US7805700B2 - Physical-resist model using fast sweeping - Google Patents
Physical-resist model using fast sweeping Download PDFInfo
- Publication number
- US7805700B2 US7805700B2 US11/773,923 US77392307A US7805700B2 US 7805700 B2 US7805700 B2 US 7805700B2 US 77392307 A US77392307 A US 77392307A US 7805700 B2 US7805700 B2 US 7805700B2
- Authority
- US
- United States
- Prior art keywords
- depth
- arrival times
- values
- sweeping
- given
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000010408 sweeping Methods 0.000 title claims description 45
- 238000000034 method Methods 0.000 claims abstract description 107
- 239000000463 material Substances 0.000 claims abstract description 85
- 238000004364 calculation method Methods 0.000 claims description 40
- 238000011161 development Methods 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 3
- 230000000704 physical effect Effects 0.000 claims 4
- 238000010586 diagram Methods 0.000 description 12
- 235000012431 wafers Nutrition 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/705—Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/36—Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
Definitions
- the present invention relates to techniques for modeling resist development in lithographic processes that use photo-masks and semiconductor-manufacturing processes that use direct-write devices.
- Lithography processing represents an essential technology for manufacturing Integrated Circuits (IC) and Micro Electro-Mechanical Systems (MEMS).
- lithographic techniques are used to define patterns, geometries, features, shapes, etc. onto an integrated circuit die or semiconductor wafer or chips.
- a photo-mask may be used to print a pattern in a layer on a semiconductor wafer that is subsequently developed to produce a feature.
- a device may directly write the pattern, for example, using an electron beam or a laser beam.
- the minimum dimension also known as the critical dimension
- the critical dimension in the designs has decreased.
- the resulting wafer patterns deviate from the corresponding photo-mask patterns and are accompanied by unwanted distortions and artifacts.
- Optical Proximity Correction OPC
- OPC Optical Proximity Correction
- RET resolution enhancement technologies
- ILT Inverse Lithography
- One embodiment of the present invention provides a method for determining a surface in a material.
- arrival times of a wavefront at a first depth in the material are calculated using an Eikonal equation. Note that the first depth is proximate to an outer surface of the material.
- arrival times of the wavefront at a second depth in the material are calculated using the Eikonal equation and the calculated arrival times at the first depth.
- the surface in the material is determined based on the calculated arrival times at the first depth, the calculated arrival times at the second depth, and a given time interval. Note that arrival times at a given depth in the material, which includes the first depth or the second depth, are calculated by directly determining a steady-state solution of the Eikonal equation.
- the arrival times at the first depth are calculated based on an initial condition on the outer surface.
- the determined surface in the material is stored in a computer-readable medium.
- calculations at the first depth and the second depth are performed once. Moreover, in some embodiments calculations at the first depth and the second depth are performed sequentially as opposed to iteratively.
- arrival times of the wavefront at a group of depths in the material are calculated. Note that these calculations may be sequentially performed at depths in the group of depths further away from the outer surface than depths in preceding calculations. Furthermore, the calculation at a given depth in the group of depths may be based on the Eikonal equation and the calculated arrival times at an immediately preceding depth in the group of depths. Then, the surface in the material may be determined based on the calculated arrival times at the group of depths and the given time interval.
- the surface is 3-dimensional. Furthermore, in some embodiments the surface corresponds to a resist profile in a lithographic process. Note that the material may correspond to a film to be deposited during a semiconductor-manufacturing process.
- the material at a given depth which is the first depth and/or the second depth, is divided into a set of cells. Note that the arrival times may be calculated in each cell in the set of cells.
- the Eikonal equation includes:
- ⁇ r 1, where grad( ) is a vector gradient operator, T is a function corresponding to the surface, and r is a vector development rate.
- r may be determined from a Mack model, a notch model, a lumped-parameter model, an enhanced-Mack model, and/or an enhanced-notch model.
- T may include a level-set function.
- T may include a grayscale or a bitmap representation of the surface.
- the determination of the surface is included when determining a process window for a lithographic process and/or a semiconductor-manufacturing process.
- the calculation at a given depth includes sweeping over a first set of values along a first direction in a plane associated with the given depth, and sweeping over a second set of values along a second direction in the plane.
