USRE42626E1 - Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement - Google Patents
Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement Download PDFInfo
- Publication number
- USRE42626E1 USRE42626E1 US10/629,788 US62978898A USRE42626E US RE42626 E1 USRE42626 E1 US RE42626E1 US 62978898 A US62978898 A US 62978898A US RE42626 E USRE42626 E US RE42626E
- Authority
- US
- United States
- Prior art keywords
- bone
- threaded shank
- head
- shank
- anchoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7049—Connectors, not bearing on the vertebrae, for linking longitudinal elements together
- A61B17/7052—Connectors, not bearing on the vertebrae, for linking longitudinal elements together of variable angle or length
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7004—Longitudinal elements, e.g. rods with a cross-section which varies along its length
- A61B17/7007—Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit around the screw or hook heads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/701—Longitudinal elements with a non-circular, e.g. rectangular, cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7002—Longitudinal elements, e.g. rods
- A61B17/7014—Longitudinal elements, e.g. rods with means for adjusting the distance between two screws or hooks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7035—Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
- A61B17/7037—Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7001—Screws or hooks combined with longitudinal elements which do not contact vertebrae
- A61B17/7041—Screws or hooks combined with longitudinal elements which do not contact vertebrae with single longitudinal rod offset laterally from single row of screws or hooks
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/70—Spinal positioners or stabilisers, e.g. stabilisers comprising fluid filler in an implant
- A61B17/7047—Clamps comprising opposed elements which grasp one vertebra between them
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/80—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
- A61B17/8061—Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates specially adapted for particular bones
Definitions
- the subject of the present invention is a spinal, particularly dorso-lumbar, osteosynthesis device.
- the invention is aimed at a device of the type comprising at least two bone-anchoring elements for anchoring into bone structures of the spine, a member for longitudinally connecting the bone-anchoring elements, and shackles for connecting the bone-anchoring elements and the members for connecting the screws; each bone-anchoring element comprises an anchor for anchoring into the bone, a head for grasping by a screwing tool, a threaded shank extending the head for grasping and a tightening element which can be mounted on this shank to lock together the connector, the longitudinal connecting member and the corresponding bone-anchoring element.
- Multivertebral, particularly dorso-lumbar, osteosynthesis combines the use of screws or hooks connected together by plates or rods.
- longitudinal connecting members such as rods for example also allows the bone-anchoring elements, for example screws, to slide along the principal axis of the longitudinal connecting member, and allows screws which diverge in the horizontal plane to be brought onto the same antero-posterior line, and this is by virtue of derotation effects imparted on the rods about an apicocaudal axis, that is to say in the horizontal plane.
- the adjusting of the pedicle-screws/rod pair may lead to very high stresses in the system before it is definitely locked.
- Pedicle screws in which the threaded shank is extended rearwards have also been developed, so that the descent of the rod as far as the vertebral implantation base of the screw can be guided, segment by segment.
- Reduction of a deformation with a large radius, under such conditions, is in three planes, but is not in any way sequential, and can even less be said to be selective.
- One vertebra which is off-set in isolation in the frontal sagittal and horizontal planes has to be brought into a condition such that it can undergo reduction in just one plane if necessary, or even with a view to be secured as it is to the adjacent segment under no stress other than the stress induced by neutralization.
- the head of a screw may be capped by a U-shaped element thus dubbed a “tulip” which acquires mobility about the principal axis of the screw.
- the surgeon is thus freed of this enormous burden and can implant the pedicle screws along the axis imposed by the topography of the pathological vertebra.
- the threaded shank has a ball end for articulation in a housing of a spherical cup of the head for grasping, allowing the shank to be orientated in many directions, and allowing the connecting shackle to be positioned to suit the configuration of the vertebral segment receiving the bone-anchoring elements, and the ball and the cup have respective centres of rotation which are separated by a distance, giving the device, when tightened using the tightening element, by bearing against the upper part of the head for grasping, a function of returning the bone-anchoring element by transverse force, the connector shackle for this purpose having a spherical bearing surface articulated to a portion of the spherical surface of the cup of the head of the bone-anchoring element.
- the connecting shackle Depending on the physical characteristics of the connecting shackle, either the surface contact immobilizes the bone-anchoring element and allows the orientation of the bone-anchoring element to be maintained, or the connecting shackle bears against the upper part of the head for grasping, giving the device, upon tightening of the element, a transverse return function.
- the device according to the invention allows the implant to be orientated in many directions using a system which requires a very small amount of space, and allows the bone-anchoring elements to be used either with rods or with plates.
- the threaded shank and the connecting shackle are equipped with means for immobilizing the shank and its ball in terms of rotation once the threaded shank has been introduced into the corresponding through-hole through the shackle.
- the said means comprise at least one rotation-stopping geometry formed between the ball and the contiguous end of the threaded shank, and a second rotation-stopping geometry formed on the interior edge of the hole in the shackle, this second geometry being designed to press against the first geometry once the connecting shackle has been slid along the threaded shank.
- the device also comprises at least one bone-anchoring element comprising an anchoring shape, a head with a transverse collar and a shape for grasping, for screwing and a threaded shank extending the head, the assembly being all of one piece.
- FIG. 1 is a partial perspective view prior to assembly, on an enlarged scale, of a first embodiment of the spinal osteosynthesis device according to the invention.
- FIG. 2 is a partial perspective view of the device of FIG. 1 , showing, on an enlarged scale, a bone-anchoring element with two screw threads and a corresponding shackle for connection to a vertebral rod, not depicted, it being possible for this bone-anchoring element to be, in particular, a screw or a hook.
- FIG. 3 is a perspective view on an enlarged scale of the device of FIGS. 1 and 2 assembled and fitted to a vertebral segment.
- FIG. 4 is an anterolateral elevation view of a dorsolumbar segment with an osteosynthesis device according to the invention, during fitting, some of the connecting shackles with which a vertebral rod is equipped being slipped over the threaded shanks of the corresponding bone-anchoring elements which have already been anchored in the vertebral bony structures.
- FIG. 5 is a posterior view of the dorso-lumbar segment of FIG. 4 and of the corresponding device, installed.
- FIG. 6 is anterolateral view of the device of FIG. 5 , showing the lumbar lordosis provided by bending the vertebral rod.
- FIG. 7 is a plan view of a one-piece bone-anchoring element without ball, with which the osteosynthesis device according to the invention may be equipped.
- FIG. 8 is a view in elevation from behind of a device with a plate for connecting the bone-anchoring elements and mounted on a dorso-lumbar segment.
- FIG. 9 is a view in elevation in a sagittal plane of the device with a plate of FIG. 8 , comprising a bone-anchoring element like the one in FIG. 6 .
- FIG. 10 is a view partly in elevation and partly in section on an enlarged scale of the assembly of a bone-anchoring element, a connecting shackle and a tightening element according to the embodiment of FIGS. 1 to 4 , for returning the bone-anchoring element to the axis of the tightening element.
- FIG. 11 is a diagrammatic view in elevation on a smaller scale than FIG. 10 , of the whole of the corresponding device, illustrating the angular return of the bone-anchoring element to the axis of the tightening element and of the threaded rod during tightening.
- FIG. 12 is a part view similar to FIG. 10 of an alternative form of the device, which is modified so as practically not to provide any appreciable angular return of the bone-anchoring element during tightening.
- FIG. 13 is a perspective view on an enlarged scale, of a second embodiment of the connecting shackle of FIG. 2 .
- FIG. 14 is a view in elevation on an enlarged scale of a second embodiment of a bone-anchoring element of the device.
- FIG. 15 is a view partly in elevation and partly in section of one embodiment of a system for transversely connecting two bone-anchoring elements, with which the device of FIGS. 1 to 14 may be equipped.
- FIG. 16 is a view from above of the transverse connecting system of FIG. 15 .
- the spinal osteosynthesis device illustrated in FIGS. 1 to 6 comprises several bone-anchoring elements, consisting, in the example described, of elements 1 for anchoring into the bone of the respective vertebrae, a member for longitudinally connecting the bone-anchoring elements 1 , which member consists of a vertebral rod 2 , and shackles 3 for connecting the bone-anchoring elements 1 to the vertebral rods 2 , there being one shackle 3 per bone-anchoring element 1 .
- Each element 1 comprises a tapered bone-anchoring threaded shank 4 , a head 5 for grasping with a screwing tool 6 , a mechanical threaded shank 7 extending the head 5 .
- the device is supplemented by a nut 8 which can be screwed onto the threaded shank 7 to lock together the connecting shackle 3 , the vertebral rod 2 and the corresponding bone-anchoring element 1 .
- the head 5 for grasping has a shape which can cooperate with a screwing tool 6 , for example a hexagonal outline as depicted, designed to cooperate with a female hexagonal cavity 9 of the tool 6 .
- the shank 7 has a ball end 11 for articulation in a hemispherical housing 12 of the head 5 , in which housing this ball 11 can be held by various assembly techniques, particularly by crimping, welding, etc.
