understood to mean a substance or material administered together or in conjunction with an antigen which increases the immune response to that antigen. Adjuvants may be in a number of forms including emulsion (e.g., Freund's adjuvant) gels (aluminum hydroxide gel) and particles (liposomes) or as a solid material.
It is believed that adjuvant activity can be affected by a number of factors. Among such factors are (a) carrier effect, (b) depot formation, (c) altered lymphocyte recirculation, (d) stimulation of T-lymphocytes, (e) direct stimulation of B-lymphocytes and (f) stimulation of macrophages.
With many adjuvants adverse reactions are seen. In some instances adverse reactions include granuloma formation at the site of injection, severe inflammation at the site of injection, pyrogenicity, adjuvant induced arthritis or other autoimmune response, or oncogenic response. Such reactions have hampered the use of adjuvants such as Freund's adjuvant.
In particular embodiments liposome adjuvants are utilized. U.S. Patent No. 4,053,585 issued October 17, 1977 to Allison et al. states that liposomes of a particular charge are adjuvants.
Other substances such as immunomodulators (e.g., cytokines such as the interleukins) may be combined in adjuvants as well.
Humoral immune response may be measured by many well known methods. Single Radial Immunodifussion Assay (SRID), Enzyme Immunoassay (EIA) and Hemagglutination Inhibition Assay (HAI) are but a few of the commonly used assays.
EIA, also known as ELISA (Enzyme Linked Immunoassay), is used to determine total antibodies in a sample. The antigen is adsorbed to the surface of a microtiter plate. The test serum is exposed to the plate followed by an enzyme linked immunogloublin, such as IgG. The enzyme activity adherent to the plate is quantified by any convenient means such as spectrophotometry and is proportional to the concentration of antibody directed against the antigen present in the test sample. - A
Tests to measure cellular immune response include determination of delayed-type hypersensitivity or measuring the proliferative response of lymphocytes to target antigen.
Liposomes are completely closed lipid bilayer membranes containing an entrapped aqueous volume. Liposomes may be unilamellar vesicles (possessing a single bilayer membrane ) or multilameller vesicles (onion-like structures characterized by multiple membrane bilayers, each separated from the next by an aqueous layer). The bilayer is composed of two lipid monolayers having a hydrophobic "tail" region and a hydrophilic "head" region. The structure of the membrane bilayer is such that the hydrophobic (nonpolar) "tails" of the lipid monolayers orient toward the center of the bilayer while the hydrophilic "head" orient towards the aqueous phase.
The original liposome preparation of Bangham, et al. (J. Mol. Biol.. 1965, 12:238-252) involves suspending phospholipids in an organic solvent which is then evaporated to dryness leaving a phospholipid film on the reaction vessel. Next, and appropriate amount of aqueous phase is added, the mixture is allowed to "swell," and the resulting liposomes which consist of multilamellar vesicles (MLVs) are dispersed by mechanical means. This technique provides the basis for the development of the small sonicated unilamellar vesicles described by Papahadjopoulos et al. (Biochim. Biophvs. Acta. , 1968, 135:624-638), and large unilamellar vesicles.
Unilamellar vesicles may be produced using an extrusion apparatus by a method described in Cullis et al., PCT Application No. WO
87/00238, published January 16, 1986, entitled "Extrusion Technique for Producing Unilamellar Vesicles" incorporated herein by reference. Vesicles made by this technique, called LUVETS, are extruded under pressure once or a number of times through a membrane filter. LUVETs will be understood to be included in the term "unilamellar vesicle". Another class of liposomes are those characterized as having substantially equal lamellar solute distribution. This class of liposomes is denominated as stable plurilamellar vesicles (SPLV) as defined in U.S. Patent No. 4,522,803 to Lenk, et al., monophasic vesicles (MPVs) as described in U.S. Patent No. 4,588,578 to Fountain, et al. and frozen and thawed multilamellar vesicles (FATMLV) wherein the vesicles are exposed to at least one freeze and thaw cycle; this procedure is described in Bally et al., PCT Publication No. 87/00043, January 15, 1987, entitled "Multilamellar Liposomes Having Improved Trapping Efficiencies". U.S. Patent No. 4,721,612 to Janoff et al. describes steroidal liposomes for a variety of uses. The teachings of these references as to preparation and use of liposomes are incorporated herein by reference.
Lipids of net negative charge are well known in the art and include for example, phosphatidyserine, phosphatidic acid, phosphatidylglycerol. Lipids of net positive charge are well known in the art and include for example, aminodiglycerides, glyceridecholine, sterylamine, trimetylsterylamine, dioctadecyl trimethylamonnio propane or in general any bilayer forming amphiphile while has a charged hydrophilic moiety.