- the sweeping over a given set of values includes sweeping from low-to-high values and/or sweeping from high-to-low values.
- the calculation at a given depth which is the first depth and/or the second depth, progress out from a starting location in a plane associated with the given depth.
- the Eikonal equation includes a form of a Hamilton-Jacobi equation.
- Another embodiment provides a computer system configured to execute instructions corresponding to at least some of the above-described operations.
- Another embodiment provides a computer-program product for use in conjunction with the computer system.
- Another embodiment provides a mask pattern that is determined in a process that includes the method for determining the surface.
- This mask pattern may be used to produce a photo-mask, which may be used to produce a semiconductor wafer in a photo-lithography process.
- the mask pattern may be used to produce a semiconductor wafer in a maskless lithography process, such as a lithographic process that uses a direct write device.
- FIG. 1 is a block diagram illustrating a resist-development calculation in accordance with an embodiment of the present invention.
- FIG. 2 is a block diagram illustrating a resist-development calculation in accordance with an embodiment of the present invention.
- FIG. 3 is a flow chart illustrating a process for determining a surface in a material in accordance with an embodiment of the present invention.
- FIG. 4 is a block diagram illustrating arrival times in a material during a resist-development process in accordance with an embodiment of the present invention.
- FIG. 5 is a block diagram illustrating a resist profile in a material in accordance with an embodiment of the present invention.
- FIG. 6 is a block diagram illustrating a computer system in accordance with an embodiment of the present invention.
- FIG. 7 is a block diagram illustrating a data structure in accordance with an embodiment of the present invention.
- Embodiments of a computer system, a method, and a computer program product (i.e., software) for use with the computer system are described. These systems and processes may be used to model at least a portion of a (photo-) lithographic processes and/or semiconductor-manufacturing processes. These processes may include photo-masks that print patterns onto wafers and/or semiconductor dies, and/or devices that directly write patterns onto the wafers and/or semiconductor dies (such as laser writers or e-beam writers).
- a surface in a material may be determined using a fast-sweeping calculation.
- arrival times of a wavefront at a first layer in the material may be determined using an Eikonal equation.
- the first layer may be divided into cells and the arrival times in each cell may be determined by sweeping over a set of values, such as low-to-high values and/or from high-to-low values.
- the arrival times may be determined based on an initial condition on an outer surface of the material.
- arrival times at one or more additional layers in the material further away from the outer surface may be sequentially determined using the Eikonal equation.
- the arrival times in a given layer in the one or more additional layers may also be determined using the calculated arrival times for an immediately preceding layer in the material.
- the resist profile may be determined from the set of calculated arrival times and a given time interval since the start of the resist-development process.
- the resist profile may be determined by interpolating between the calculated arrival times at the different layers in the material. In this way, the resist profile may be determined without performing an iterative calculation, thereby improving the overall calculation efficiency.
- the Eikonal equation includes a form of a Hamilton-Jacobi equation, such as:
- ⁇ r 1, where grad( ) is a vector gradient operator, T is a function corresponding to the surface, and r is a vector development rate.
- r may be determined from a Mack model, a notch model, a lumped-parameter model, an enhanced-Mack model, and/or an enhanced-notch model.
- T may include a level-set function.
- T may include a grayscale or a bitmap representation of the surface.
- fast sweeping should be understood to include a direct solving numerical technique for determining steady-state solutions to equations, such as the Eikonal equation.
- arrival time solutions on a sequence of 2-dimensional (2D) surfaces may be determined by sweeping from low values to high values and back along orthogonal directions in each of the 2D surfaces.
- the set of values in each direction may correspond to a full set of values in the 2D surface.
- the fast sweeping technique may be non-evolutionary or non-iterative. Note that this technique may reduce or eliminate memory constraints, such as those associated with DRAM memory, when solving equations.
- fast marching should be understood to include an iterative numerical technique in which a narrower set of values are used. Thus, the time evolution of a wavefront may be determined. Note that this technique may be appropriate if a wavefront does not propagate over a wide area. Furthermore, fast marching may allow solutions to be quickly determined.
- a resist profile defined in the material during a lithographic process and/or a semiconductor-manufacturing process may be determined using a model of this process.