- the approximately hemispherical housing 12 allows the ball 11 to turn and be mobile in all planes, thus allowing the threaded shank 7 to be orientated in many directions.
- these means comprise at least one male rotation-stopping geometry 13 formed on a collar 14 arranged between the ball 11 and the contiguous end of the shank 7 , and at least one second, female, rotation-stopping geometry illustrated as a flat 15 formed on the interior edge of the hole 10 in the shackle 3 .
- This second flat 15 is designed to press against the first flat 13 once the shackle 3 has been slid along the threaded shank 7 .
- the collar 14 thus has two diametrically opposed rotation-stopping geometries 13 , just one of these geometries 13 being visible in the drawings.
- the collar 14 thus equipped with the two geometries 13 can fit into the corresponding connecting shackle 3 if the fixture is being used with a vertebral rod 2 or into a plate 16 having similar rotation-stopping geometries (edges of the holes 38 , 41 , 43 in FIGS. 8 and 9 ) 13 ( FIGS. 8 and 9 ) if a plate 16 is being used in place of the rod 2 as a member for longitudinally connecting the screws 1 .
- the shank 7 has a first cylindrical threaded portion 17 , a narrowed portion 18 constituting a break initiator, a second cylindrical threaded portion 19 extended by a plain end part 21 constituting a male shape with an appropriate profile, for example a half-moon profile with a rotation-stopping geometry, hereinafter known as the flat 22 ( FIG. 2 ).
- This male shape 21 is designed to be able to cooperate with a complementary female shape 20 of the tool 6 formed in the end of a sleeve 24 mounted to slide axially inside a socket 25 at the end of which the hexagonal female cavity 9 is arranged ( FIG. 1 ).
- the narrowed portion 18 preferably has a rotation-stopping geometry identical to the fiat 22 . This arrangement allows the ball 11 to be immobilized in terms of rotation during an operation of withdrawing the implant, using the tool 6 .
- the shank 7 is broken into two parts so that the threaded portion 19 can be removed.
- the second portion 19 having the function only of guiding the descent of the nut 8 as far as the shackle 3 ( FIG. 3 ).
- the fact that the male 22 and female 23 flats of the sleeve 24 are fitted together immobilizes the ball 11 in its housing 12 in terms of rotation.
- the connecting shackle 3 consists of two branches 26 , 27 bent one over onto the other and separated by a longitudinal slit 28 , the hole 10 for the passage of the shank 7 thus being formed in the branches 26 , 27 one on each side of the slit 28 .
- the two branches 26 , 27 are connected by one or two rounded connecting pieces 29 which delimit one or two cylindrical housings 31 into which one or two cylindrical rods 2 can be introduced ( FIG. 13 ).
- FIGS. 10 and 11 illustrate in greater detail the embodiment of the device which has just been described with reference to FIGS. 1 to 3 .
- the sphere or ball 11 of the bone-anchoring element 1 and the spherical cup 57 have respective centres of rotation R 1 and R 2 which are distinct and separated by a distance S.
- the surface of the cup 57 of the head 5 is hemispherical and interrupted in its polar region to receive the ball 11 , and the associated spherical surface 55 of the shackle 3 , with the same radius of curvature as the surface of the hemispherical cup 57 , completely covers the latter.
- the pressing on the upper part of the head 5 for grasping gives the connecting shackle 3 /bone-anchoring element 1 system a function of returning the latter to the axis XX of the tightening nut 8 and of the threaded shank 7 during the tightening manoeuvre using the element 8 .
- the element 8 nut for example
- the skirt 8 a of which rests against the conical wall 56 of the recess in the nut 8 produces a tensile force F ( FIG. 10 ) which causes a torque C ( FIG. 11 ) which returns the bone-anchoring element 4 towards the longitudinal axis XX of the tightening element 8 and of the threaded shank 7 as the result of a force which is orthogonal to this axis.
- the spherical surface 55 a only partially covers the spherical surface of the cup 57 because the spherical bearing surface 55 a is interrupted significantly before the equator of the cup 57 .
- the tensile force F produced by tightening the nut 8 immobilizes the connecting shackle 3 by surface contact, while at the same time maintaining the orientation of the bone-anchoring element 1 .
- FIG. 13 illustrates one embodiment of the connecting shackle 3 a in which this shackle comprises, on each side of the hole 10 , two rounded connecting pieces 29 , 29 a delimiting two respective housings 31 , 31 a designed to receive longitudinal connecting members such as vertebral rods.
- FIG. 14 illustrates a second embodiment of the bone-anchoring element, here consisting of a blade-type hook 60 replacing the threaded shank 4 of the previous embodiment, the remainder of the device incidentally being similar to the one in FIGS. 1 and 2 , particularly the head 5 for grasping using a screwing tool 6 and the threaded shank 7 .
- the blade-type hook 6 consists, in the way known per se, of two pincers 60 a, 60 b with curved ends and adjustable relative separation.
- FIGS. 15 and 16 illustrate one possible embodiment of a system for transversely connecting the bone-anchoring elements ( 1 or 31 or 60 ).
- This connecting system is formed of a pair of flared dished elements 58 , 59 , the bottoms of which are pierced with an opening 66 for the passage of the threaded shank 7 .
- Each dished element 58 , 59 is made of one piece with a respective transverse tab 61 , 62 , the relative position and therefore the separation between the dished elements being adjustable. Adjustment may be achieved for example by means of a screw/nut assembly 63 , 64 passing through an elongate slot 65 in one tab 61 and a tapped hole in the other tab 62 .
- Each dished element 58 , 59 is interposed between a connecting shackle 3 (or 3 a) and a corresponding tightening element 8 which screws into the dished part, resting against its conical wall 67 , 68 via its conical skirt 8 a.
- the ability to orientate the bone-anchoring element 1 with respect to the axis XX, with return ( FIGS. 10 , 11 ) or without angular return ( FIG. 12 ) can also be achieved with a similar geometrically complex cavity made in a plate such as 16 ( FIGS. 8 and 9 , orifice 41 , 43 ).
- the shank 7 is orientated towards the corresponding connector 3 already mounted on a vertebral rod 2 .
- the tool 6 Allows the shank 7 to be immobilized in terms of rotation using the sleeve 24 while the outer socket 25 allows the tightening element 8 to be screwed as far as its position which immobilizes the assembly, the rotation stopping geometry or geometries 13 of the collar 14 pressing against the corresponding rotation-stopping geometry or geometries 15 of the shackle 3 .
- FIG. 4 illustrates a reduction manoeuvre.
- the vertebral rod 2 has been bent in the sagittal plane to reproduce the curvature of the lordosis that it is desired to re-establish.
- the connecting shackles 3 are slipped onto the rod 2 which, via the shackles 3 , is guided step by step but without effort, because the ball 11 of each bone-anchoring element 1 allows the extra-pedicle threaded shank 7 to be directed towards the shackle 3 before the rod 2 starts to be brought into contact with the spinal column—namely in the example depicted a dorso-lumbar segment: sacrum S and lumbar vertebrae L 5 , L 4 , L 3 , L 2 .
- the shackle 3 via its underside meets the appropriately orientated collar 14 , the two rotation-stopping geometries 22 (flats) 23 meeting, thus immobilizing the ball 11 .
- the collar 14 can no longer turn about its axis.
- the implant has become a single-axis implant.
- FIG. 7 illustrates a second bone-anchoring element 31 (in this example, a screw) which can be used in a device which is not an embodiment according to the invention when this device comprises a plate 16 ( FIGS. 8 and 9 ) or connecting shackles 3 .
- a second bone-anchoring element 31 in this example, a screw
- the bone-anchoring element 31 comprises a threaded anchoring rod 32 , a head 33 which has no ball thus making the screw a one-piece screw.
- the head 33 consists of a transverse collar 34 and a shape 35 for grasping for screwing with an appropriate tool, for example a hexagonal shape.
- a threaded shank 7 similar to the one of the bone-anchoring element 1 extends the head 33 , the assembly being of one piece.
- the plate 16 Facing the sacrum S the plate 16 has an end part with a circular hole for the passage of a single bone-anchoring element 31 , and then, in the region of L 5 , has a second elongate portion 39 in which there is formed an oblong hole 41 which allows the position of a bone-anchoring element 31 to be adjusted correspondingly between two positions; finally, the plate 16 has a third part 42 of elongate shape in which there is made an oblong passage 43 delimiting three possible positions for the bone-anchoring element 1 depending on the adjustment needed, by virtue of three cut-outs formed on the edges of the passage 43 .
- the plate 16 which is intended for three spinal segments or stages, S, L 5 , L 4 , for example, may be replaced with a plate suited to a different number of stages.
- just one bone-anchoring element is multiaxial, and therefore has a ball 11 , the other bone-anchoring elements 31 being monoaxial.
- Each hole ( 41 . . . ) in the plate 16 may have the same profile as the hole 10 in the connecting shackle 3 for the passage of the bone-anchoring element ( FIG. 10 ).