In addition, lipid charge may be manipulated by a number of methods well known in the art, such as by linking the lipid to a moiety of appropriate net charge. For example, the neutral lipid cholesterol may be linked to succinic acid (negative charge) to yield cholesterol hemisuccinate (CHS) of negative charge. The tris(hydroxymethyl)aminomethane form of CHS is designated CHS as well as CHS ,. and its application to liposomes more fully sodium discussed in U.S. Patent No. 4,721,612 the teachings of which are incorporated herein by reference. Summary of the Invention
This invention includes a composition comprising a liposome in noncovalent association with an externally disposed antigen and in one embodiment further comprising adjuvant or further comprising aluminum hydroxide or Lipid A. Preferred antigens are nonpartitioning. In some embodiments the antigen is hydrophilic or lipophilic. Variously the affinity association is noncovalent association and the like such as electrostatic, hydrophilic, hydrogen bonding, or other bonding related to van der Waals forces such as configurational stickiness. Liposomes of this invention may be unilamellar or multilamellar.
In particular applications liposomes comprises cholesterol hemisuccinate, phosphatidylserine, phosphatidic acid, or phosphatidylglycerol as well as aminodiglyceride, glyceridecholine, sterylamine, trimethylstearylamine, dioctadecyl trimethylammonio deravitives (e.g., 1,2 bis(oleoyloxy)-3-dioctadecyl trimethylammonio propane — "D0TAP") or any bilayer forming amphiphile having a charged hydrophilic moiety.
Useful antigens include HIV or portion thereof with particular reference to PB1. Antigen includes peptide, glycopeptide or glycoprotein. In particular application the antigen is influenza or fragments thereof, herpes or fragments thereof, haemophilus B or fragments thereof or malaria or fragments thereof. Antigens also include isolated or bioengineered fragments of viruses, bacteria, cancer cells, hormoral cells and body fluid components.
In another embodiment the invention includes a method of producing an vaccine composition comprising a liposome in affinity (noncovalent) association with an externally disposed and preferably nonpartitioning antigen comprising contacting in an aqueous solution antigen and a liposome comprising said bilayer forming material of reciprocal affinity to said antigen, such that the antigen and the liposome forms an affinity association; as well as potentially removing non-affinity associated antigen. In the practice of this method the affinity between antigen and liposome is electrostatic or hydrogen bonding or is configurational stickiness. Additionally by this method the liposome is of net negative charge and the antigen of net positive charge or the liposome is of net positive charge and the antigen of net negative charge. In the practice of this method in one embodiment the liposome comprises CHS. In another embodiment the antigen comprises PB1. In particular application the liposomes are subjected to shearing force.
This invention yet further includes a method of inducing an immune response in an animal, including a human, comprising administering to said animal a therapeutically effective amount of a composition comprising a liposome in noncovalent affinity association with an externally disposed preferably nonpartitioning antigen. The method can further utilize adjuvant such as aluminum hydroxide or Lipid A. Variously by this method antigen is hydrophilic or lipophilic. Further by this method the affinity is electrostatic, hydrogen bonding or configurational stickiness.
In the practice of this method of treatment in various embodiments the liposome comprises cholesterol hemisuccinate, phosphatidylserine, phosphatidic acid, phosphatidylglycerol as well as aminodiglyceride, glyceridecholine, stearylamine, trimetylstearylamine, dioctadecyl trimethylammonio derivatives or any bilayer forming amphiphile having a charged hydrophilic moiety. Antigens can comprise HIV or portion thereof or PB1. Variously antigens are noted to be protein, peptide glycopeptide or glycoprotein, polypeptide, poly(amino acid) and will be termed, collectively, "peptide". Particularly noted as antigens influenza or fragments thereof, herpes or fragments thereof, haemophilus B or fragments thereof or malaria or fragments thereof as well as isolated or bioengineered fragments of viruses, bacteria, cancer cells, hormoral cells and body fluid components. Detailed Description of the Invention
For clarity, in the discussion of this invention the following definitions will be used:
"Adjuvant" shall mean a substance or material to potentiate an immune response when used in conjunction with an antigen or immunogen. Adjuvants are further used to elicit immune response
10 sooner, or a greater response, or with less antigen.
"Antigen" shall mean a substance or material that is recognized specifically by an antibody and/or combines with an antibody. Particular note is made of both natural and bioengineered antigens
j_5 such as peptides, glycopeptides and glycoproteins. Specific antigens include antivirals such as herpes, hepatitis, rabies, parainfluenza, measles, mumps, respiratory syncytial virus; antibacterials such as pneumonia, haemophilis B, .staphylococcus, meningococcus, Neisseria gonorrhea; and protozoa such as malaria or 0 fragments thereof.