- a resist layer may be deposited on a surface. This layer may be exposed and subjected to post-exposure baking. Then, a solvent may be used to develop soluble regions, leaving the non-soluble regions. The boundary or interface between these regions, which is referred to as a resist profile, will evolve as a function of time during the development process.
- a fast-sweeping technique may be used to solve the differential equation that describes the interface in models of the lithographic process and/or the semiconductor-manufacturing process.
- FIG. 1 presents a block diagram illustrating a resist-development calculation in accordance with an embodiment of the present invention.
- a material 100 for example, one corresponding to a semiconductor die or wafer, or to a film to be deposited during a semiconductor-manufacturing process
- layers 116 may have a fixed spacing or a variable spacing from one another.
- an initial condition on an outer surface 110 such as the placement of resist 112 , may be defined or specified.
- a surface such as a resist profile 118 , in the lithographic process and/or the semiconductor-manufacturing process, may be calculated.
- the resist profile 118 is determined based on arrival times of a wavefront in the layers 116 .
- the wavefront may be a solution to a differential equation that describes a resist-development process, and arrival times of the wavefront in each of the layers 116 may be calculated.
- a given arrival time corresponds to 2-dimensional (2D) surfaces of constant arrival time.
- FIG. 2 presents a block diagram illustrating calculated arrival-time surfaces 210 in a given layer during a resist-development calculation 200 in accordance with an embodiment of the present invention.
- the calculation may proceed sequentially through the layers 116 , such that the arrival-time surfaces in a first layer 116 - 1 may be determined, at least in part, based on the initial condition on the outer surface 110 .
- the arrival-time surfaces in a second layer 116 - 2 may be determined, at least in part, based on the arrival-time surfaces in the first layer 116 - 1 . This process may be sequentially repeated for the layers 116 further from the outer surface 110 until the arrival-time surfaces are determined for all of the layers 116 .
- the resist profile 118 may be determined from the calculated arrival-time surfaces in the layers 116 for a given time interval since the start of the resist-development process.
- the resist profile 118 at the given time interval may be determined by interpolating between 3-dimensional (3D) surfaces through the material 100 that correspond to two different arrival times.
- the interpolation may be between 2D arrival-time surfaces, such as the arrival-time surfaces 210 ( FIG. 2 ), in each of the layers 116 , and then the 3D resist profile 118 may be determined from these interpolated surfaces.
- the arrival-time surfaces 210 ( FIG. 2 ) in each of the layers 116 are determined once during the calculation. Furthermore, as noted above, in some embodiments the arrival-time surfaces 210 ( FIG. 2 ) in each of the layers 116 are determined sequentially as opposed to iteratively.
- each of the layers 116 is divided into a set of cells and arrival times of the wavefront may be calculated in each of these cells. Then, 2D and/or 3D arrival-times surfaces may be determined from the arrival times in these cells.
- the material 100 has a thickness of 200 nm, there are 4 layers 116 , which are separated from one another by 50 nm, and each layer is divided into a 2D grid of cells. Note that each of these cells has an area of 8 ⁇ 8 nm 2 .
- the arrival times of the wavefront is further determined using an Eikonal equation, which is used to model the resist-development process.
- the Eikonal equation may be
- ⁇ r 1, where grad( ) is a vector gradient operator, T is a function corresponding to the surface (such as the resist profile), and r is a vector development rate.
- r may be determined from a Mack model, a notch model, a lumped-parameter model, an enhanced-Mack model, and/or an enhanced-notch model.
- T may include a level-set function.
- T may include a grayscale or a bitmap representation of the surface.
- the Eikonal equation includes a form of a Hamilton-Jacobi equation.
- the Eikonal equation may be solved in a given layer (i.e., the arrival times in cells in the layer may be determined) using a Green's function, a difference equation, and/or other techniques as known in the art.
- the Eikonal equation may be solved in the given layer using a fast-sweeping process. For example, the calculation may progress out from a starting location in a plane associated with the given layer or depth in the material. This calculation may include sweeping over a first set of values along a first direction in the plane, and sweeping over a second set of values along a second direction in the plane. Note that these directions may be orthogonal.
- the sweeping i.e., systematically and sequentially varying
- the sweeping may include sweeping from low-to-high values (such as from ⁇ 10 to +10) and then sweeping from high-to-low values (or vice versa) in a given direction in the given layer.