- This profile makes it possible to fulfil a function of returning the bone element towards the longitudinal axis of the tightening element and of the threaded shank 7 by means of a force orthogonal to this axis.
- the collar 34 located in the extension of the intra-pedicle portion of the bone-anchoring element 1 is stationary ( FIGS. 8 and 9 ). It may beneficially provide good support against the vertebra using a so-called “bracket” effect, whereas a bone-anchoring element 1 can beneficially be used to reduce, at segment level, an angle between two contiguous boney structures of the spine.
- the multi-axis screw 1 is left free to move at the beginning of the fitting of the tightening element 8 along the threaded shank 7 .
- the sleeve 24 with its half-moon shape 23 immobilizes the ball 11 .
- the bone-anchoring element 1 is thus positioned in one of the three orifices of the oblong hole 43 .
- the prebending of the plate 16 allows the vertebra L 4 to reposition itself in lordosis with respect to the underlying vertebra, without compromising the locking of the plate 16 /bone-anchoring element 1 pair, because of the tolerance afforded by the ball 11 .
- the spinal osteosynthesis device according to the invention exhibits the following advantages:
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Neurology (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IES970411 | 1997-06-03 | ||
| IE970411A IES970411A2 (en) | 1997-06-03 | 1997-06-03 | Pluridirectional and modulable vertebral osteosynthesis device of small overall size |
| PCT/FR1998/001119 WO1998055038A1 (fr) | 1997-06-03 | 1998-06-03 | Dispositif d'osteosynthese vertebrale pluridirectionnelle et modulable, a encombrement reduit |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/445,176 Reissue US6267765B1 (en) | 1997-06-03 | 1998-06-03 | Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| USRE42626E1 true USRE42626E1 (en) | 2011-08-16 |
Family
ID=11041500
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/445,176 Ceased US6267765B1 (en) | 1997-06-03 | 1998-06-03 | Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement |
| US10/629,788 Expired - Lifetime USRE42626E1 (en) | 1997-06-03 | 1998-06-03 | Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/445,176 Ceased US6267765B1 (en) | 1997-06-03 | 1998-06-03 | Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US6267765B1 (fr) |
| EP (3) | EP1415602B1 (fr) |
| JP (1) | JP4399554B2 (fr) |
| CA (1) | CA2292748C (fr) |
| DE (3) | DE69839406T2 (fr) |
| ES (3) | ES2229509T3 (fr) |
| IE (1) | IES970411A2 (fr) |
| PT (3) | PT1415602E (fr) |
| WO (1) | WO1998055038A1 (fr) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120123478A1 (en) * | 2009-12-02 | 2012-05-17 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
| US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
| US8613760B2 (en) | 2005-09-30 | 2013-12-24 | Roger P. Jackson | Dynamic stabilization connecting member with slitted core and outer sleeve |
| US20140114358A1 (en) * | 2010-04-05 | 2014-04-24 | David L. Brumfield | Fully-Adjustable Bone Fixation Device |
| US8911479B2 (en) | 2012-01-10 | 2014-12-16 | Roger P. Jackson | Multi-start closures for open implants |
| US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
| US9168069B2 (en) | 2009-06-15 | 2015-10-27 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
| US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
| US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
| US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
| US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
| US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
| US12171470B2 (en) | 2020-07-31 | 2024-12-24 | Mazor Robotics Ltd. | Surgical fixation systems, methods, and devices |
Families Citing this family (283)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7306628B2 (en) | 2002-10-29 | 2007-12-11 | St. Francis Medical Technologies | Interspinous process apparatus and method with a selectably expandable spacer |
| US7201751B2 (en) | 1997-01-02 | 2007-04-10 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device |
| US6652527B2 (en) * | 1998-10-20 | 2003-11-25 | St. Francis Medical Technologies, Inc. | Supplemental spine fixation device and method |
| US6283967B1 (en) | 1999-12-17 | 2001-09-04 | Synthes (U.S.A.) | Transconnector for coupling spinal rods |
| FR2796546B1 (fr) * | 1999-07-23 | 2001-11-30 | Eurosurgical | Connecteur polyaxial pour implant rachidien |
| DE19944120B4 (de) * | 1999-09-15 | 2008-08-28 | Ulrich Gmbh & Co. Kg | Knochenschraube zur winkelvariablen Verbindung mit einem Längsträger |
| AU2006200772B2 (en) * | 2000-06-30 | 2009-04-02 | Stephen Ritland | Polyaxial connection device and method |
| EP1294295A4 (fr) * | 2000-06-30 | 2009-12-23 | Stephen Ritland | Dispositif et procede de connexion polyaxiale |
| US7985247B2 (en) * | 2000-08-01 | 2011-07-26 | Zimmer Spine, Inc. | Methods and apparatuses for treating the spine through an access device |
| US7056321B2 (en) | 2000-08-01 | 2006-06-06 | Endius, Incorporated | Method of securing vertebrae |
| US7833250B2 (en) | 2004-11-10 | 2010-11-16 | Jackson Roger P | Polyaxial bone screw with helically wound capture connection |
| US6554831B1 (en) * | 2000-09-01 | 2003-04-29 | Hopital Sainte-Justine | Mobile dynamic system for treating spinal disorder |
| US7166073B2 (en) | 2000-09-29 | 2007-01-23 | Stephen Ritland | Method and device for microsurgical intermuscular spinal surgery |
| US6692434B2 (en) | 2000-09-29 | 2004-02-17 | Stephen Ritland | Method and device for retractor for microsurgical intermuscular lumbar arthrodesis |
| FR2816195B1 (fr) * | 2000-11-07 | 2003-01-03 | Medicrea | Materiel d'arthrodese vertebrale |
| FR2816196B1 (fr) | 2000-11-07 | 2003-01-03 | Medicrea | Materiel d'arthrodese vertebrale |
| US6802844B2 (en) * | 2001-03-26 | 2004-10-12 | Nuvasive, Inc | Spinal alignment apparatus and methods |
| US6887243B2 (en) | 2001-03-30 | 2005-05-03 | Triage Medical, Inc. | Method and apparatus for bone fixation with secondary compression |
| US6511481B2 (en) | 2001-03-30 | 2003-01-28 | Triage Medical, Inc. | Method and apparatus for fixation of proximal femoral fractures |
| FR2823095B1 (fr) * | 2001-04-06 | 2004-02-06 | Ldr Medical | Dispositif d'osteosynthese du rachis et procede de mise en place |
| US7235079B2 (en) | 2004-11-18 | 2007-06-26 | Acumed Llc | Composite bone fasteners |
| US10258382B2 (en) | 2007-01-18 | 2019-04-16 | Roger P. Jackson | Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord |
| US8292926B2 (en) | 2005-09-30 | 2012-10-23 | Jackson Roger P | Dynamic stabilization connecting member with elastic core and outer sleeve |
| US8353932B2 (en) | 2005-09-30 | 2013-01-15 | Jackson Roger P | Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member |
| US7862587B2 (en) | 2004-02-27 | 2011-01-04 | Jackson Roger P | Dynamic stabilization assemblies, tool set and method |
| US10729469B2 (en) | 2006-01-09 | 2020-08-04 | Roger P. Jackson | Flexible spinal stabilization assembly with spacer having off-axis core member |
| DE60238997D1 (de) | 2001-09-28 | 2011-03-03 | Stephen Ritland | Chraube oder haken |
| US7261713B2 (en) * | 2001-10-09 | 2007-08-28 | Synthes (Usa) | Adjustable fixator |
| FR2831048B1 (fr) * | 2001-10-18 | 2004-09-17 | Ldr Medical | Dispositif d'osteosynthese a approche progressive et procede de premontage |
| FR2833151B1 (fr) | 2001-12-12 | 2004-09-17 | Ldr Medical | Implant d'ancrage osseux a tete polyaxiale |
| US7163538B2 (en) * | 2002-02-13 | 2007-01-16 | Cross Medical Products, Inc. | Posterior rod system |
| US20040006342A1 (en) * | 2002-02-13 | 2004-01-08 | Moti Altarac | Posterior polyaxial plate system for the spine |
| ATE476930T1 (de) * | 2002-02-20 | 2010-08-15 | Stephen Ritland | Gerät zur verbindung von stielschrauben |