"Epitope" shall mean the smallest part of an antigen recognizable by the combining site of an immunoglobulin.
5 "Externally disposed" shall, in referring to antigen or immunogen, mean, positioned by an "affinity association" so as to bear an epitope external to the outermost lamella of an associated liposome. Included are epitopes ionically associated with the liposome, nonpartitioned into the outermost lamellae, and with 0 epitope exposed.
"Affinity association" shall mean noncovalent intermolecular associations such as electrostatic association, hydrogen bonding, and configurational stickiness. 5
"Configurational stickiness" shall be understood to mean physical parameters that facilitate immobilization of antigen or immunogen externally on a liposome such as van der Waals forces. "Nonpartitioning" refering to antigen or immunogen refers to hydrophilic immunogens and those lipophilic immunogens the epitopes of which are not substantially incorporated into the outermost lamella of a liposome. Those lipophilic immunogens that can be separated from liposomes by physical manipulation such as by dialysis, charge manipulation or other equilibrium based separations are deemed to be not substantially incorporated into the lamellae and nonpartitioning.
10
"Immune response" shall mean a specific response of the immune system of an animal to antigen or immunogen. Immune response may include the production of antibodies.
15 "Immunity" shall mean a state of resistance of a subject animal to a infecting organism or substance. It will be understood that infecting organism or substance is defined broadly and includes parasites, toxic substances, cancers and cells as well as bacteria and viruses. A Therapeutically Effective Immunization Course will
20 produce immune response to protect the organism against challenging antigen, one which is therapeutically effective.
"Immunization conditions" shall mean factors which affect an immune response including amount and kind of antigen or adjuvant 25 delivered to a subject animal, method of delivery, number of inoculations, interval of inoculation, the type of subject animal and its presenting condition.
"Immunization dose" shall mean the amount of antigen or 30 immunogen needed to precipitate an immune response. This amount will vary with the presence and effectiveness of various adjuvants. This amount will vary with the animal and immunogen or antigen or adjuvant but will generally be between about 0.lug/ml or less to about 500ug per inoculation. The immunization dose is easily ~ ~' determined by methods well known to those skilled in the art, &uch as by conducting statistically valid host animal immunization and challenge studies. See, for example, Manual of Clinical Immunology. H.R. Rose and H. Friedman, American Society for Microbiology, Washington, D.C. (1980). In some instances several immunization doses including booster doses will be administered to provide immunity.
"Immunogen" shall mean a substance or material (including antigens) that is able to induce an immune response alone or in conjunction with an adjuvant. This will generally be a protein, peptide, polysaccharide, nucleoprotein, lipoprotein, synthetic polypeptide, or hapten linked to a protein, peptide, polysaccharidε, nucleoprotein, lipoprotein or synthetic polypeptide or other bacterial, viral or protozoal fractions. It will be understood that "immunogen" includes substances which do not generate an immune response (or generate a only therapeutically ineffective immune response) unless associated with an adjuvant (e.g., small peptides) which will be referred to as "adjuvant-obligatory" immunogens.
"Infective agent" shall mean an disease causing agent including fungi, bacteria, viruses and parasites.
"Mimetic", in relation to antigens, immunogens and epitopes, shall mean that refers to a moiety (either natural or synthetic) that duplicates by structure, accessibility or reactivity the response of B-cell immuno-receptors to the subject antigen in native state configuration or epitope in native state configuration.
"Native state configuration" shall mean that organization of a moiety as it is when present in situ in its usual condition, to be distinguished from non-native state configuration (denatured) wherein the moiety is altered as to immuno-reactivity from that of the in situ organization.
"Vaccine" shall mean a pharmaceutical formulation which induces immune response or immunity in a subject animal.
Antigens or immunogens may have a net positive or negative charge, or be neutral. The net charges are easily determined by a number of techniques well known in the art. For peptides the net charge may assessed through determination of the isoelectric point. Peptides of isoelectric points of about 5 or less have net negative charge and the peptides are soluble in basic solution. Isoelectric points of about 8 or more indicate a net positive charge and the peptides are soluble in acid solution. Isoelectric points from 5 to 8 indicate generally neutral peptides (frim slightly acidic to slightly basic). The determination of isoelectric points is wel known in the art and is discussed in "Relationship Between in vivo Degradative Rates and Isoelectric Points of Proteins", Dice, et al., Proc. Natl. Acad. Sci. USA. 72:3895-97 (1975) the teachings of which are incorporated her-ein by reference.