- FIGS. 1 and 2 may include fewer or additional components, two or more components may be combined into a single component, and/or a position of one or more components may be changed.
- FIG. 3 presents a flow chart illustrating a process 300 for determining a surface in a material in accordance with an embodiment of the present invention.
- arrival times of a wavefront at a first depth in a material are calculated using an Eikonal equation ( 310 ). Note that the first depth is proximate to an outer surface of the material.
- arrival times of the wavefront at a second depth in the material are calculated using an Eikonal equation and the calculated arrival times at the first depth ( 312 ).
- a surface in the material is determined based on the calculated arrival times at the second depth, the calculated arrival times at the first depth, and a given time interval ( 314 ).
- the determined surface in the material is optionally stored in a computer-readable medium ( 316 ).
- process 300 there may be additional or fewer operations, the order of the operations may be changed, and two or more operations may be combined into a single operation. For example, one or more operations similar to the operation 312 may be sequentially repeated for additional layers in the material.
- the so-called Dill B parameter which characterizes the absorbance as light propagates from the top of resist toward the bottom of the resist, was 1.492 ⁇ m ⁇ 1 .
- the height measured from the bottom of the resist layer, where the critical-dimension scanning electron microscope (CD-SEM) measurement was determined, as a percentage of the resist-layer height was 10 nm.
- the relative surface development rate (R RELATIVE ) relative to the bulk development (due to surface inhibition) was 0.1.
- the final development rate r(z) at a depth z in the material was defined by
- r ⁇ ( z ) r 0 ⁇ ( 1 - ( 1 - R RELATIVE ) ⁇ exp ⁇ ( - z D INHIBITOR ) ) , where r 0 is the development rate in the bulk region (which is defined by R MAX and R MIN ).
- FIG. 4 presents a block diagram illustrating the calculated arrival times as a function of depth (nm) 410 in a material and horizontal distance ( ⁇ m) 412 across an outer surface of the material during a resist-development process in accordance with this exemplary embodiment of the present invention.
- FIG. 5 presents a block diagram illustrating the calculated resist profile as a function of depth (nm) 510 in the material and horizontal distance ( ⁇ m) 512 across the outer surface of the material during the resist-development process in accordance with this exemplary embodiment of the present invention.
- the resist profile was determined using the arrival times in FIG. 4 for a time interval of 20 seconds since the start of the resist-development process.
- FIG. 6 presents a block diagram illustrating a computer system 600 in accordance with an embodiment of the present invention.
- the computer system 600 includes one or more processors 610 , a communication interface 612 , a user interface 614 , and one or more signal lines 622 coupling these components together.
- the one or more processing units 610 may support parallel processing and/or multi-threaded operation
- the communication interface 612 may have a persistent communication connection
- the one or more signal lines 622 may constitute a communication bus.
- the user interface 614 may include a display 616 , a keyboard 618 , and/or a pointer 620 , such as a mouse.
- Memory 624 in the computer system 600 may include volatile memory and/or non-volatile memory. More specifically, memory 624 may include ROM, RAM, EPROM, EEPROM, FLASH, one or more smart cards, one or more magnetic disc storage devices, and/or one or more optical storage devices. Memory 624 may store an operating system 626 that includes procedures (or a set of instructions) for handling various basic system services for performing hardware dependent tasks. The memory 624 may also store communications procedures (or a set of instructions) in a communication module 628 . The communication procedures may be used for communicating with one or more computers, devices and/or servers, including computers, devices and/or servers that are remotely located with respect to the computer system 600 .
- Memory 624 may also include one or more program modules (or a set of instructions), including a modeling module 630 (or a set of instructions) for modeling a lithographic process and/or a semiconductor-manufacturing process, and a fast-sweeping module 632 (or a set of instructions) for determining the surface (such as the resist profile) in the material during the lithographic process and/or the semiconductor-manufacturing process.
- a modeling module 630 or a set of instructions
- a fast-sweeping module 632 or a set of instructions for determining the surface (such as the resist profile) in the material during the lithographic process and/or the semiconductor-manufacturing process.
- memory 624 may include initial conditions 634 and/or material properties 636 for use by the modeling module 630 and/or the fast-sweeping module 632 .
- the memory 624 includes an optional data structure 638 .
- This data structure may store arrival times 640 for some or all of the layers in the material.