| FR2838041B1 (fr) * | 2002-04-04 | 2004-07-02 | Kiscomedica | Systeme d'osteosynthese rachidienne |
| US6966910B2 (en) | 2002-04-05 | 2005-11-22 | Stephen Ritland | Dynamic fixation device and method of use |
| EP1585427B1 (fr) | 2002-05-08 | 2012-04-11 | Stephen Ritland | Dispositif de fixation dynamique |
| US6733502B2 (en) * | 2002-05-15 | 2004-05-11 | Cross Medical Products, Inc. | Variable locking spinal screw having a knurled collar |
| US6793678B2 (en) | 2002-06-27 | 2004-09-21 | Depuy Acromed, Inc. | Prosthetic intervertebral motion disc having dampening |
| FR2842093B1 (fr) * | 2002-07-12 | 2005-04-15 | Scient X | Dispositif d'ancrage osseux avec articulation spherique |
| US7955388B2 (en) * | 2006-11-01 | 2011-06-07 | Acumed Llc | Orthopedic connector system |
| AU2005304849B8 (en) | 2002-09-06 | 2009-09-03 | Roger P. Jackson | Helical guide and advancement flange with break-off extensions |
| US8876868B2 (en) | 2002-09-06 | 2014-11-04 | Roger P. Jackson | Helical guide and advancement flange with radially loaded lip |
| US20040098458A1 (en) * | 2002-09-16 | 2004-05-20 | Husain Syed Mohammad Amir | Distributed computing infrastructure including multiple collaborative sessions |
| US7549999B2 (en) | 2003-05-22 | 2009-06-23 | Kyphon Sarl | Interspinous process distraction implant and method of implantation |
| US20080234756A1 (en) * | 2002-11-19 | 2008-09-25 | John Sutcliffe | Pedicle Screw |
| JP4598760B2 (ja) * | 2003-02-25 | 2010-12-15 | リットランド、ステファン | 調整ロッド及びコネクタ機器、並びにその使用方法 |
| JP4427056B2 (ja) * | 2003-03-26 | 2010-03-03 | スイス オーソペディック ソリューションズ ソシエテ アノニム | 骨接合用固定プレート |
| US8540753B2 (en) | 2003-04-09 | 2013-09-24 | Roger P. Jackson | Polyaxial bone screw with uploaded threaded shank and method of assembly and use |
| US6964666B2 (en) * | 2003-04-09 | 2005-11-15 | Jackson Roger P | Polyaxial bone screw locking mechanism |
| US7621918B2 (en) | 2004-11-23 | 2009-11-24 | Jackson Roger P | Spinal fixation tool set and method |
| US7377923B2 (en) | 2003-05-22 | 2008-05-27 | Alphatec Spine, Inc. | Variable angle spinal screw assembly |
| WO2004110247A2 (fr) | 2003-05-22 | 2004-12-23 | Stephen Ritland | Guide intermusculaire pour l'insertion d'un ecarteur et procede d'utilisation |
| US7776067B2 (en) | 2005-05-27 | 2010-08-17 | Jackson Roger P | Polyaxial bone screw with shank articulation pressure insert and method |
| US8092500B2 (en) | 2007-05-01 | 2012-01-10 | Jackson Roger P | Dynamic stabilization connecting member with floating core, compression spacer and over-mold |
| US8936623B2 (en) | 2003-06-18 | 2015-01-20 | Roger P. Jackson | Polyaxial bone screw assembly |
| US8366753B2 (en) | 2003-06-18 | 2013-02-05 | Jackson Roger P | Polyaxial bone screw assembly with fixed retaining structure |
| US7766915B2 (en) | 2004-02-27 | 2010-08-03 | Jackson Roger P | Dynamic fixation assemblies with inner core and outer coil-like member |
| US7967850B2 (en) | 2003-06-18 | 2011-06-28 | Jackson Roger P | Polyaxial bone anchor with helical capture connection, insert and dual locking assembly |
| FR2857850B1 (fr) * | 2003-06-27 | 2005-08-19 | Medicrea International | Materiel d'osteosynthese vertebrale |
| FR2856580B1 (fr) * | 2003-06-27 | 2006-03-17 | Medicrea | Materiel d'osteosynthese vertebrale |
| FR2856579B1 (fr) * | 2003-06-27 | 2006-03-17 | Medicrea | Materiel d'osteosynthese vertebrale et procede de fabrication d'un organe d'ancrage osseux que comprend ce materiel |
| US7731734B2 (en) * | 2003-06-27 | 2010-06-08 | Medicrea Technologies | Vertebral osteosynthesis equipment |
| FR2856581B1 (fr) * | 2003-06-27 | 2005-08-19 | Medicrea | Materiel d'osteosynthese vertebrale |
| US8308772B2 (en) * | 2003-06-27 | 2012-11-13 | Medicrea Technologies | Vertebral osteosynthesis equipment |
| US7875060B2 (en) * | 2003-09-24 | 2011-01-25 | Spinefrontier, LLS | Multi-axial screw with a spherical landing |
| US7905907B2 (en) | 2003-10-21 | 2011-03-15 | Theken Spine, Llc | Internal structure stabilization system for spanning three or more structures |
| US7967826B2 (en) | 2003-10-21 | 2011-06-28 | Theken Spine, Llc | Connector transfer tool for internal structure stabilization systems |
| US11419642B2 (en) | 2003-12-16 | 2022-08-23 | Medos International Sarl | Percutaneous access devices and bone anchor assemblies |
| US7179261B2 (en) | 2003-12-16 | 2007-02-20 | Depuy Spine, Inc. | Percutaneous access devices and bone anchor assemblies |
| US7527638B2 (en) | 2003-12-16 | 2009-05-05 | Depuy Spine, Inc. | Methods and devices for minimally invasive spinal fixation element placement |
| US20060161260A1 (en) * | 2003-12-23 | 2006-07-20 | Gareth Thomas | Total wrist prosthesis |
| US7833251B1 (en) * | 2004-01-06 | 2010-11-16 | Nuvasive, Inc. | System and method for performing spinal fixation |
| FR2865373B1 (fr) * | 2004-01-27 | 2006-03-03 | Medicrea International | Materiel d'osteosynthese vertebrale |
| EP1720468A4 (fr) | 2004-02-27 | 2010-01-27 | Roger P Jackson | Ensemble d'instruments de reduction de tige d'implant orthopedique et methode associee |
| US7160300B2 (en) | 2004-02-27 | 2007-01-09 | Jackson Roger P | Orthopedic implant rod reduction tool set and method |
| US8152810B2 (en) | 2004-11-23 | 2012-04-10 | Jackson Roger P | Spinal fixation tool set and method |
| US9050148B2 (en) | 2004-02-27 | 2015-06-09 | Roger P. Jackson | Spinal fixation tool attachment structure |
| US7547318B2 (en) * | 2004-03-19 | 2009-06-16 | Depuy Spine, Inc. | Spinal fixation element and methods |
| US20070282342A1 (en) * | 2004-03-26 | 2007-12-06 | Alfred Niederberger | Articulated Bone Screw |
| US7524324B2 (en) | 2004-04-28 | 2009-04-28 | Kyphon Sarl | System and method for an interspinous process implant as a supplement to a spine stabilization implant |
| US7854752B2 (en) | 2004-08-09 | 2010-12-21 | Theken Spine, Llc | System and method for dynamic skeletal stabilization |
| US20060052783A1 (en) * | 2004-08-17 | 2006-03-09 | Dant Jack A | Polyaxial device for spine stabilization during osteosynthesis |
| US20060052784A1 (en) * | 2004-08-17 | 2006-03-09 | Zimmer Spine, Inc. | Polyaxial device for spine stabilization during osteosynthesis |
| US20060052786A1 (en) * | 2004-08-17 | 2006-03-09 | Zimmer Spine, Inc. | Polyaxial device for spine stabilization during osteosynthesis |
| EP1627608B1 (fr) * | 2004-08-20 | 2009-05-06 | Stryker Trauma SA | Elément de serrage et élément de joint |
| US7455639B2 (en) | 2004-09-20 | 2008-11-25 | Stephen Ritland | Opposing parallel bladed retractor and method of use |
| US7651502B2 (en) | 2004-09-24 | 2010-01-26 | Jackson Roger P | Spinal fixation tool set and method for rod reduction and fastener insertion |
| US7722654B2 (en) * | 2004-10-05 | 2010-05-25 | Warsaw Orthopedic, Inc. | Spinal implants with multi-axial anchor assembly and methods |
| US7794477B2 (en) * | 2004-10-05 | 2010-09-14 | Warsaw Orthopedic, Inc. | Spinal implants and methods with extended multi-axial anchor assemblies |
| US7572280B2 (en) * | 2004-10-05 | 2009-08-11 | Warsaw Orthopedic, Inc. | Multi-axial anchor assemblies for spinal implants and methods |
| US8128662B2 (en) | 2004-10-20 | 2012-03-06 | Vertiflex, Inc. | Minimally invasive tooling for delivery of interspinous spacer |
| US20090228045A1 (en) * | 2004-10-20 | 2009-09-10 | Stanley Kyle Hayes | Dynamic rod |
| US8273108B2 (en) | 2004-10-20 | 2012-09-25 | Vertiflex, Inc. | Interspinous spacer |
| US20090030465A1 (en) * | 2004-10-20 | 2009-01-29 | Moti Altarac | Dynamic rod |
| US9023084B2 (en) | 2004-10-20 | 2015-05-05 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilizing the motion or adjusting the position of the spine |
| US8425559B2 (en) | 2004-10-20 | 2013-04-23 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
| US8945183B2 (en) | 2004-10-20 | 2015-02-03 | Vertiflex, Inc. | Interspinous process spacer instrument system with deployment indicator |