Net charges on peptides can be manipulated by a number of methods well known in the art including adding charge bearing amino acids or amino acid segments. By way of example lysine and arginine add positive charge while aspartic and glutamic acid add negative charge. It is important to note in any manipulation of antigens or immunogens including addition of amino acids or exposure to acidic or basic solutions or temperature variation or light that conditions must not be such as to compromise immunogenicity or native state configuration.
A particularly useful immunogen is the PB1 fraction of the HIV 1 virus (Repligen Corporation, Cambridge, MA). This fraction is characterized in "HTLV-III/LAV-Neutralizing Antibodies of an E. coli-Produced Fragment of the Virus Envelope", Putney, et al., Science. 234:1392-5 (1986) the teachings of which are incorporated herein by reference. PB1 peptide is soluble in aqueous solution containing solubilizing substances such as urea and detergents and was supplied in such solution. Such solubilization substances were incompatible with pharmaceutical preparations and a dialysis process was utilized to remove them.
Antigens or immunogens which partition into the liposome lamellae such as melanoma antigen in CHS liposomes may not yield a sufficient immunogenic response with out repeated inoculation and additional adjuvant. Without being bound by any particular theory it is believed that this partitioning results in the limitation of exposure of epitopes externally to the adjuvant liposomes. Modification (e.g., conjugation with a nonpartitioning moiety) of such an antigen or immunogen while preserving native state configuration acts so as to prevent partitioning. In addition it can be advantageous to utilize both affinity associated antigen and entrapped antigen in a particular composition, vaccine or dosage form.
A preferred vaccine of this invention is a liposome organized so as to have an immunogen in electrostatic association with the exterior of said liposome. The preferred liposome may be multilamellar (e.g., multilamellar vesicles or stable plurilamellar vesicles). In a particular embodiment the vaccine contains externally disposed antigen or immunogen in such electrostatic association.
In some embodiments the most successful immunogens will be those purified from (or duplicative or mimetic of) the infective agent while maintaining immunogen native state configuration. It is understood that some vaccines are prepared without resort to living infective organisms due the potential for contamination of the final vaccine. It is thus useful to produce immunogens synthetically (including bioengineering) such as through techniques of recombinant DNA technology, recombinant RNA technology or other synthesis in host cells, but it is preferable that even synthetically produced immunogens be of native state configuration.
Selection of lipid and antigen of reciprocal affinity is simply accomplished by those skilled in the art. Depending upon the type of noncovalent affinity association applicable various association techniques are used. For hydrogen bonding the elevation of temperature of the aqueous solution suspending antigen and liposomes above the transition temperature of the affinity bonded entities is effective. For van der Waals, or electrostatic or configurational stickiness admixing of the antigen and liposomes in aqueous solution is sufficient, but as to electrostatic affinity the liposome and antigen are of opposite charge. Degree of affinity association of nonpartitioning antigen or immunogen is simply determined by methods well known in the art. By one method the relative attachment and nonattachment is determined by centrifuging the liposomes and antigen or immunogen admixture and then determining the amount of antigen or immunogen in the supernatant. The amount not in the supernatant being a measure of the amount affinity attached.
Also useful is priming in generation of the immune response. A vaccine may generate a weak immune response that is not greatly potentiated on secondary challenge. However, after a first administration of the adjuvant-associated immunogen, a substantial immune response is generated upon application of a second inoculation of the adjuvant free immunogen in solution.
The efficacy and utility of this invention is disclosed in Tables 1 and 2.
Table 1 presents the data of an experiment in which CHS. . tris formulation was compared with other liposome formulations.
Liposomes made of CHS . (Table 1, group F) were prepared by _.r s multilamellar vesicles (MLV) procedure. This formulation involves the coating of the surface of negatively charged liposomes with the positively charged antigen.
Liposomes made of dimyristolyphosphatidylcholine/cholesterol (DMPC/CHOL) were prepared using either stable plurilamellar vesicle (SPLV) procedure (D-W, D) or monophasic vesicle (MPV) procedure (D-E, D-T).
A. SPLV Liposome D-W