- the memory 624 includes determined resist profiles 642 and/or calculated process windows 644 for the lithographic process and/or the semiconductor-manufacturing process.
- Instructions in the various modules in the memory 624 may be implemented in a high-level procedural language, an object-oriented programming language, and/or in an assembly or machine language.
- the programming language may be compiled or interpreted, i.e., configurable or configured to be executed by the one or more processing units 610 .
- FIG. 6 is intended to be a functional description of the various features that may be present in the computer system 600 rather than as a structural schematic of the embodiments described herein.
- the functions of the computer system 600 may be distributed over a large number of servers or computers, with various groups of the servers or computers performing particular subsets of the functions.
- some or all of the functionality of the computer system 600 may be implemented in one or more ASICs and/or one or more digital signal processors DSPs.
- Computer system 600 may include fewer components or additional components, two or more components may be combined into a single component, and/or a position of one or more components may be changed. In some embodiments the functionality of computer system 600 may be implemented more in hardware and less in software, or less in hardware and more in software, as is known in the art.
- FIG. 7 presents a block diagram illustrating a data structure 700 in accordance with an embodiment of the present invention.
- This data structure may include arrival-time results for layers 710 .
- the results for each of the layers 710 such as layer 710 - 1 , may include arrival times 712 and corresponding surfaces 714 (such as a set of cells in the layer 710 - 1 that each have a common arrival time).
- arrival times 712 and corresponding surfaces 714 such as a set of cells in the layer 710 - 1 that each have a common arrival time.
- there may be fewer or additional components two or more components may be combined into a single component, and/or a position of one or more components may be changed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
|grad(T)|·r=1,
where grad( ) is a vector gradient operator, T is a function corresponding to the surface, and r is a vector development rate. Note that r may be determined from a Mack model, a notch model, a lumped-parameter model, an enhanced-Mack model, and/or an enhanced-notch model. Furthermore, T may include a level-set function. For example, T may include a grayscale or a bitmap representation of the surface.
|grad(T)|·r=1,
where grad( ) is a vector gradient operator, T is a function corresponding to the surface, and r is a vector development rate. Note that r may be determined from a Mack model, a notch model, a lumped-parameter model, an enhanced-Mack model, and/or an enhanced-notch model. Furthermore, T may include a level-set function. For example, T may include a grayscale or a bitmap representation of the surface.
|grad(T)|·r=1,
where grad( ) is a vector gradient operator, T is a function corresponding to the surface (such as the resist profile), and r is a vector development rate. Note that r may be determined from a Mack model, a notch model, a lumped-parameter model, an enhanced-Mack model, and/or an enhanced-notch model. Furthermore, T may include a level-set function. For example, T may include a grayscale or a bitmap representation of the surface. In some embodiments, the Eikonal equation includes a form of a Hamilton-Jacobi equation.
where r0 is the development rate in the bulk region (which is defined by RMAX and RMIN).
Claims (22)
|grad(T)|·r=1,
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/773,923 US7805700B2 (en) | 2007-07-05 | 2007-07-05 | Physical-resist model using fast sweeping |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/773,923 US7805700B2 (en) | 2007-07-05 | 2007-07-05 | Physical-resist model using fast sweeping |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20090013304A1 US20090013304A1 (en) | 2009-01-08 |
| US7805700B2 true US7805700B2 (en) | 2010-09-28 |
Family