| US8277488B2 (en) | 2004-10-20 | 2012-10-02 | Vertiflex, Inc. | Interspinous spacer |
| US8613747B2 (en) | 2004-10-20 | 2013-12-24 | Vertiflex, Inc. | Spacer insertion instrument |
| US8012207B2 (en) * | 2004-10-20 | 2011-09-06 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
| US7763074B2 (en) | 2004-10-20 | 2010-07-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
| US8162985B2 (en) | 2004-10-20 | 2012-04-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
| US9161783B2 (en) | 2004-10-20 | 2015-10-20 | Vertiflex, Inc. | Interspinous spacer |
| US8025680B2 (en) * | 2004-10-20 | 2011-09-27 | Exactech, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
| US8409282B2 (en) | 2004-10-20 | 2013-04-02 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
| US9119680B2 (en) | 2004-10-20 | 2015-09-01 | Vertiflex, Inc. | Interspinous spacer |
| US7935134B2 (en) | 2004-10-20 | 2011-05-03 | Exactech, Inc. | Systems and methods for stabilization of bone structures |
| US8152837B2 (en) | 2004-10-20 | 2012-04-10 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
| US8167944B2 (en) | 2004-10-20 | 2012-05-01 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
| US8267969B2 (en) | 2004-10-20 | 2012-09-18 | Exactech, Inc. | Screw systems and methods for use in stabilization of bone structures |
| US8123807B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Systems and methods for posterior dynamic stabilization of the spine |
| US20080262554A1 (en) * | 2004-10-20 | 2008-10-23 | Stanley Kyle Hayes | Dyanamic rod |
| US8226690B2 (en) | 2005-07-22 | 2012-07-24 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for stabilization of bone structures |
| US8123782B2 (en) | 2004-10-20 | 2012-02-28 | Vertiflex, Inc. | Interspinous spacer |
| US8317864B2 (en) | 2004-10-20 | 2012-11-27 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for posterior dynamic stabilization of the spine |
| US8864828B2 (en) | 2004-10-20 | 2014-10-21 | Vertiflex, Inc. | Interspinous spacer |
| US8926672B2 (en) | 2004-11-10 | 2015-01-06 | Roger P. Jackson | Splay control closure for open bone anchor |
| ATE524121T1 (de) | 2004-11-24 | 2011-09-15 | Abdou Samy | Vorrichtungen zur platzierung eines orthopädischen intervertebralen implantats |
| CA2701050A1 (fr) | 2004-12-06 | 2009-07-09 | Vertiflex, Inc. | Instrument d'insertion d'un ecarteur |
| US7578833B2 (en) * | 2004-12-13 | 2009-08-25 | Dr. Robert S. Bray, Jr. | Bone fastener assembly for bone retention apparatus |
| US7601170B2 (en) | 2004-12-13 | 2009-10-13 | Kyphon Sarl | Inter-cervical facet implant and method |
| US7736380B2 (en) | 2004-12-21 | 2010-06-15 | Rhausler, Inc. | Cervical plate system |
| FR2880255B1 (fr) * | 2004-12-30 | 2013-07-05 | Neuro France Implants | Dispositif d'implant pour systeme d'osteosynthese vertebrale posterieure |
| US9339301B2 (en) | 2004-12-30 | 2016-05-17 | Mark A. Barry | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions |
| US7670358B2 (en) * | 2004-12-30 | 2010-03-02 | Barry Mark A | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions |
| US7776072B2 (en) | 2004-12-30 | 2010-08-17 | Barry Mark A | System and method for aligning vertebrae in the amelioration of aberrant spinal column deviation conditions |
| US10076361B2 (en) | 2005-02-22 | 2018-09-18 | Roger P. Jackson | Polyaxial bone screw with spherical capture, compression and alignment and retention structures |
| US7901437B2 (en) | 2007-01-26 | 2011-03-08 | Jackson Roger P | Dynamic stabilization member with molded connection |
| US7828828B2 (en) * | 2005-04-14 | 2010-11-09 | Warsaw Orthopedic, Inc | Intervertebral joint |
| US7794481B2 (en) | 2005-04-22 | 2010-09-14 | Warsaw Orthopedic, Inc. | Force limiting coupling assemblies for spinal implants |
| US7695499B2 (en) * | 2005-04-29 | 2010-04-13 | Warsaw Orthopedic, Inc. | System, devices and method for augmenting existing fusion constructs |
| US7951198B2 (en) * | 2005-05-10 | 2011-05-31 | Acumed Llc | Bone connector with pivotable joint |
| US7862589B2 (en) * | 2005-05-24 | 2011-01-04 | Lanx, Inc. | Facet replacement |
| AU2006269900A1 (en) | 2005-07-19 | 2007-01-25 | Stephen Ritland | Rod extension for extending fusion construct |
| US8523865B2 (en) * | 2005-07-22 | 2013-09-03 | Exactech, Inc. | Tissue splitter |
| US7625394B2 (en) * | 2005-08-05 | 2009-12-01 | Warsaw Orthopedic, Inc. | Coupling assemblies for spinal implants |
| US7628799B2 (en) | 2005-08-23 | 2009-12-08 | Aesculap Ag & Co. Kg | Rod to rod connector |
| EP1767161A1 (fr) * | 2005-09-22 | 2007-03-28 | Zimmer Spine, Inc. | Système de mise en forme d'une tige de fixation spinale |
| US7803174B2 (en) * | 2005-11-04 | 2010-09-28 | Warsaw Orthopedic, Inc. | Dorsal adjusting multi-rod connector |
| US7704271B2 (en) | 2005-12-19 | 2010-04-27 | Abdou M Samy | Devices and methods for inter-vertebral orthopedic device placement |
| US8029545B2 (en) | 2006-02-07 | 2011-10-04 | Warsaw Orthopedic Inc. | Articulating connecting member and anchor systems for spinal stabilization |
| ES2330779T3 (es) * | 2006-02-21 | 2009-12-15 | Stryker Trauma Sa | Elemento de apriete y de articulacion. |
| US8025681B2 (en) | 2006-03-29 | 2011-09-27 | Theken Spine, Llc | Dynamic motion spinal stabilization system |
| US20070288012A1 (en) * | 2006-04-21 | 2007-12-13 | Dennis Colleran | Dynamic motion spinal stabilization system and device |
| US7799055B2 (en) * | 2006-07-07 | 2010-09-21 | Warsaw Orthopedic, Inc. | Minimal spacing spinal stabilization device and method |
| US7959564B2 (en) | 2006-07-08 | 2011-06-14 | Stephen Ritland | Pedicle seeker and retractor, and methods of use |
| US8845726B2 (en) | 2006-10-18 | 2014-09-30 | Vertiflex, Inc. | Dilator |
| US8096996B2 (en) | 2007-03-20 | 2012-01-17 | Exactech, Inc. | Rod reducer |
| US20090082775A1 (en) * | 2006-10-25 | 2009-03-26 | Moti Altarac | Spondylolisthesis reduction system and method |
| US8162990B2 (en) * | 2006-11-16 | 2012-04-24 | Spine Wave, Inc. | Multi-axial spinal fixation system |
| WO2008070863A2 (fr) | 2006-12-07 | 2008-06-12 | Interventional Spine, Inc. | Implant intervertébral |
| JP2010512178A (ja) | 2006-12-08 | 2010-04-22 | ロジャー・ピー・ジャクソン | 動的脊椎インプラントのためのツールシステム |
| US20080147128A1 (en) * | 2006-12-15 | 2008-06-19 | Zimmer Technology, Inc. | Cannulated bone screw and cannulated driver for the implantation thereof |
| US7744632B2 (en) | 2006-12-20 | 2010-06-29 | Aesculap Implant Systems, Inc. | Rod to rod connector |
| US7789895B2 (en) * | 2006-12-26 | 2010-09-07 | Warsaw Orthopedic, Inc. | Sacral reconstruction fixation device |
| US8475498B2 (en) | 2007-01-18 | 2013-07-02 | Roger P. Jackson | Dynamic stabilization connecting member with cord connection |
| US8366745B2 (en) | 2007-05-01 | 2013-02-05 | Jackson Roger P | Dynamic stabilization assembly having pre-compressed spacers with differential displacements |
| US8012177B2 (en) | 2007-02-12 | 2011-09-06 | Jackson Roger P | Dynamic stabilization assembly with frusto-conical connection |
| WO2008130564A1 (fr) | 2007-04-16 | 2008-10-30 | Vertiflex Inc. | Espaceur interspinal |
| CA2690038C (fr) | 2007-05-31 | 2012-11-27 | Roger P. Jackson | Element de raccord a stabilisation dynamique avec noyau solide precontraint |
| US8162987B2 (en) | 2007-06-05 | 2012-04-24 | Spartek Medical, Inc. | Modular spine treatment kit for dynamic stabilization and motion preservation of the spine |
| US8114134B2 (en) | 2007-06-05 | 2012-02-14 | Spartek Medical, Inc. | Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine |
| US8092501B2 (en) | 2007-06-05 | 2012-01-10 | Spartek Medical, Inc. | Dynamic spinal rod and method for dynamic stabilization of the spine |
| US8048115B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Surgical tool and method for implantation of a dynamic bone anchor |