DMPC (80 mg) and cholesterol (20 mg) in 1 ml chloroform were rotoevaporated under vacuum to a dry film and further solubilized in 5 ml ether + 0.5 ml ethanol at 40°C for a few seconds until the solution was clear. The PB1 antigen (100 ug) in 0.5 ml 1% acetic acid was added to this solution and the resulting mixture was sonicated under a stream of N at 40°C for about 1 minute until dryness under stream (2-3 minutes). The resulting dry material was resuspended in 10 ml phosphate buffered saline minus Ca ++ and Mg++ (KC1 2g/L,
KH2P042 g/L, NaCL 80 g/L, aP0^7H20 21.6 g/L) ("PBS minus") to a milky suspension which was then centrifuged at
10,000 rp for 10 minutes at 4°C. The pellet of liposomes was resuspended in 2 ml PBS minus to a final concentration of 50 mg lipid/ml.
B. SPLV. Liposome D
This liposome was prepared as described above for the D-W liposome except that the centrifugation step was omitted. Subsequently the material dried by N„ stream was resuspended in 2 ml PBS minus to a final concentration of 50 mg lipid and 50 ug antigen/ml.
C. MPV. Liposome D-E
Cholesterol (20 mg) was dissolved in 1 ml ethanol containing 80 mg solubilized DMPC by brief heating to 40°C (10-20 sec.) and stirring. The solution of antigen (1 ml) was prepared separately by mixing 100 ug PB1 in 0.13 ml 1% acetic acid and 0.87 ml ethanol and immediately mixed with the lipid solution. The mixture was rotoevaporated under vacuum at 40°C and the resulting material was resuspended in 2 ml PBS minus by sonication for 10 seconds at 40°C to a final suspension of 50 mg lipid and 50 ug antigen/ml.
D. MPV. Liposome D-T
This liposome was prepared as described above for the D-E liposome except that the ethanol was replaced by Tert-butyl-alcohol (TBA) . E. Liposome. H-D mixture
This preparation was done by mixing 0.5 ml of SPLV, liposome D made of DMPC/CHOL and 0.5 ml of empty MLV liposome H made of
CHS. , as described below. The mixture contained 75 mg tris lipids (50 mg CHS , 25 mg DMPC/CHOL) and 25 ug PBl
LiXS antigen/ml.
F. MLV. Liposome H
Empty CHS , liposomes were prepared by hydration of 100 mg CHS , with 1 ml of PBS minus for 2 hr. at room temperature and intermittent vigorous vortex-mixing. Separately, a fresh dialysate of PBl antigen in 1% acetic acid was diluted in PBS minus at 100 ug antigen/ml and 0.5 ml of this solution was immediately mixed with 0.5 ml of empty CHS , liposomes to allow affinity association between vesicles and antigen. The mixture contained 50 mg lipid and 50 ug antigen/ml.
G. Control of Complete Freund Adjuvant (CFA) and dialyzed (d) antigen
Equal 1 ml volumes of complete Freund's adjuvant (CFA) oil and PBl dialyzed against 1% acetic acid and further diluted in 1% acetic acid to 100 ug antigen/ml, were mixed thoroughly and emulsified by repeated passage through a 16G needle connecting two 5 ml syringes. This emulsion contained 50 ug antigen/ml.
H. Control of CFA and non-dialvzed antigen
This emulsion was prepared as described above except that PBl antigen was not dialyzed.
I. Control of non-dialyzed antigen in solution
PBl ata concentration of 0.77 mg/ml in a 50 mM phosphate buffer, pH 6.8, containing 2 mM EDTA, 10 mM DTT and 8 M urea was diluted in PBS minus to 50 ug/ml. J. Control of dialyzed antigen in solution
Stock PBl solution (0.77mg/ml in a 50 mM phosphate buffer, pH _ 6.8, containing 2 mM EDTA, 10 mM dithiothetrol and 8 m urea) was dialyzed against 1% acetic acid (pH 2.5) and the dialyzed antigen diluted before use in PBS minus at 50 ug/ml.
Immunization: Balb/C (Jakson), 6-8 weeks old female mice were inoculated intramuscularly ("IM") at day 0, 15, 35 and blood was taken at day 0, 14, 28, 49, 63 and 79. The dose of antigen was 5 ug/0.1 ml/inoculum except group E which received 2.5 ug.
Determination of humoral immune response: PBl specific antibody (IgG and IgM) was determined by a standard ELISA procedure.
Data presented in Table 1 indicated that the adjuvant effect provided by CHS liposomes with affinity associated immunogen (group F) was similar with that provided by complete Freund's adjuvant "CFA" (groups G and H), a potent but highly toxic adjuvant.
Out of six liposomal formulations, five induced a positive response in all mice tested 49 days or more after primary inoculation, indicating an enhancement by liposomes of the secondary IgG memory response and involvement of helper T-cells. The magnitude of the response, however, was highly dependent on the nature of liposome formulation and varied from low (groups A, B, C), medium (group E) and high (group F).
Since the dose of antigen in group E was 2.5 ug/0.1 ml/inoculum
(rather than 5 ug) the adjuvant effect provided by this formulation was probably underestimated. Both the original and acid dialyzed PBl in PBS minus were weak immunogens (group I and J). In contrast, the CHS liposome affinity associated preparation (group F) induced a high antibody response and in addition no or minimal reaction #s observed at the site of inoculation. TABLE 2
In order to compare the effect of CHS affinity associated liposomes with that of Alum, a standard adjuvant used in vaccines for humans, group of five mice were immunized with 20, 5, 1.25 and 0.31 ug PBl in either Alum or CHS formulation.