ID=40222410
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/773,923 Expired - Fee Related US7805700B2 (en) | 2007-07-05 | 2007-07-05 | Physical-resist model using fast sweeping |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US7805700B2 (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090073413A1 (en) * | 2007-09-14 | 2009-03-19 | Abrams Daniel S | Write-Pattern Determination for Maskless Lithography |
| US20100021042A1 (en) * | 2006-09-20 | 2010-01-28 | Preil Moshe E | Photo-Mask and Wafer Image Reconstruction |
| US20100119143A1 (en) * | 2006-09-20 | 2010-05-13 | Preil Moshe E | Photo-Mask and Wafer Image Reconstruction |
| US20110194752A1 (en) * | 2010-02-05 | 2011-08-11 | Linyong Pang | Extending the Field of View of a Mask-Inspection Image |
| US20110231803A1 (en) * | 2010-03-16 | 2011-09-22 | Tadanobu Inoue | Wavefront engineering of mask data for semiconductor device design |
| US8386968B2 (en) | 2010-11-29 | 2013-02-26 | Luminescent Technologies, Inc. | Virtual photo-mask critical-dimension measurement |
| CN103064261A (en) * | 2012-12-13 | 2013-04-24 | 东南大学 | Harsh rapid propulsion method for surface evolution stimulation in photoresist etching process |
| US8458622B2 (en) | 2010-11-29 | 2013-06-04 | Luminescent Technologies, Inc. | Photo-mask acceptance technique |
| US8555214B2 (en) | 2010-09-14 | 2013-10-08 | Luminescent Technologies, Inc. | Technique for analyzing a reflective photo-mask |
| US8612903B2 (en) | 2010-09-14 | 2013-12-17 | Luminescent Technologies, Inc. | Technique for repairing a reflective photo-mask |
| US8653454B2 (en) | 2011-07-13 | 2014-02-18 | Luminescent Technologies, Inc. | Electron-beam image reconstruction |
| US9005852B2 (en) | 2012-09-10 | 2015-04-14 | Dino Technology Acquisition Llc | Technique for repairing a reflective photo-mask |
| US9091935B2 (en) | 2013-03-11 | 2015-07-28 | Kla-Tencor Corporation | Multistage extreme ultra-violet mask qualification |
| US9494854B2 (en) | 2013-03-14 | 2016-11-15 | Kla-Tencor Corporation | Technique for repairing an EUV photo-mask |
| US9547233B2 (en) | 2013-03-14 | 2017-01-17 | Kla-Tencor Corporation | Film-growth model using level sets |
| US20170053056A1 (en) * | 2015-08-21 | 2017-02-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of Mask Data Synthesis and Mask Making |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7698665B2 (en) * | 2003-04-06 | 2010-04-13 | Luminescent Technologies, Inc. | Systems, masks, and methods for manufacturable masks using a functional representation of polygon pattern |
| WO2007041602A2 (en) * | 2005-10-03 | 2007-04-12 | Luminescent Technologies, Inc. | Lithography verification using guard bands |
| WO2007041600A2 (en) * | 2005-10-03 | 2007-04-12 | Luminescent Technologies, Inc. | Mask-pattern determination using topology types |
| WO2007041701A2 (en) * | 2005-10-04 | 2007-04-12 | Luminescent Technologies, Inc. | Mask-patterns including intentional breaks |
| US7703049B2 (en) | 2005-10-06 | 2010-04-20 | Luminescent Technologies, Inc. | System, masks, and methods for photomasks optimized with approximate and accurate merit functions |
| US20140064596A1 (en) * | 2012-08-29 | 2014-03-06 | Micron Technology, Inc. | Descriptor guided fast marching method for analyzing images and systems using the same |
| CN103472686B (en) * | 2013-09-13 | 2015-04-15 | 东南大学 | Method for simulating three-dimensional light intensity distribution in thick resist ultraviolet (UV) shifting mask lithography |
-
2007
- 2007-07-05 US US11/773,923 patent/US7805700B2/en not_active Expired - Fee Related
Non-Patent Citations (2)
| Title |
|---|
| "A Semi-Empirical Resist Dissolution Model for Sub-micron Lithographies", by Mumit Khan, Srinivas B. Bollepalli, and Frano Cerina, pp. 41-46, by Technical Proceedings of the 1998 International Conference on Modeling and Simulation of Microsystems, @1998. * |
| "An Overview of Level Set Methods for Etching, Deposition, and Lithography Development", pp. 1-30, by J.A. Sethian and D. Adalsteinsson, @ Jan. 8, 1996. * |
Cited By (34)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8644588B2 (en) | 2006-09-20 | 2014-02-04 | Luminescent Technologies, Inc. | Photo-mask and wafer image reconstruction |