| US8083772B2 (en) | 2007-06-05 | 2011-12-27 | Spartek Medical, Inc. | Dynamic spinal rod assembly and method for dynamic stabilization of the spine |
| US8048122B2 (en) | 2007-06-05 | 2011-11-01 | Spartek Medical, Inc. | Spine implant with a dual deflection rod system including a deflection limiting sheild associated with a bone screw and method |
| US8021396B2 (en) | 2007-06-05 | 2011-09-20 | Spartek Medical, Inc. | Configurable dynamic spinal rod and method for dynamic stabilization of the spine |
| FR2916956B1 (fr) | 2007-06-08 | 2012-12-14 | Ldr Medical | Cage intersomatique,prothese intervertebrale,dispositif d'ancrage et instrumentation d'implantation |
| US8313515B2 (en) | 2007-06-15 | 2012-11-20 | Rachiotek, Llc | Multi-level spinal stabilization system |
| US8900307B2 (en) | 2007-06-26 | 2014-12-02 | DePuy Synthes Products, LLC | Highly lordosed fusion cage |
| US8911477B2 (en) | 2007-10-23 | 2014-12-16 | Roger P. Jackson | Dynamic stabilization member with end plate support and cable core extension |
| US20090125032A1 (en) * | 2007-11-14 | 2009-05-14 | Gutierrez Robert C | Rod removal instrument |
| FR2924326B1 (fr) * | 2007-11-30 | 2010-12-10 | Medicrea International | Materiel chirurgical, notamment materiel d'osteosynthese vertebrale |
| KR101552476B1 (ko) | 2008-01-17 | 2015-09-11 | 신세스 게엠바하 | 팽창가능한 추간 임플란트 및 관련된 그 제조 방법 |
| US8267979B2 (en) | 2008-02-26 | 2012-09-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine |
| US8057515B2 (en) | 2008-02-26 | 2011-11-15 | Spartek Medical, Inc. | Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine |
| US8333792B2 (en) | 2008-02-26 | 2012-12-18 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine |
| US8211155B2 (en) | 2008-02-26 | 2012-07-03 | Spartek Medical, Inc. | Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine |
| US8337536B2 (en) | 2008-02-26 | 2012-12-25 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine |
| US8048125B2 (en) | 2008-02-26 | 2011-11-01 | Spartek Medical, Inc. | Versatile offset polyaxial connector and method for dynamic stabilization of the spine |
| US8083775B2 (en) | 2008-02-26 | 2011-12-27 | Spartek Medical, Inc. | Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine |
| US20100030224A1 (en) | 2008-02-26 | 2010-02-04 | Spartek Medical, Inc. | Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod |
| US8097024B2 (en) | 2008-02-26 | 2012-01-17 | Spartek Medical, Inc. | Load-sharing bone anchor having a deflectable post and method for stabilization of the spine |
| US9060813B1 (en) | 2008-02-29 | 2015-06-23 | Nuvasive, Inc. | Surgical fixation system and related methods |
| FR2929100B1 (fr) * | 2008-03-25 | 2011-04-15 | Medicrea International | Materiel d'arthrodese vertebrale |
| CA2720580A1 (fr) | 2008-04-05 | 2009-10-08 | Synthes Usa, Llc | Implant intervertebral extensible |
| FR2930718B1 (fr) * | 2008-05-02 | 2010-05-14 | Warsaw Orthopedic Inc | Element de liaison d'un dispositif d'osteosynthese vertebrale, et dispositif d'osteosynthese vertebrale le comprenant |
| FR2930720B1 (fr) * | 2008-05-02 | 2011-10-21 | Warsaw Orthopedic Inc | Element de liaison entre un element longitudinal d'un dispositif d'osteosynthese vertebrale et une vertebre, dispositif d'osteosynthese vertebrale le comprenant et outil pour sa pose |
| WO2010147639A1 (fr) | 2008-08-01 | 2010-12-23 | Jackson Roger P | Élément longitudinal de liaison avec cordons tendus gainés |
| EP2320815A2 (fr) * | 2008-08-14 | 2011-05-18 | Exactech Inc. | Tige dynamique |
| US8308775B2 (en) * | 2008-10-14 | 2012-11-13 | Medicrea International | Method for rotating a vertebra or vertebrae |
| US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
| US11229457B2 (en) | 2009-06-15 | 2022-01-25 | Roger P. Jackson | Pivotal bone anchor assembly with insert tool deployment |
| US9668771B2 (en) | 2009-06-15 | 2017-06-06 | Roger P Jackson | Soft stabilization assemblies with off-set connector |
| US8998959B2 (en) | 2009-06-15 | 2015-04-07 | Roger P Jackson | Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert |
| FR2946859B1 (fr) | 2009-06-22 | 2012-11-09 | Medicrea International | Materiel d'osteosynthese vertebrale. |
| US20110166610A1 (en) * | 2009-08-07 | 2011-07-07 | Moti Altarac | Systems and methods for stabilization of bone structures, including thorocolumbar stabilization systems and methods |
| AU2010303934B2 (en) | 2009-10-05 | 2014-03-27 | Roger P. Jackson | Polyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit |
| US20110093014A1 (en) * | 2009-10-19 | 2011-04-21 | Zimmer Spine, Inc. | Rod with Removable End and Inserter Therefor |
| US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
| US9393129B2 (en) | 2009-12-10 | 2016-07-19 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
| EP2512357B1 (fr) | 2009-12-15 | 2016-07-13 | Vertiflex, Inc. | Écarteur vertébral pour vertèbres cervicales et autres vertèbres, et systèmes associés |
| FR2956803B1 (fr) * | 2010-03-01 | 2013-06-07 | Medicrea International | Materiel d'osteosynthese vertebrale |
| US9198696B1 (en) | 2010-05-27 | 2015-12-01 | Nuvasive, Inc. | Cross-connector and related methods |
| US20110307018A1 (en) | 2010-06-10 | 2011-12-15 | Spartek Medical, Inc. | Adaptive spinal rod and methods for stabilization of the spine |
| US8979860B2 (en) | 2010-06-24 | 2015-03-17 | DePuy Synthes Products. LLC | Enhanced cage insertion device |
| US8845733B2 (en) | 2010-06-24 | 2014-09-30 | DePuy Synthes Products, LLC | Lateral spondylolisthesis reduction cage |
| US8623091B2 (en) | 2010-06-29 | 2014-01-07 | DePuy Synthes Products, LLC | Distractible intervertebral implant |
| FR2964031B1 (fr) | 2010-09-01 | 2013-07-12 | Medicrea International | Ensemble d'osteosynthese vertebrale forme par un materiel d'osteosynthese vertebrale et par des instruments de pose de ce materiel |
| WO2012033532A1 (fr) | 2010-09-08 | 2012-03-15 | Roger Jackson P | Membres de stabilisation dynamiques dotés de sections élastiques et non élastiques |
| US9402732B2 (en) | 2010-10-11 | 2016-08-02 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
| DE112011104028A1 (de) | 2010-11-02 | 2013-12-12 | Roger P. Jackson | Polyaxialer Knochenanker mit Schnellsteck-Schaft und drehbarer Halterung |
| US9186184B2 (en) * | 2011-02-14 | 2015-11-17 | Pioneer Surgical Technology, Inc. | Spinal fixation system and method |
| US9387013B1 (en) | 2011-03-01 | 2016-07-12 | Nuvasive, Inc. | Posterior cervical fixation system |
| US9247964B1 (en) | 2011-03-01 | 2016-02-02 | Nuasive, Inc. | Spinal Cross-connector |
| FR2978343B1 (fr) | 2011-07-25 | 2013-08-23 | Medicrea International | Organe d'ancrage pour materiel d'osteosynthese vertebrale |
| US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
| US8430916B1 (en) | 2012-02-07 | 2013-04-30 | Spartek Medical, Inc. | Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors |
| US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
| FR2988992B1 (fr) | 2012-04-04 | 2015-03-20 | Medicrea International | Materiel d'osteosynthese vertebrale |
| FR2989264B1 (fr) | 2012-04-11 | 2014-05-09 | Medicrea International | Materiel d'osteosynthese vertebrale |
| US8828056B2 (en) | 2012-04-16 | 2014-09-09 | Aesculap Implant Systems, Llc | Rod to rod cross connector |
| US8771319B2 (en) | 2012-04-16 | 2014-07-08 | Aesculap Implant Systems, Llc | Rod to rod cross connector |
| WO2014018098A1 (fr) | 2012-07-26 | 2014-01-30 | DePuy Synthes Products, LLC | Implant expansible |
| US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
| US20140067069A1 (en) | 2012-08-30 | 2014-03-06 | Interventional Spine, Inc. | Artificial disc |
| US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
| US8911478B2 (en) | 2012-11-21 | 2014-12-16 | Roger P. Jackson | Splay control closure for open bone anchor |
| US10058354B2 (en) | 2013-01-28 | 2018-08-28 | Roger P. Jackson | Pivotal bone anchor assembly with frictional shank head seating surfaces |