The amount of Alum was kept constant at 0.4 mg/ml of physiological saline (USP). The CHS liposome-PBl formulations were prepared as described previously (group F, table 3). A formulation containing 50 ug antigen/ml was further diluted in a suspension of empty CHS liposomes in PBS minus such that the amount of lipids was kept constant at 50 mg/ml and the antigen decreased to 2.5, 1.25 and 0.31 ug/ml. Another CHS formulation at 50 mg lipid and 20 ug antigen was subjected to shearing force via vortexing and sonicating at low energy intermittently for 2 hours at room temperature in order to achieve a suitable suspension.
The results (Table 2) indicated that the CHS- liposome with affinity associated immunogen was a much stronger adjuvant than Alum. The difference in immune titers were in general higher than one order of magnitude with the exception of lowest dose (0.31 ug PBl) in which the response remained low.
In addition, the comparison between CHS formulation and CFA formulation both at 1.25 ug antigen reinforced the conclusion of the previous experiment (Table 1) indicating a higher antibody response by CHS affinity associated liposomes than by CFA.
Vaccines are conveniently administered in a dosage form. A "dosage form" will be understood to mean any pharmaceutically form of administering a vaccine including subcutaneous, oral, intramuscular, and ocular administration and utilizing vaccines in live, attenuated or synthetic or bioengineered or partial forms along with adjuvants and optionally immunomodulators such as cytokines. The combinations of the foregoing elements are prepared so that the dosage form is adapted to produce a therapeutically effective immune response in the subject animal including a human as easily and effectively as possible. The dosage forms including liposomal dosage forms resulting from the method of the present invention can be used therapeutically in mammals, including a human, in the treatment of infections or conditions which require the delivery of immunogen in its bioactive form. Such conditions include but are not limited to disease states such as those that can be treated or prevented with vaccines.
Dosage forms also include use of adjuvant as well as vaccine incorporated into gel such as aluminum gels, lipids such as Lipid A, liquid crystals, powders, precipitates and solutions. In particular embodiments the dosage form can be a unit dosage form configured and adapted to a single administration.
The mode of administration of the dosage form may determine the sites and cells in the organism to which the dosage form will be delivered. The dosage forms including liposomal dosage forms of the present invention can be administered alone but will generally be administered In admixture with a pharmaceutical carrier selected with regard to the intended route of administration and standard pharmaceutical practice. The dosage forms may be injected intramuscuarly, subcutaneously or intradermally. The dosage forms may also be administered via oral routes routes. For parenteral administration, they can be used, for example, in the form of a sterile aqueous solution which may contain other solutes, for example, enough salts or glucose to make the solution isotonic. Other uses, depending upon the particular properties of the preparation, may be envisioned by those skilled in the art.
For administration to humans in the preventive or curative treatment of disease states responding to vaccine based therapy, the prescribing physician will ultimately determine the appropriate therapeutically effective dosage for a given human subject, and this can be expected to vary according to the age, weight, and response of the individual as well as the nature and severity of the patient's disease. EXAMPLE 1
Affinity Attachment of Antigen to Liposome
PBl is a positively charged peptide and thus dialysis of PBl from stock solution was performed against a 1% acetic acid at a pH of 2.5. Upon dialysis the PBl remained soluble for several hours in 1% acetic acid. It was noted that, were the pH to approach neutral pH, the PBl antigen would rapidly preciptiate. Affinity attachment of the PBl to liposomes was accomplished by utilizing a liposome of reciprocal (here negative) charge. CHS . liposomes having a negative charge were used, suspended in neutral (pH 7.2) buffer and then mixed with the PBl in 1% acetic acid solution. Care was taken to avoid CHS , precipitation as CHS , liposome suspension is rapidly precipitated by solutions below about pH 5. Therefore in order to maintain the integrity of the liposome suspension, upon addition of the PBl in acetic acid solution the the pH of the mixture was maintained above 5. Affinity association occured upon mixing of liposomes and antigen.
TABLE 1 SERUM ANTIBODY TITERS AFTER IMMUNIZATION OF BALB/C MICE WITH LIPOSOMAL PB1 FORMULATIONS
Figure imgf000022_0001
a/ Number of responding mice per group. Mean titer was calculated from the individual titers of the responding mice only. TABLE 2 SERUM ANTIBODY TITERS AFTER IMMUNIZATION OF BALB/C MICE WITH VARIOUS DOSES OF PB.1 IN LIPOSOMAL AND ALUM FORMULATIONS
Figure imgf000023_0001
a/ Number of responding mice per group. Mean titer was calculated from the individual titers of the responding mice only.