| US8204295B2 (en) | 2006-09-20 | 2012-06-19 | Luminescent Technologies, Inc. | Photo-mask and wafer image reconstruction |
| US20100021042A1 (en) * | 2006-09-20 | 2010-01-28 | Preil Moshe E | Photo-Mask and Wafer Image Reconstruction |
| US20100021824A1 (en) * | 2006-09-20 | 2010-01-28 | Preil Moshe E | Photo-Mask and Wafer Image Reconstruction |
| US20100021043A1 (en) * | 2006-09-20 | 2010-01-28 | Preil Moshe E | Photo-Mask and Wafer Image Reconstruction |
| US20100086195A1 (en) * | 2006-09-20 | 2010-04-08 | Preil Moshe E | Photo-Mask and Wafer Image Reconstruction |
| US20100119143A1 (en) * | 2006-09-20 | 2010-05-13 | Preil Moshe E | Photo-Mask and Wafer Image Reconstruction |
| US8200002B2 (en) | 2006-09-20 | 2012-06-12 | Luminescent Technologies, Inc. | Photo-mask and wafer image reconstruction |
| US8331645B2 (en) | 2006-09-20 | 2012-12-11 | Luminescent Technologies, Inc. | Photo-mask and wafer image reconstruction |
| US8280146B2 (en) | 2006-09-20 | 2012-10-02 | Luminescent Technologies, Inc. | Photo-mask and wafer image reconstruction |
| US8260032B2 (en) | 2006-09-20 | 2012-09-04 | Luminescent Technologies, Inc. | Photo-mask and wafer image reconstruction |
| US8208712B2 (en) | 2006-09-20 | 2012-06-26 | Luminescent Technologies, Inc. | Photo-mask and wafer image reconstruction |
| US8245162B2 (en) | 2007-09-14 | 2012-08-14 | Abrams Daniel S | Write-pattern determination for maskless lithography |
| US20090073413A1 (en) * | 2007-09-14 | 2009-03-19 | Abrams Daniel S | Write-Pattern Determination for Maskless Lithography |
| US8111380B2 (en) | 2007-09-14 | 2012-02-07 | Luminescent Technologies, Inc. | Write-pattern determination for maskless lithography |
| US20090077526A1 (en) * | 2007-09-14 | 2009-03-19 | Abrams Daniel S | Write-Pattern Determination for Maskless Lithography |
| US20110194752A1 (en) * | 2010-02-05 | 2011-08-11 | Linyong Pang | Extending the Field of View of a Mask-Inspection Image |
| US8463016B2 (en) | 2010-02-05 | 2013-06-11 | Luminescent Technologies, Inc. | Extending the field of view of a mask-inspection image |
| US20110231803A1 (en) * | 2010-03-16 | 2011-09-22 | Tadanobu Inoue | Wavefront engineering of mask data for semiconductor device design |
| US8453076B2 (en) * | 2010-03-16 | 2013-05-28 | International Business Machines Corporation | Wavefront engineering of mask data for semiconductor device design |
| US8555214B2 (en) | 2010-09-14 | 2013-10-08 | Luminescent Technologies, Inc. | Technique for analyzing a reflective photo-mask |
| US8612903B2 (en) | 2010-09-14 | 2013-12-17 | Luminescent Technologies, Inc. | Technique for repairing a reflective photo-mask |
| US8386968B2 (en) | 2010-11-29 | 2013-02-26 | Luminescent Technologies, Inc. | Virtual photo-mask critical-dimension measurement |
| US8458622B2 (en) | 2010-11-29 | 2013-06-04 | Luminescent Technologies, Inc. | Photo-mask acceptance technique |
| US9696619B2 (en) | 2011-02-04 | 2017-07-04 | Dino Technology Acquisition Llc | Technique for repairing a reflective photo-mask |
| US8653454B2 (en) | 2011-07-13 | 2014-02-18 | Luminescent Technologies, Inc. | Electron-beam image reconstruction |
| US9005852B2 (en) | 2012-09-10 | 2015-04-14 | Dino Technology Acquisition Llc | Technique for repairing a reflective photo-mask |
| CN103064261A (en) * | 2012-12-13 | 2013-04-24 | 东南大学 | Harsh rapid propulsion method for surface evolution stimulation in photoresist etching process |
| CN103064261B (en) * | 2012-12-13 | 2014-09-10 | 东南大学 | Harsh rapid propulsion method for surface evolution stimulation in photoresist etching process |
| US9091935B2 (en) | 2013-03-11 | 2015-07-28 | Kla-Tencor Corporation | Multistage extreme ultra-violet mask qualification |
| US9494854B2 (en) | 2013-03-14 | 2016-11-15 | Kla-Tencor Corporation | Technique for repairing an EUV photo-mask |
| US9547233B2 (en) | 2013-03-14 | 2017-01-17 | Kla-Tencor Corporation | Film-growth model using level sets |
| US20170053056A1 (en) * | 2015-08-21 | 2017-02-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of Mask Data Synthesis and Mask Making |