| US8852239B2 (en) | 2013-02-15 | 2014-10-07 | Roger P Jackson | Sagittal angle screw with integral shank and receiver |
| US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| US9522070B2 (en) | 2013-03-07 | 2016-12-20 | Interventional Spine, Inc. | Intervertebral implant |
| US9743959B2 (en) | 2013-03-14 | 2017-08-29 | Atlas Spine, Inc. | Low profile spinal fixation system |
| US9668789B2 (en) | 2013-03-15 | 2017-06-06 | Ebi, Llc | Reduction instrument, surgical assembly including a reduction instrument and related method |
| US9675303B2 (en) | 2013-03-15 | 2017-06-13 | Vertiflex, Inc. | Visualization systems, instruments and methods of using the same in spinal decompression procedures |
| FR3004636A1 (fr) | 2013-04-19 | 2014-10-24 | Medicrea International | Ensemble de reprise pour materiel d'osteosynthese vertebrale |
| FR3010628B1 (fr) | 2013-09-18 | 2015-10-16 | Medicrea International | Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient |
| FR3012030B1 (fr) | 2013-10-18 | 2015-12-25 | Medicrea International | Procede permettant de realiser la courbure ideale d'une tige d'un materiel d'osteosynthese vertebrale destinee a etayer la colonne vertebrale d'un patient |
| US9566092B2 (en) | 2013-10-29 | 2017-02-14 | Roger P. Jackson | Cervical bone anchor with collet retainer and outer locking sleeve |
| US9717533B2 (en) | 2013-12-12 | 2017-08-01 | Roger P. Jackson | Bone anchor closure pivot-splay control flange form guide and advancement structure |
| US9451993B2 (en) | 2014-01-09 | 2016-09-27 | Roger P. Jackson | Bi-radial pop-on cervical bone anchor |
| FR3019982A1 (fr) | 2014-04-17 | 2015-10-23 | Medicrea International | Materiel d'osteosynthese vertebrale permettant de realiser l'ancrage iliaque d'une barre vertebrale |
| FR3019981B1 (fr) | 2014-04-17 | 2020-12-11 | Medicrea Int | Materiel d'osteosynthese vertebrale |
| US10524772B2 (en) | 2014-05-07 | 2020-01-07 | Vertiflex, Inc. | Spinal nerve decompression systems, dilation systems, and methods of using the same |
| US10064658B2 (en) | 2014-06-04 | 2018-09-04 | Roger P. Jackson | Polyaxial bone anchor with insert guides |
| US9597119B2 (en) | 2014-06-04 | 2017-03-21 | Roger P. Jackson | Polyaxial bone anchor with polymer sleeve |
| FR3027208B1 (fr) | 2014-10-15 | 2016-12-23 | Medicrea Int | Materiel d'osteosynthese vertebrale |
| US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
| FR3035318B1 (fr) | 2015-04-24 | 2017-05-19 | Medicrea Int | Materiel d'osteosynthese vertebrale |
| US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
| US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
| US10456211B2 (en) | 2015-11-04 | 2019-10-29 | Medicrea International | Methods and apparatus for spinal reconstructive surgery and measuring spinal length and intervertebral spacing, tension and rotation |
| FR3049453B1 (fr) | 2016-03-30 | 2018-04-27 | Medicrea International | Procede de fabrication d'un implant, notamment vertebral ou intervertebral, et implant obtenu par ce procede |
| US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
| JP6995789B2 (ja) | 2016-06-28 | 2022-01-17 | イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー | 拡張可能かつ角度調節可能な椎間ケージ |
| US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
| US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
| US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
| WO2018109556A1 (fr) | 2016-12-12 | 2018-06-21 | Medicrea International | Systèmes et procédés pour des implants rachidiens spécifiques au patient |
| US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
| EP3612122B1 (fr) | 2017-04-21 | 2023-12-20 | Medicrea International | Système de conception d'un ou de plusieurs implants rachidiens spécifiques du patient |
| US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
| US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
| US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
| US10918422B2 (en) | 2017-12-01 | 2021-02-16 | Medicrea International | Method and apparatus for inhibiting proximal junctional failure |
| US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
| US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
| US11877801B2 (en) | 2019-04-02 | 2024-01-23 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
| US11944385B2 (en) | 2019-04-02 | 2024-04-02 | Medicrea International | Systems and methods for medical image analysis |
| US11925417B2 (en) | 2019-04-02 | 2024-03-12 | Medicrea International | Systems, methods, and devices for developing patient-specific spinal implants, treatments, operations, and/or procedures |
| US11769251B2 (en) | 2019-12-26 | 2023-09-26 | Medicrea International | Systems and methods for medical image analysis |
| US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
| US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
| US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
| US11712270B2 (en) | 2021-05-17 | 2023-08-01 | Warsaw Orthopedic, Inc. | Quick lock clamp constructs and associated methods |
| CN113456199A (zh) * | 2021-07-29 | 2021-10-01 | 上海市浦东新区人民医院 | 治疗骨盆后环骨折脱位的多维内固定装置及方法 |
| US11331125B1 (en) * | 2021-10-07 | 2022-05-17 | Ortho Inventions, Llc | Low profile rod-to-rod coupler |
| WO2023158581A1 (fr) | 2022-02-15 | 2023-08-24 | Boston Scientific Neuromodulation Corporation | Espaceur interépineux et systèmes utilisant l'espaceur interépineux |
| US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
| FR3136149B1 (fr) * | 2022-06-01 | 2024-09-06 | Paul Fayada | Dispositif de stabilisation vertébrale |
| US12433646B2 (en) | 2023-02-21 | 2025-10-07 | Boston Scientific Neuromodulation Corporation | Interspinous spacer with actuator locking arrangements and methods and systems |
| US12390340B2 (en) | 2023-03-15 | 2025-08-19 | Boston Scientific Neuromodulation Corporation | Interspinous spacer with a range of deployment positions and methods and systems |
| FR3153734B1 (fr) | 2023-10-04 | 2025-10-03 | Paul Fayada | Dispositif de stabilisation vertébrale |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2190585A (en) * | 1936-08-22 | 1940-02-13 | Armstrong Bros Tool Co | C clamp |
| US4946458A (en) * | 1986-04-25 | 1990-08-07 | Harms Juergen | Pedicle screw |
| US5304179A (en) * | 1993-06-17 | 1994-04-19 | Amei Technologies Inc. | System and method for installing a spinal fixation system at variable angles |
| DE19512709A1 (de) * | 1995-04-08 | 1996-10-10 | Rehder Guenther | Prothesen-Halteeinrichtung |
| US5591166A (en) * | 1995-03-27 | 1997-01-07 | Smith & Nephew Richards, Inc. | Multi angle bone bolt |
| US5628740A (en) * | 1993-12-23 | 1997-05-13 | Mullane; Thomas S. | Articulating toggle bolt bone screw |
| US5735851A (en) * | 1996-10-09 | 1998-04-07 | Third Millennium Engineering, Llc | Modular polyaxial locking pedicle screw |
| US5800435A (en) * | 1996-10-09 | 1998-09-01 | Techsys, Llc | Modular spinal plate for use with modular polyaxial locking pedicle screws |
| US5851082A (en) * | 1995-06-10 | 1998-12-22 | Lemforder Metallwaren Ag | Axial ball-and-socket joint for linkages in motor vehicles |
| US5891145A (en) * | 1997-07-14 | 1999-04-06 | Sdgi Holdings, Inc. | Multi-axial screw |
| US5938663A (en) * | 1995-03-06 | 1999-08-17 | Stryker France, S.A. | Spinal instruments, particularly for a rod |
| US5984924A (en) * | 1998-10-07 | 1999-11-16 | Isola Implants, Inc. | Bone alignment system having variable orientation bone anchors |
| US6022350A (en) * | 1996-05-13 | 2000-02-08 | Stryker France S.A. | Bone fixing device, in particular for fixing to the sacrum during osteosynthesis of the backbone |
| US6123706A (en) * | 1997-12-17 | 2000-09-26 | Lange; Robert | Apparatus for stabilizing certain vertebrae of the spine |
| US7163538B2 (en) * | 2002-02-13 | 2007-01-16 | Cross Medical Products, Inc. | Posterior rod system |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5474551A (en) * | 1994-11-18 | 1995-12-12 | Smith & Nephew Richards, Inc. | Universal coupler for spinal fixation |
-
1997
- 1997-06-03 IE IE970411A patent/IES970411A2/en not_active IP Right Cessation
-
1998
- 1998-06-03 ES ES98929473T patent/ES2229509T3/es not_active Expired - Lifetime
- 1998-06-03 PT PT03025168T patent/PT1415602E/pt unknown
- 1998-06-03 ES ES03025168T patent/ES2295496T3/es not_active Expired - Lifetime
- 1998-06-03 PT PT98929473T patent/PT986339E/pt unknown
- 1998-06-03 PT PT03025177T patent/PT1415603E/pt unknown
- 1998-06-03 EP EP03025168A patent/EP1415602B1/fr not_active Expired - Lifetime
- 1998-06-03 DE DE69839406T patent/DE69839406T2/de not_active Expired - Lifetime
- 1998-06-03 US US09/445,176 patent/US6267765B1/en not_active Ceased
- 1998-06-03 US US10/629,788 patent/USRE42626E1/en not_active Expired - Lifetime
- 1998-06-03 DE DE69826999T patent/DE69826999T2/de not_active Expired - Lifetime
- 1998-06-03 EP EP03025177A patent/EP1415603B1/fr not_active Expired - Lifetime
- 1998-06-03 ES ES03025177T patent/ES2304482T3/es not_active Expired - Lifetime
- 1998-06-03 CA CA002292748A patent/CA2292748C/fr not_active Expired - Fee Related
- 1998-06-03 DE DE69838626T patent/DE69838626T2/de not_active Expired - Lifetime
- 1998-06-03 WO PCT/FR1998/001119 patent/WO1998055038A1/fr not_active Ceased
- 1998-06-03 EP EP98929473A patent/EP0986339B1/fr not_active Expired - Lifetime
- 1998-06-03 JP JP50172899A patent/JP4399554B2/ja not_active Expired - Fee Related
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2190585A (en) * | 1936-08-22 | 1940-02-13 | Armstrong Bros Tool Co | C clamp |
| US4946458A (en) * | 1986-04-25 | 1990-08-07 | Harms Juergen | Pedicle screw |
| US5304179A (en) * | 1993-06-17 | 1994-04-19 | Amei Technologies Inc. | System and method for installing a spinal fixation system at variable angles |
| US5628740A (en) * | 1993-12-23 | 1997-05-13 | Mullane; Thomas S. | Articulating toggle bolt bone screw |
| US5938663A (en) * | 1995-03-06 | 1999-08-17 | Stryker France, S.A. | Spinal instruments, particularly for a rod |
| US5591166A (en) * | 1995-03-27 | 1997-01-07 | Smith & Nephew Richards, Inc. | Multi angle bone bolt |
| DE19512709A1 (de) * | 1995-04-08 | 1996-10-10 | Rehder Guenther | Prothesen-Halteeinrichtung |
| US5851082A (en) * | 1995-06-10 | 1998-12-22 | Lemforder Metallwaren Ag | Axial ball-and-socket joint for linkages in motor vehicles |
| US6022350A (en) * | 1996-05-13 | 2000-02-08 | Stryker France S.A. | Bone fixing device, in particular for fixing to the sacrum during osteosynthesis of the backbone |
| US5735851A (en) * | 1996-10-09 | 1998-04-07 | Third Millennium Engineering, Llc | Modular polyaxial locking pedicle screw |
| US5800435A (en) * | 1996-10-09 | 1998-09-01 | Techsys, Llc | Modular spinal plate for use with modular polyaxial locking pedicle screws |
| US5891145A (en) * | 1997-07-14 | 1999-04-06 | Sdgi Holdings, Inc. | Multi-axial screw |
| US6123706A (en) * | 1997-12-17 | 2000-09-26 | Lange; Robert | Apparatus for stabilizing certain vertebrae of the spine |
| US5984924A (en) * | 1998-10-07 | 1999-11-16 | Isola Implants, Inc. | Bone alignment system having variable orientation bone anchors |
| US7163538B2 (en) * | 2002-02-13 | 2007-01-16 | Cross Medical Products, Inc. | Posterior rod system |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10194951B2 (en) | 2005-05-10 | 2019-02-05 | Roger P. Jackson | Polyaxial bone anchor with compound articulation and pop-on shank |
| US8613760B2 (en) | 2005-09-30 | 2013-12-24 | Roger P. Jackson | Dynamic stabilization connecting member with slitted core and outer sleeve |
| US8979904B2 (en) | 2007-05-01 | 2015-03-17 | Roger P Jackson | Connecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control |
| US10383660B2 (en) | 2007-05-01 | 2019-08-20 | Roger P. Jackson | Soft stabilization assemblies with pretensioned cords |
| US9980753B2 (en) | 2009-06-15 | 2018-05-29 | Roger P Jackson | pivotal anchor with snap-in-place insert having rotation blocking extensions |
| US9168069B2 (en) | 2009-06-15 | 2015-10-27 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer |
| US9216041B2 (en) | 2009-06-15 | 2015-12-22 | Roger P. Jackson | Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts |
| US9393047B2 (en) | 2009-06-15 | 2016-07-19 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock |
| US9480517B2 (en) | 2009-06-15 | 2016-11-01 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, shank, friction fit retainer, winged insert and low profile edge lock |
| US9504496B2 (en) | 2009-06-15 | 2016-11-29 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
| US9918745B2 (en) | 2009-06-15 | 2018-03-20 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank and winged insert with friction fit compressive collet |
| US8444681B2 (en) | 2009-06-15 | 2013-05-21 | Roger P. Jackson | Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert |
| US20120123478A1 (en) * | 2009-12-02 | 2012-05-17 | Spartek Medical, Inc. | Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod |
| US20140114358A1 (en) * | 2010-04-05 | 2014-04-24 | David L. Brumfield | Fully-Adjustable Bone Fixation Device |
| US8911479B2 (en) | 2012-01-10 | 2014-12-16 | Roger P. Jackson | Multi-start closures for open implants |
| US12171470B2 (en) | 2020-07-31 | 2024-12-24 | Mazor Robotics Ltd. | Surgical fixation systems, methods, and devices |
Also Published As
| Publication number | Publication date |
|---|---|
| EP1415602A2 (fr) | 2004-05-06 |
| JP2002510998A (ja) | 2002-04-09 |
| US6267765B1 (en) | 2001-07-31 |
| EP0986339B1 (fr) | 2004-10-13 |
| IES77331B2 (en) | 1997-12-03 |
| WO1998055038A1 (fr) | 1998-12-10 |
| EP1415602A3 (fr) | 2005-07-06 |
| DE69839406T2 (de) | 2009-05-20 |
| PT1415603E (pt) | 2008-06-09 |
| EP1415603A3 (fr) | 2005-07-06 |
| DE69838626T2 (de) | 2008-08-28 |
| CA2292748A1 (fr) | 1998-12-10 |
| ES2229509T3 (es) | 2005-04-16 |
| JP4399554B2 (ja) | 2010-01-20 |
| DE69826999D1 (de) | 2004-11-18 |
| ES2295496T3 (es) | 2008-04-16 |
| DE69826999T2 (de) | 2005-10-13 |
| EP1415603B1 (fr) | 2008-04-23 |
| EP1415603A2 (fr) | 2004-05-06 |
| IES970411A2 (en) | 1997-12-03 |
| DE69839406D1 (de) | 2008-06-05 |
| EP0986339A1 (fr) | 2000-03-22 |
| PT1415602E (pt) | 2008-01-30 |
| DE69838626D1 (de) | 2007-12-06 |
| CA2292748C (fr) | 2008-01-29 |
| EP1415602B1 (fr) | 2007-10-24 |
| ES2304482T3 (es) | 2008-10-16 |
| PT986339E (pt) | 2005-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE42626E1 (en) | Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement | |
| US6280443B1 (en) | Spinal fixation system | |
| JP4131612B2 (ja) | 脊椎骨接合装置 | |
| US10219838B2 (en) | Pedicle screw fixation system and method for use of same | |
| US6296644B1 (en) | Spinal instrumentation system with articulated modules | |
| EP1638472B1 (fr) | Dispositif d'osteosynthese vertebrale | |
| JP3022404B2 (ja) | 脊柱の椎骨を所望の空間関係にて保持する装置 | |
| US20050277928A1 (en) | Spinal implant fixation assembly | |
| EP2410934B1 (fr) | Système de fixation de la colonne vertébrale | |
| US20090264927A1 (en) | Spinous process stabilization device and method | |
| US20060084990A1 (en) | Dual anchor spinal implant apparatus | |
| WO2004096065A1 (fr) | Dispositif de fixation vertebral a vis pediculaire | |
| US20040267259A1 (en) | Vertebral fixing device | |
| AU6295799A (en) | Bone alignment system having variable orientation bone anchors | |
| JP2008502423A (ja) | 脊椎ロッドシステム | |
| WO1999009902A1 (fr) | Systeme d'appareillage pour la colonne vertebrale, a modules articules | |
| EP1161191A2 (fr) | Instruments d'osteosynthese vertebrale | |
| US20240415663A1 (en) | Sacral fixation system and assembly comprising such a system | |
| AU2003222082A1 (en) | Pedicle screw spinal fixation device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Fee payment |
Year of fee payment: 12 |