Claims

We Claim:
1. A composition comprising a liposome in affinity association with an externally disposed antigen and optionally comprising an adjuvant.
2. The composition of Claim 1 wherein said adjuvant comprises aluminimum hydroxide or Lipid A.
3. The composition of claim 1 wherein the antigen is hydrophilic or lipophilic.
4. The composition of claim 1 wherein the affinity is electrostatic, hydrogen bonding or configurational stickiness.
5. The composition of Claim 1 wherein the liposome comprises cholesterol hemisuccinate, phosphatidylserine, phosphatidic acid, phosphatidylglycerol.
6. The composition of Claim 1 wherein the liposome comprises aminodiglyceride, glyceridecholine, sterylamine, trimetylsterylamine, dioctadecyl trimethylamormio propane or any bilayer forming amphiphile having a charged hydrophilic moiety.
7. The composition of Claim 1 wherein the antigen is nonpartitionin .
8. The composition of Claim 1 wherein the antigen comprises HIV or fragment thereof optionally PBl.
9. The composition of Claim 8 wherein the liposome comprises
CHS .. . sodium
10. The composition of Claim 1 wherein the antigen comprises peptide.
11. The composition of Claim 1 wherein the antigen comprises influenza or fragments thereof.
12. The composition of Claim 1 wherein the antigen comprises herpes, haemophilus B, malaria or fragments thereof.
13. A method of producing a vaccine composition comprising a liposome in affinity association with an externally disposed antigen comprising the step contacting in an aqueous solution said antigen said liposome reciprocal affinity to said antigen, such that the antigen and the liposome forms an affinity association, and optionally, removing non-affinity associated antigen.
14. The method of Claim 13 wherein the affinity between antigen and liposome is electrostatic, hydrogen bonding or configurational stickiness.
15. The method of Claim 13 wherein the antigen is nonpartitionin .
16. The method of Claim 13 wherein the liposome is of net negative charge and the antigen of net positive charge, or wherein the liposome is of net positive charge and the antigen of net negative charge.
17. The method of Claim 13 wherein the liposome comprises CHS.
18. The method of Claim 13 wherein the antigen comprises PBl.
PCT/US1989/003657 1988-08-25 1989-08-24 Affinity associated vaccine WO1990001947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900700840A KR900701316A (en) 1988-08-25 1990-04-25 Affinity binding vaccine

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US23670188A 1988-08-25 1988-08-25
US23670288A 1988-08-25 1988-08-25
US236,701 1988-08-25
US236,702 1988-08-25
USNOTFURNISHED 2002-02-28

Publications (1)

Publication Number Publication Date
WO1990001947A1 true WO1990001947A1 (en) 1990-03-08

Family

ID=26930035

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US1989/003657 WO1990001947A1 (en) 1988-08-25 1989-08-24 Affinity associated vaccine
PCT/US1989/003658 WO1990001948A1 (en) 1988-08-25 1989-08-24 Influenza vaccine and novel adjuvants

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US1989/003658 WO1990001948A1 (en) 1988-08-25 1989-08-24 Influenza vaccine and novel adjuvants

Country Status (2)

Country Link
KR (1) KR900701316A (en)
WO (2) WO1990001947A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010198A1 (en) * 1992-11-02 1994-05-11 Yves Claude Nicolau Method of reducing multidrug resistance in cells and tissues
US6096307A (en) * 1997-12-11 2000-08-01 A. Glenn Braswell Compositions for immunostimulation containing Echinacea angustofolia, bromelain, and lysozyme
JP2002537271A (en) * 1999-02-17 2002-11-05 シーエスエル、リミテッド Immunogenic complexes and methods related thereto
EP1239876A4 (en) * 1999-11-19 2003-05-02 Csl Ltd Vaccine compositions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4136553A1 (en) * 1991-11-06 1993-05-13 Biotechnolog Forschung Gmbh Vaccine against mucous membrane exciter and manufacturing process
AU2007258874B2 (en) 2006-06-15 2013-11-14 Seqirus UK Limited Adjuvant-sparing multi-dose influenza vaccination regimen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148876A (en) * 1975-09-29 1979-04-10 Burroughs Wellcome Co. Biological preparations
US4721612A (en) * 1984-04-12 1988-01-26 The Liposome Company, Inc. Steroidal liposomes
US4826687A (en) * 1985-06-06 1989-05-02 National Institute Of Health Influenza vaccine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1502774A (en) * 1974-06-25 1978-03-01 Nat Res Dev Immunological preparations
HU184141B (en) * 1979-12-27 1984-07-30 Human Oltoanyagtermelo Adjuvant particles compositions containing said particles and biologically active substances adsorbed thereon and a process for the preparation thereof
US4522803A (en) * 1983-02-04 1985-06-11 The Liposome Company, Inc. Stable plurilamellar vesicles, their preparation and use
US4522811A (en) * 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US4745074A (en) * 1984-02-23 1988-05-17 Cooper-Lipotech Partnership Blood-fluid composition for cell lysis system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148876A (en) * 1975-09-29 1979-04-10 Burroughs Wellcome Co. Biological preparations
US4721612A (en) * 1984-04-12 1988-01-26 The Liposome Company, Inc. Steroidal liposomes
US4826687A (en) * 1985-06-06 1989-05-02 National Institute Of Health Influenza vaccine

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IMMUNOLOGY LETTERS, Volume 14, issued in 1986/1987, DAVIS D. et al., "Liposomes as Adjuvants with Immunopurified Tetanus Toxoid: the Immune Response", pages 346-347. *
IMMUNOLOGY, Volume 61, issued in 1987, DAVIS D. et al., "Liposomes as Adjuvants with Immunopurified Tetanus Toxoid: the Influence of Liposomal Characteristics", pages 230 and 232. *
INFECTION AND IMMUNITY, Volume 56, issued in 1988, RICHARDS R., "Liposomes, Lipid A and Aluminum Hydroxide Enhance the Immune Response to a Synthetic Malaria Sporozite Antigen", page 684. *
OSTRO M., ed., "Liposomes: From Biophysics to Therapeutics", published 1987, (MARCEL DEKKER, NEW YORK), ALVING C., "Liposomes as Carriers for Vaccines", pages 195-201. *
VACCINE, Volume 4, issued in 1986, ALVING C., "Effectiveness of Liposomes as Potential Carriers of Vaccines: Applications to Cholera Toxin and Human Malaria Sporozite Antigen", pages 166-167. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010198A1 (en) * 1992-11-02 1994-05-11 Yves Claude Nicolau Method of reducing multidrug resistance in cells and tissues
US6096307A (en) * 1997-12-11 2000-08-01 A. Glenn Braswell Compositions for immunostimulation containing Echinacea angustofolia, bromelain, and lysozyme
JP2002537271A (en) * 1999-02-17 2002-11-05 シーエスエル、リミテッド Immunogenic complexes and methods related thereto
EP1150710A4 (en) * 1999-02-17 2003-09-03 Csl Ltd Immunogenic complexes and methods relating thereto
AU783344B2 (en) * 1999-02-17 2005-10-20 Csl Limited Immunogenic complexes and methods relating thereto
EP2204186A1 (en) * 1999-02-17 2010-07-07 Csl Limited Immunogenic complexes and methods relating thereto
EP1239876A4 (en) * 1999-11-19 2003-05-02 Csl Ltd Vaccine compositions

Also Published As

Publication number Publication date
KR900701316A (en) 1990-12-01
WO1990001948A1 (en) 1990-03-08

Similar Documents

Publication Publication Date Title
AU631377B2 (en) Affinity associated vaccine
US5916588A (en) Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use
US6090406A (en) Potentiation of immune responses with liposomal adjuvants
US5100662A (en) Steroidal liposomes exhibiting enhanced stability
EP0356340B1 (en) Affinity associated vaccine
CA2086831C (en) Immunostimulating and immunopotentiating reconstituted influenza virosomes and vaccines containing them
CA2258878C (en) Liposomal influenza vaccine composition and method
JP5519477B2 (en) Vaccine for modulating between T1 and T2 immune responses
CA2169297C (en) Protein- or peptide-cochleate vaccines and methods of immunizing using the same
EP0542923B1 (en) Liposomes that provide thymic dependent help to weak vaccine antigens
US5897873A (en) Affinity associated vaccine
CA2157125A1 (en) Vaccine delivery system and shelf-stable precursor solution for remote encapsulation of active ingredients
AU2002309141A1 (en) Vaccine for modulating between T1 and T2 immune responses
WO1990001947A1 (en) Affinity associated vaccine
Kramp et al. Liposomal enhancement of the immunogenicity of adenovirus type 5 hexon and fiber vaccines
Dijkstra et al. Interaction of liposome-incorporated lipopolysaccharide with responsive cells
CA1334165C (en) Affinity associated vaccine
Gregoriadis et al. The immunoadjuvant action of liposomes: role of structural characteristics
KR0137360B1 (en) Influenza Vaccines and New Supplements
Dijkstra et al. Volume I: Molecular Biochemistry and Cellular Biology 329
JP2004161781A (en) Oral vaccine
HK1008304B (en) Liposomes that provide thymic dependent help to weak vaccine antigens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU DK JP KR