| US9747408B2 (en) * | 2015-08-21 | 2017-08-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Generating final mask pattern by performing inverse beam technology process |
Also Published As
| Publication number | Publication date |
|---|---|
| US20090013304A1 (en) | 2009-01-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7805700B2 (en) | Physical-resist model using fast sweeping | |
| US10909294B2 (en) | Modeling of a design in reticle enhancement technology | |
| EP1677221B1 (en) | Method and apparatus for placing assist features in a layout | |
| US11061318B2 (en) | Lithography model calibration | |
| US11994796B2 (en) | Method of modeling a mask having patterns with arbitrary angles | |
| US11645443B2 (en) | Method of modeling a mask by taking into account of mask pattern edge interaction | |
| JP3409493B2 (en) | Mask pattern correction method and correction device | |
| US20150227671A1 (en) | Method For Integrated Circuit Mask Patterning | |
| US7921385B2 (en) | Mask-pattern determination using topology types | |
| US12412017B2 (en) | Methods for modeling of a design in reticle enhancement technology | |
| US8458631B2 (en) | Cycle time reduction in data preparation | |
| US20110202893A1 (en) | Contour Self-Alignment For Optical Proximity Correction Model Calibration | |
| US6993455B2 (en) | Method for determining the construction of a mask for the micropatterning of semiconductor substrates by means of photolithography | |
| US8910098B1 (en) | Neighbor-aware edge fragment adjustment for optical proximity correction | |
| Abboud et al. | Mask data processing in the era of multibeam writers | |
| JP7278992B2 (en) | Method for determining dose correction applied to IC manufacturing process by matching procedure | |
| JP3508306B2 (en) | Mask pattern correction method, mask using the same, exposure method and semiconductor device | |
| CN114114826A (en) | Target pattern correction method and mask manufacturing method | |
| CN101526735B (en) | Photomask design method and method of manufacturing semiconductor device using photomask | |
| CN115630599A (en) | Method, apparatus, and medium for layout processing | |
| JP6167663B2 (en) | Development loading correction program, computer, drawing system, development loading correction method | |
| US9547233B2 (en) | Film-growth model using level sets | |
| CN113671804B (en) | Method, apparatus and computer readable storage medium for determining mask perturbation signal | |
| JPH11307419A (en) | Simulation method in semiconductor process | |
| CN120182621A (en) | Fast three-dimensional mask diffraction field calculation method and system based on multi-directional filter |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: LUMINESCENT TECHNOLOGIES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PENG, DANPING;REEL/FRAME:020377/0084 Effective date: 20080114 |
|
| AS | Assignment |
Owner name: VENTURE LENDING & LEASING IV, INC., CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:LUMINESCENT TECHNOLOGIES, INC.;REEL/FRAME:022248/0437 Effective date: 20081124 Owner name: VENTURE LENDING & LEASING IV, INC.,CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:LUMINESCENT TECHNOLOGIES, INC.;REEL/FRAME:022248/0437 Effective date: 20081124 |
|
| AS | Assignment |
Owner name: LUMINESCENT TECHNOLOGIES, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING IV, INC.;REEL/FRAME:023163/0631 Effective date: 20090827 Owner name: LUMINESCENT TECHNOLOGIES, INC.,CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:VENTURE LENDING & LEASING IV, INC.;REEL/FRAME:023163/0631 Effective date: 20090827 |
|
| AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:LUMINESCENT TECHNOLOGIES, INC.;REEL/FRAME:023617/0658 Effective date: 20091207 Owner name: SILICON VALLEY BANK,CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:LUMINESCENT TECHNOLOGIES, INC.;REEL/FRAME:023617/0658 Effective date: 20091207 |
|
| FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: DINO TECHNOLOGY ACQUISITION LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUMINESCENT TECHNOLOGIES, INC.;REEL/FRAME:032628/0926 Effective date: 20140327 |
|
| FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
| LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |