US6322784B1 - Adipogenic differentiation of human mesenchymal stem cells - Google Patents
Adipogenic differentiation of human mesenchymal stem cells Download PDFInfo
- Publication number
- US6322784B1 US6322784B1 US09/246,003 US24600398A US6322784B1 US 6322784 B1 US6322784 B1 US 6322784B1 US 24600398 A US24600398 A US 24600398A US 6322784 B1 US6322784 B1 US 6322784B1
- Authority
- US
- United States
- Prior art keywords
- cells
- camp
- adipocytes
- hmscs
- adipogenic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000002901 mesenchymal stem cell Anatomy 0.000 title claims abstract description 56
- 230000009815 adipogenic differentiation Effects 0.000 title description 11
- 210000001789 adipocyte Anatomy 0.000 claims abstract description 109
- 210000004027 cell Anatomy 0.000 claims abstract description 107
- 230000002293 adipogenic effect Effects 0.000 claims abstract description 95
- 150000001875 compounds Chemical class 0.000 claims abstract description 48
- 108010016731 PPAR gamma Proteins 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 24
- 239000003862 glucocorticoid Substances 0.000 claims abstract description 20
- 230000015556 catabolic process Effects 0.000 claims abstract description 19
- 238000006731 degradation reaction Methods 0.000 claims abstract description 19
- 230000014509 gene expression Effects 0.000 claims abstract description 19
- 230000004568 DNA-binding Effects 0.000 claims abstract description 13
- 230000027455 binding Effects 0.000 claims abstract description 12
- 230000001939 inductive effect Effects 0.000 claims abstract description 10
- 229940099471 Phosphodiesterase inhibitor Drugs 0.000 claims abstract description 8
- 239000002571 phosphodiesterase inhibitor Substances 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 8
- 102000000536 PPAR gamma Human genes 0.000 claims abstract description 7
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 claims description 74
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 44
- 229960000905 indomethacin Drugs 0.000 claims description 37
- VHRUMKCAEVRUBK-GODQJPCRSA-N 15-deoxy-Delta(12,14)-prostaglandin J2 Chemical group CCCCC\C=C\C=C1/[C@@H](C\C=C/CCCC(O)=O)C=CC1=O VHRUMKCAEVRUBK-GODQJPCRSA-N 0.000 claims description 27
- 102000004877 Insulin Human genes 0.000 claims description 22
- 108090001061 Insulin Proteins 0.000 claims description 22
- 229940125396 insulin Drugs 0.000 claims description 22
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 claims description 19
- 102100038825 Peroxisome proliferator-activated receptor gamma Human genes 0.000 claims description 18
- 229960003957 dexamethasone Drugs 0.000 claims description 18
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 10
- OHCQJHSOBUTRHG-KGGHGJDLSA-N FORSKOLIN Chemical compound O=C([C@@]12O)C[C@](C)(C=C)O[C@]1(C)[C@@H](OC(=O)C)[C@@H](O)[C@@H]1[C@]2(C)[C@@H](O)CCC1(C)C OHCQJHSOBUTRHG-KGGHGJDLSA-N 0.000 claims description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 claims description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 4
- 230000003834 intracellular effect Effects 0.000 claims description 4
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 claims description 4
- 230000037041 intracellular level Effects 0.000 claims description 3
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 claims description 2
- AAZMHPMNAVEBRE-SDBHATRESA-N 8-(4-chlorophenylthio)-cAMP Chemical compound N=1C=2C(N)=NC=NC=2N([C@H]2[C@@H]([C@@H]3OP(O)(=O)OC[C@H]3O2)O)C=1SC1=CC=C(Cl)C=C1 AAZMHPMNAVEBRE-SDBHATRESA-N 0.000 claims description 2
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 claims description 2
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 claims description 2
- SUZLHDUTVMZSEV-UHFFFAOYSA-N Deoxycoleonol Natural products C12C(=O)CC(C)(C=C)OC2(C)C(OC(=O)C)C(O)C2C1(C)C(O)CCC2(C)C SUZLHDUTVMZSEV-UHFFFAOYSA-N 0.000 claims description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 claims description 2
- 102000003728 Peroxisome Proliferator-Activated Receptors Human genes 0.000 claims description 2
- 108090000029 Peroxisome Proliferator-Activated Receptors Proteins 0.000 claims description 2
- CJGYSWNGNKCJSB-YVLZZHOMSA-N bucladesine Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](OC(=O)CCC)[C@@H]2N1C(N=CN=C2NC(=O)CCC)=C2N=C1 CJGYSWNGNKCJSB-YVLZZHOMSA-N 0.000 claims description 2
- 229960005263 bucladesine Drugs 0.000 claims description 2
- 229960001948 caffeine Drugs 0.000 claims description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 claims description 2
- OHCQJHSOBUTRHG-UHFFFAOYSA-N colforsin Natural products OC12C(=O)CC(C)(C=C)OC1(C)C(OC(=O)C)C(O)C1C2(C)C(O)CCC1(C)C OHCQJHSOBUTRHG-UHFFFAOYSA-N 0.000 claims description 2
- 229960004544 cortisone Drugs 0.000 claims description 2
- 229960000890 hydrocortisone Drugs 0.000 claims description 2
- 150000003180 prostaglandins Chemical class 0.000 claims description 2
- DMRMZQATXPQOTP-GWTDSMLYSA-M sodium;(4ar,6r,7r,7as)-6-(6-amino-8-bromopurin-9-yl)-2-oxido-2-oxo-4a,6,7,7a-tetrahydro-4h-furo[3,2-d][1,3,2]dioxaphosphinin-7-ol Chemical compound [Na+].C([C@H]1O2)OP([O-])(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1Br DMRMZQATXPQOTP-GWTDSMLYSA-M 0.000 claims description 2
- 229960000278 theophylline Drugs 0.000 claims description 2
- 230000004069 differentiation Effects 0.000 abstract description 29
- 230000003491 cAMP production Effects 0.000 abstract description 5
- 210000002808 connective tissue Anatomy 0.000 abstract description 2
- 150000002632 lipids Chemical class 0.000 description 49
- 238000012423 maintenance Methods 0.000 description 27
- 210000003934 vacuole Anatomy 0.000 description 22
- 230000006698 induction Effects 0.000 description 21
- 238000011282 treatment Methods 0.000 description 16
- 239000002609 medium Substances 0.000 description 15
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 15
- 239000000975 dye Substances 0.000 description 13
- 102000016267 Leptin Human genes 0.000 description 11
- 108010092277 Leptin Proteins 0.000 description 11
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 210000001519 tissue Anatomy 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 238000012258 culturing Methods 0.000 description 8
- 229940039781 leptin Drugs 0.000 description 8
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 208000008589 Obesity Diseases 0.000 description 7
- 102000012132 Peroxisome proliferator-activated receptor gamma Human genes 0.000 description 7
- 231100000673 dose–response relationship Toxicity 0.000 description 7
- 239000008103 glucose Substances 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 235000020824 obesity Nutrition 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 101000958041 Homo sapiens Musculin Proteins 0.000 description 6
- 102000004142 Trypsin Human genes 0.000 description 6
- 108090000631 Trypsin Proteins 0.000 description 6
- 210000000577 adipose tissue Anatomy 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000012588 trypsin Substances 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- NPGIHFRTRXVWOY-UHFFFAOYSA-N Oil red O Chemical compound Cc1ccc(C)c(c1)N=Nc1cc(C)c(cc1C)N=Nc1c(O)ccc2ccccc12 NPGIHFRTRXVWOY-UHFFFAOYSA-N 0.000 description 5
- 230000011759 adipose tissue development Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 230000003328 fibroblastic effect Effects 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 239000012737 fresh medium Substances 0.000 description 4
- 102000046949 human MSC Human genes 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000010534 mechanism of action Effects 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 101710186200 CCAAT/enhancer-binding protein Proteins 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 210000004271 bone marrow stromal cell Anatomy 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 210000005260 human cell Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- UBOKASXZHPZFRZ-UHFFFAOYSA-N 2-phenyl-1h-indole-4,6-diamine Chemical compound N1C2=CC(N)=CC(N)=C2C=C1C1=CC=CC=C1 UBOKASXZHPZFRZ-UHFFFAOYSA-N 0.000 description 2
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 2
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- MIJPAVRNWPDMOR-ZAFYKAAXSA-N L-ascorbic acid 2-phosphate Chemical compound OC[C@H](O)[C@H]1OC(=O)C(OP(O)(O)=O)=C1O MIJPAVRNWPDMOR-ZAFYKAAXSA-N 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 2
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 2
- 210000003486 adipose tissue brown Anatomy 0.000 description 2
- 210000000593 adipose tissue white Anatomy 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 229960002756 azacitidine Drugs 0.000 description 2
- DHCLVCXQIBBOPH-UHFFFAOYSA-N beta-glycerol phosphate Natural products OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 2
- GHRQXJHBXKYCLZ-UHFFFAOYSA-L beta-glycerolphosphate Chemical compound [Na+].[Na+].CC(CO)OOP([O-])([O-])=O GHRQXJHBXKYCLZ-UHFFFAOYSA-L 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002316 cosmetic surgery Methods 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 235000018823 dietary intake Nutrition 0.000 description 2
- 230000037149 energy metabolism Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000035558 fertility Effects 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 238000012757 fluorescence staining Methods 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 210000003016 hypothalamus Anatomy 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000011419 induction treatment Methods 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000002188 osteogenic effect Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000002278 reconstructive surgery Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 239000011165 3D composite Substances 0.000 description 1
- 102000009122 CCAAT-Enhancer-Binding Proteins Human genes 0.000 description 1
- 108010048401 CCAAT-Enhancer-Binding Proteins Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000018711 Facilitative Glucose Transport Proteins Human genes 0.000 description 1
- 108010087894 Fatty acid desaturases Proteins 0.000 description 1
- 102000058061 Glucose Transporter Type 4 Human genes 0.000 description 1
- 108091052347 Glucose transporter family Proteins 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033307 Overweight Diseases 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 108091006300 SLC2A4 Proteins 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 102000016553 Stearoyl-CoA Desaturase Human genes 0.000 description 1
- 208000037063 Thinness Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001857 anti-mycotic effect Effects 0.000 description 1
- 229940030225 antihemorrhagics Drugs 0.000 description 1
- 239000002543 antimycotic Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000000512 collagen gel Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002380 cytological effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 235000021130 excess caloric intake Nutrition 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 230000003054 hormonal effect Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- XJCPMUIIBDVFDM-UHFFFAOYSA-M nile blue A Chemical compound [Cl-].C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4[O+]=C3C=C(N)C2=C1 XJCPMUIIBDVFDM-UHFFFAOYSA-M 0.000 description 1
- 238000013116 obese mouse model Methods 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 230000003256 osteocytic effect Effects 0.000 description 1
- 230000009818 osteogenic differentiation Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 235000020830 overeating Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- BHMBVRSPMRCCGG-OUTUXVNYSA-N prostaglandin D2 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](C\C=C/CCCC(O)=O)[C@@H](O)CC1=O BHMBVRSPMRCCGG-OUTUXVNYSA-N 0.000 description 1
- UQOQENZZLBSFKO-POPPZSFYSA-N prostaglandin J2 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](C\C=C/CCCC(O)=O)C=CC1=O UQOQENZZLBSFKO-POPPZSFYSA-N 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000028503 regulation of lipid metabolic process Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000037195 reproductive physiology Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000002820 sympathetic nervous system Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 206010048828 underweight Diseases 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0653—Adipocytes; Adipose tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0662—Stem cells
- C12N5/0663—Bone marrow mesenchymal stem cells (BM-MSC)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/01—Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/39—Steroid hormones
Definitions
- This invention relates to adipocytes and more particularly to producing adipocytes from human mesenchymal stem cells.
- Adipose tissue provides an energy storage reserve for the body in the form of triglycerides and this tissue can release free fatty acids when caloric intake falls below metabolic needs. In response to increased dietary intake, the body will normally automatically increase energy expenditure through activity to maintain an energy balance. Energy can also be released as heat. Adipose tissue is intimately involved in the maintenance of body temperature through brown adipose tissue and energy storage through white adipose tissue. There are normal energy regulation pathways that balance dietary intake with metabolic activity largely mediated through the hypothalamus. It is now also apparent that the adipocyte plays an active role in this process and likely produces molecules that serve to feed back and effect regulation of triglyceride metabolism.
- adipose tissue brown and white
- white adipose is designed to store excess caloric intake while brown adipose tissue uses a unique system to syphon off excess calories and use it to generate body heat.
- the heat is generated in the mitochondria of brown adipose where oxidation of substrate is utilized to create a hydrogen ion gradient that is then collapsed in a regulated fashion generating heat instead of ATP. It has been shown that transgenic animals that lack brown adipose maintain efficient metabolism, are obese and continue to overeat (Lowell et al, 1993). Other rodent studies have also shown a link between obesity, continued overeating and a sensitivity to cold, suggesting a connection to the sympathetic nervous system (Friedman and Leibel, 1992)
- leptin may serve as a hormone that regulates fertility and may be the link between appropriate body weight and reproductive physiology. Both underweight and overweight women have difficulty in conceiving and this is likely associated with hormonal imbalance in the body of these individuals.
- the connection between body weight, fertility and the leptin produced by adipocytes has been suspected and now tested in mice. When obese mice, which normally do not produce offspring without transplanting the ovaries to surrogate females, were injected with leptin, their body weight fell dramatically and they gave birth to their own litters (Chehab et al, 1996).
- mouse 3T3-L1 cells derived from NIH 3T3, an immortalized mouse cell line can be grown and cultured as a fibroblastic cell.
- dexamethasone and methyl-isobutylxanthine the cells undergo differentiation which results in the production of intracellular lipid-containing vacuoles (Spiegelman and Green, 1981).
- Rat marrow stromal cells have been shown to undergo both osteogenic and adipogenic differentiation when cultured with fetal calf serum and dexamethasone, but the predominating cell type varies depending on conditions (Beresford et al., 1992).
- Mouse derived CH3 10T1/2 cells are a multipotential cell line that, when treated with 5-azacytidine, undergoes terminal differentiation into adipocytes, myocytes and chondrocytes.
- the 5-azacytidine causes inhibition of DNA methylation and thus causes the activation of a few genes responsible for commitment to these lineages (Konieczny and Emerson, 1984).
- composition and method for inducing human mesenchymal stem cells to preferentially differentiate into the adipogenic lineage, i.e., to differentiate into adipocytes are provided.
- mesenchymal stem cells and in particular human mesenchymal stem cells (hMSCs) can be directed to differentiate into adipocytes by treating the human mesenchymal stem cells with (i) a glucocorticoid and (ii) a compound which elevates intracellular cAMP levels by either upregulating cAMP production or by inhibiting degradation of cAMP; in particular a compound which inhibits compound(s) which degrade cAMP.
- the human mesenchymal stem cells are treated with a glucocorticoid and a compound which inhibits the activity of a compound which degrades cAMP; in particular a phosphodiesterase inhibitor.
- the cells are subsequently cultured in media containing insulin and fetal bovine serum.
- the human mesenchymal stem cells are treated with a glucocorticoid; insulin; and at least two compounds which inhibit degradation of cAMP, wherein one said compound which inhibits degradation of cAMP is indomethacin.
- the human mesenchymal stem cells are treated with a glucocorticoid; a compound which inhibits the activity of a compound which degrades cAMP; insulin; and a compound which upregulates peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) expression and/or increases its binding affinity to its DNA binding site.
- a glucocorticoid a compound which inhibits the activity of a compound which degrades cAMP
- insulin and a compound which upregulates peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) expression and/or increases its binding affinity to its DNA binding site.
- PPAR ⁇ peroxisome proliferator activated receptor ⁇
- the invention provides a composition comprising MSCs grown on a stabilized collagen gel matrix which are induced to differentiate into adipocytes.
- Human mesenchymal stem cells as well as their isolation and expansion, have been described in U.S. Pat. No. 5,486,359.
- human mesenchymal stem cells are capable of producing two or more different types (lineages) of mesenchymal cells or tissues and in particular connective tissue.
- the present invention provides a method for generating adipocytes from primary human mesenchymal stem cells in a predictable and reproducible manner.
- the invention is unique in that it involves human cells in primary and passaged cultures rather than transformed or immortalized cell lines that are predetermined to enter the adipogenic pathway.
- hMSCs are capable of entering multiple lineages including the osteocytic, chondrocytic, myocytic, tendonocytic and stromogenic lineages and the present invention provides a method and composition for inducing hMSCs to differentiate into adipocytes.
- hMSC's are induced to differentiate into essentially only adipocytes, i.e., there is no essential production or commitment to cells of other mesenchymal lineages.
- the method may also be used for generating adipocytes from MSCs from other species such as rabbit, dog, rat and mouse.
- the invention also provides methods to purify the adipocytes to obtain a highly purified population.
- the method of the invention for the in vitro differentiation of human mesenchymal stem cells preferably derived from bone marrow into adipoblastic or adipocytic cells is useful to investigators wishing to study this developmental program in human cells in vitro.
- a better understanding of diseases of energy metabolism including obesity and obesity-related diabetes will also result from studies of the differentiation of mesenchymal stem cells to adipocytes. While a cellular and biochemical basis for obesity has long been suspected, advancements have been slow due to a lack of model systems with biochemical and molecular tools for study. Recent dramatic breakthroughs in the molecular basis of adipogenesis have opened new avenues towards understanding this pathway of mesenchymal cell differentiation, although a human model system such as the one described here has been lacking.
- the method will also have utility in the isolation and preparation of adipocytes for implantation into a patient for the purpose of tissue augmentation following trauma or cosmetic surgery.
- FIGS. 1A-1B show that when human MSCs are treated in accordance with the invention, they undergo differentiation to the adipogenic lineage.
- FIG. 1A shows hMSCs (4 ⁇ ) cultured in normal hMSC media for the same period of time as FIG. 1 B. There is no evidence of lipid containing vacuoles and the cells maintain the appearance of fibroblasts at high density.
- FIG. 1B are hMSCs that were allowed to become confluent and then maintained in normal media for 10 days prior to adding the Adipogenic Induction media (containing methylisobutylxanthine and dexamethasone) for 48 hrs, and then changed to the insulin-containing adipocyte maintenance media for an additional 2 weeks.
- the lipid vacuoles are first apparent at about 5-7 days but increase in size and abundance over time.
- FIG. 2A shows a similar control culture as FIG. 1A at higher magnification (20 ⁇ ).
- FIG. 2B show a culture of confluent hMSCs that were subjected to Adipogenic Induction media for 48 hours and then maintained in the Adipogenic Maintenance media for 14 days. The many lipid containing vacuoles of adipocytes are evident in a large proportion of the cells.
- FIG. 3 shows the results of culturing hMSCs under a variety of conditions, only one of which shows a high degree of adipogenic differentiation. All photos are at 10 ⁇ magnification.
- FIG. 3A shows a culture of hMSCs maintained in normal hMSC culture media alone. The cells grow with a fibroblastic morphology.
- FIG. 3B shows a similar culture that was treated with Adipogenic Induction media for 48 hours and then with Adipogenic Maintenance media for an additional 14 days with media changes every 3 days.
- the adipogenic cells perhaps as many as 30-35% of the cells, are evident as they contain the large refractile lipid vacuoles.
- FIG. 3C shows a culture of hMSCs that were maintained in the Adipogenic Maintenance media for 14 days but was never subjected to the dexamethasone/methyl isobutylxanthine treatment. The cells maintain a flat morphological appearance with no evident vacuoles.
- FIG. 3D shows a culture of hMSCs that were treated with normal hMSC media containing 1 ⁇ M dexamethasone for 48 hours and then cultured for 14 days in the Adipogenic Maintenance media.
- the cells are disorganized but show very few, if any, lipid vaculoes.
- FIG. 3E shows a culture of hMSCs that was treated with normal hMSC media containing 0.5 m. methylisobutylxanthine for 48 hours and then was maintained for 14 days in the Adipogenic Maintenance media. The cells retain a flat fibroblastic phenotype.
- FIG. 3F shows a culture of hMSCs that was treated with a media that induces the cells to differentiate along a osteogenic pathway.
- This media contains 0.1 ⁇ M dexamethasone, 10 mM ⁇ -glycerol phosphate and 50 ⁇ M ascorbic acid 2-phosphate. The presence of refractile osteoid material is evident but no large lipid vacuoles.
- FIG. 4A shows a culture of hMSCs subjected to the Adipogenic Induction media for 48 hours and then cultured for 14 days in the Adipogenic Maintenance media.
- the large lipid vacuoles are evident in this bright field image.
- the lipids can also be revealed by using a fluorescent lipid soluble dye, such as Nile Red, and viewing by epifluorescence illumination as shown in FIG. 4 B.
- the adipogenic cells can also be identified using vital dyes and histological stains that label the lipid vacuoles.
- FIG. 5A shows hMSCs in culture which were not treated with Adipogenic Induction media but which were cultured, fixed and stained at the same time as the adipogenic cultures shown in 5 B and 5 C.
- FIG. 5B shows hMSCs that were treated once for 48 hours with Adipogenic Induction media and then cultured for an additional three weeks in Adipogenic Maintenance media and then fixed in neutral buffered formalin and stained with Oil Red O, a lipid soluble dye that accumulates in the fat droplets.
- FIG. 5C shows a dish of hMSCs that was retreated with fresh Adipogenic Induction media for a second and third 48 hour period to induce more hMSCs to become adipogenic. As many as 30-40% of the cells were converted to adipocytes by the three induction treatments when viewed two weeks after the third treatment. Panels 5 A- 5 C were all stained with Oil Red O.
- FIG. 6A shows the isolated adipogenic hMSCs that attached to the uppermost surface.
- the population is composed of greater than 99% adipogenic cells as evidenced by the lipid droplets in every cell.
- FIG. 6B shows the non-adipogenic hMSCs that settled to the lower surface of the flask. Very few cells containing lipid droplets were present on the lower surface. These non-adipogenic cells could be treated with trypsin/EDTA and replated to another dish and be shown to retain adipogenic potential (data not shown), indicating that they remain as mesenchymal stem cells, capable of lineage progression.
- FIG. 7 illustrates the level of fluorescence staining of adipocytes produced from mesenchymal stem cells cultured with varying concentrations of indomethacin.
- the numbers on the x-axis correspond to sample numbers in Table 1. The results show a dose dependent increase in the number of adipocytes following treatment with increasing levels of indomethacin.
- FIGS. 8A-F are photographs of adipocytes produced from mesenchymal stem cells cultured with varying concentrations of indomethacin. The photographs show a dose dependent increase in the number of adipocytes following treatment with increasing levels of indomethacin.
- FIGS. 9A-F are photographs of adipocytes produced from mesenchymal stem cells cultured with varying concentrations of indomethacin in the absence of 1-methyl-3-isobutylxanthine. The photographs show a dose dependent increase in the number of adipocytes following treatment with increasing levels of indomethacin, however the percentage of adipocytes produced was much lower than using indomethacin and MDI.
- FIG. 10 illustrates the level of fluorescence staining of adipocytes produced from mesenchymal stem cells cultured with varying concentrations of 15-deoxy ⁇ 12,14 -prostaglandin J 2 (15d-PGJ 2 ).
- the numbers on the x-axis correspond to sample numbers in Table 2.
- the results show a dose dependent increase in the number of adipocytes following treatment with increasing levels of 15d-PGJ 2 .
- FIGS. 11A-F are photographs of adipocytes produced from mesenchymal stem cells cultured with varying concentrations of 15d-PGJ 2 .
- the photographs show a dose dependent increase in the number of adipocytes following treatment with increasing levels of 15d-PGJ 2 .
- D DI+10 ⁇ M 15d-PGJ 2 ;
- F I+10 ⁇ M 15d-PGJ 2 .
- FIG. 12 is a photograph of fluorescently stained adipogenic MSCs in GELFOAM.
- one aspect of the invention provides a composition which comprises an isolated, homogeneous population of human mesenchymal stem cells which have the potential to differentiate into cells of more than one mesenchymal tissue type, and a substance which induces cells from the mesenchymal stem cell population to differentiate into the adipogenic lineage.
- mesenchymal stem cells are induced to differentiate into the adipogenic lineage by use of a glucocorticoid and at least one compound which either elevates intracellular levels of cAMP, for example, a cAMP analog or a compound which stimulates production of cAMP or inhibits degradation of cAMP; in particular a phosphodiesterase inhibitor.
- a glucocorticoid and at least one compound which either elevates intracellular levels of cAMP, for example, a cAMP analog or a compound which stimulates production of cAMP or inhibits degradation of cAMP; in particular a phosphodiesterase inhibitor.
- Preferred examples of the glucocorticoid are selected from the group consisting of dexamethasone, hydrocortisone, cortisone, etc.
- Preferred examples of the substance which elevate intracellular cAMP levels or are cAMP analogs include dibutyryl-cAMP, 8-CPT-cAMP (8-(4)-chlorophenylthio)-adenosine 3′, 5′ cyclic monophosphate; 8-bromo-cAMP; dioctanoyl-cAMP, Forskolin, etc.
- Preferred examples of the substance which inhibits cAMP degradation by inhibiting the activity of phosphodiesterase is selected from the group consisting of methyl isobutylxanthine, theophylline, caffeine and indomethacin.
- the compound which elevates levels of cAMP and the glucocorticoid are used in amounts which are effective to induce hMSCs to differentiate into adipocytes.
- the cAMP regulating compound and glucocorticoid may be added to the hMSCs separately or in admixture with each other.
- the glucocorticoid is used in a concentration from about 0.1 to 10 micromolar, preferably from about 0.5 to 2 micromolar.
- such a compound When employing a compound which inhibits degradation of cAMP, such a compound is generally employed either alone or in combination with another such compound in a concentration of about 10 to 500 micromolar and preferably from about 50 to 200 micromolar.
- such compound When employing a compound which upregulates cAMP production, such compound is generally employed in a concentration of from about 0.1 to 100 micromolar, preferably from about 0.5 to 10 micromolar.
- one of the compounds which is employed to induce hMSCs to differentiate into adipocytes is one which regulates cAMP (either one which is known to upregulate cAMP production or one which prevents degradation of cAMP), the scope of the invention is not limited to any particular mechanism of action.
- one of the compounds which may be used in the present invention is a phosphodiesterase inhibitor which is known to inhibit degradation of cAMP by inhibiting phosphodiesterase degradation of cAMP
- the invention is not limited to a mechanism of action which is dependent upon preventing degradation of cAMP.
- the phosphodiesterase inhibitor may be effective for inducing differentiation of hMSCs to adipocytes by a mechanism of action other than inhibiting degradation of cAMP.
- Compounds in addition to (i) a glucocorticoid and (ii) a cAMP regulator may be used for inducing hMSCs to differentiate into adipocytes.
- a glucocorticoid and a cAMP regulator may be used for inducing hMSCs to differentiate into adipocytes.
- insulin is also employed in conjunction with the cAMP regulator and glucocorticoid.
- a compound which upregulates the expression of peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) or increases the binding affinity of PPAR ⁇ to its DNA binding element may also be employed in conjunction with the cAMP regulator and glucocorticoid for inducing hMSCs to differentiate into adipocytes.
- PPAR ⁇ peroxisome proliferator activated receptor ⁇
- composition for inducing hMSCs to differentiate into adipocytes which is comprised of (i) a glucocorticoid, (ii) a compound which regulates cAMP and in particular a compound which inhibits cAMP degradation such as, a phosphodiesterase inhibitor, (iii) insulin or insulin-like growth factor and (iv) glucose.
- mesenchymal stem cells are induced to differentiate into the adipogenic lineage by employing a glucocorticoid; insulin; and at least two compounds which inhibit degradation of cAMP, wherein one said compound which inhibits degradation of cAMP is indomethacin.
- the indomethacin is used in conjunction with methyl isobutylxanthine.
- mesenchymal stem cells are induced to differentiate into the adipocytic lineage by use of a glucocorticoid; a cAMP regulating compound; insulin; and a compound which upregulates the expression of peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) or increases the binding affinity of PPAR ⁇ to its DNA binding element.
- a glucocorticoid a cAMP regulating compound
- insulin insulin
- PPAR ⁇ peroxisome proliferator activated receptor ⁇
- Representative examples of compounds that upregulate the expression of peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) or increase the binding affinity of PPAR ⁇ to its DNA binding element include prostaglandins, such as members of the prostaglandin J 2 or prostaglandin D 2 families or their metabolites.
- a preferred example of a substance that upregulates the expression of peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) or increases the binding affinity of PPAR ⁇ to its DNA binding element is 15-deoxy ⁇ 12,14 -prostaglandin J 2 (15d-PGJ 2 ).
- a compound that upregulates the expression of peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) or increases the binding affinity of PPAR ⁇ to its DNA binding element such compound is used in a concentration of from about 0.5 to 50 micromolar and preferably from about 1.0 to 10 micromolar.
- a composition comprised of human mesenchymal stem cells and adipocytes wherein based on the two components the adipocytes are present in an amount of at least 5 wt. % and preferably at least 15 wt. %.
- the amount of adipocytes may be up to 50 wt. % or higher, based on the two components.
- the composition which is generated is essentially free of committed cells of the mesenchymal lineage other than adipocytes.
- hMSCs treatment of hMSCs in accordance with the invention produces a mixture of adipocytes and undifferentiated hMSCs
- the produced adipocytes may be recovered from the mixture to produce an isolated population of adipocytes. Representative procedures for recovering adipocytes are described in the examples which form a part of this application.
- hMSCs may be treated to induce differentiation into adipocytes in a manner such that such differentiation is effected in vitro or in vivo.
- hMSCs may be admixed with compounds as hereinabove described which induce differentiation into hMSCs and the resulting mixture employed in vivo to induce differentiation to adipocytes in vivo.
- the mixture without culturing in vitro for a period of time to induce differentiation in vitro may be employed in a suitable matrix (for example of the type hereinafter described) to induce differentiation of the hMSCs to adipocytes in vivo.
- a composition comprised of human mesenchymal stem cells, a glucocorticoid and a cAMP regulator (a compound(s) which upregulates cAMP production or inhibits cAMP degradation) and a compound that upregulates the expression of peroxisome proliferator activated receptor ⁇ (PPAR ⁇ ) or increases the binding affinity of PPAR ⁇ to its DNA binding element.
- a composition may be employed to produce adipocytes in vitro or may be employed to induce differentiation of hMSCs in vivo.
- adipogenic hMSCs The ability to generate large percentages of adipogenic cells from a population of hMSCs will allow greater numbers of cells for implantation or research studies. Fewer hMSCs would be needed as starting material. By repeating the adipogenic induction step more times, it should be possible to induce most of the hMSCs in a population to adipocytes. In the case where there is a mixture of cells, adipogenic hMSCs can easily be isolated by their buoyant density. The isolation of a highly enriched population of adipocytes from cultured hMSCs will also allow for a detailed characterization of the adipocyte phenotype.
- the adipocytes can be used with a variety of materials to form a composition for purposes such as reconstructive surgery.
- the cells may be combined with a biomatrix to form a two dimensional or three dimensional material as needed. Surgeons routinely use fat pads and fatty tissues from remote sites to build up an area where tissue has been removed. This often involves a separate procedure with its inherent risks.
- hMSCs can also differentiate into adipocytes when cultured on three dimensional support materials to form a composite.
- MSCs can grow and differentiate on a variety of biomaterials including those made from collagen, polyglycolic acid, polylactic acid or copolymers thereof. The composite would then be treated to induce adipogenic differentiation of the MSCs in vitro for 1-3 weeks, then implanted when needed.
- adipogenic MSCs could be mixed with a solubilized collagen or other biomaterial which is then allowed to gel to form a three dimensional composite that could be used for breast augmentation following mastectomy. Such a composite could be formed or sculpted to the appropriate size and shape.
- Another composition includes the culturing of hMSCs on the acellular skin matrix that is currently on the market such as the product by LifeCell Corporation. In this format the cells would be cultured to populate the matrix and then caused to differentiate as described. The matrix with the adipogenic cells could then be cut by the surgeon to fit the site of reconstruction. As an alternative hMSCs could be induced to become adipocytes prior to their introduction into the biocompatible materials. As another alternative, hMSCs in combination with compounds which promote differentiation into adipocytes may be used with a biomatrix as described without culturing for a period of time to induce differentiation whereby differentiation is induced in whole or in part in vivo.
- the MSCs are contacted with GELFOAM (Upjohn, Kalamazoo Mich.) as the biocompatible matrix.
- GELFOAM is a collagen based material which has a sponge consistency when wet and is approved as a hemostatic agent.
- the cell concentration of MSCs in the GELFOAM is in a range of from about 0.3 ⁇ 10 6 to 5 ⁇ 10 6 MSCs per cc of implant volume.
- adipogenic hMSCs will be of use in elective cosmetic surgery in much the same way; to build up underlying tissue below the skin with a composite of autologous cells and biocompatible material.
- adipocytes A number of molecules that are specific markers of adipocytes have been described in the literature that will be useful to characterize the adipocytes derived from hMSCs. These include enzymes involved in the interconversion of fatty acids to triglycerides such as stearoyl-CoA-desaturase (SCDI) or the insulin responsive glucose transporter (GLUT4).
- SCDI stearoyl-CoA-desaturase
- GLUT4 insulin responsive glucose transporter
- the product of the ob gene, leptin is a 16,000 molecular weight polypeptide that is only expressed in pre-adipose cells or adipose tissue.
- CCAAT enhancer binding protein, C/EBP has been shown to precede the expression of several markers of adipogenic differentiation and it is thought to play a key role in adipocyte development.
- Another marker is 422 adipose P2 (422/aP2), a protein whose expression is enhanced during adipocyte differentiation (Cheneval, et al, 1991.). This differentiation pathway is thought also to involve peroxisome proliferation-activated receptor ⁇ 2 (PPAR ⁇ 2), which is involved in the initiation of transcription of adipocyte genes (Tontonoz, et al, 1994). Fatty acids are known activators of PPAR ⁇ (Forman, et al., 1995). Studies using these markers and the described methods will allow a more detailed analysis of the lineage progression of mesenchymal stem cell to adipocyte differentiation.
- PPAR ⁇ 2 peroxisome proliferation-activated receptor ⁇ 2
- Lipid soluble dyes as markers of adipocyte differentiation
- Lipid soluble dyes are available to stain lipid vaculoes in adipocytes. These include Nile Red, Nile Blue, Sudan Black and Oil Red O, among others. Each of these hydrophobic dyes has a propensity to accumulate in the lipid containing vaculoes of the developing adipocytes and can readily identify the adipogenic cells in populations of differentiating MSCS. At least one of these dyes can be used to isolate adipocytes from non-differentiated cells using a fluorescence activated cell sorter (FACS). An example of the use of Nile Red to identify adipogenic hMSCs is shown in FIG. 4 .
- FACS fluorescence activated cell sorter
- Human MSCs are isolated from the red bone marrow of volunteer donors as described in U.S. Pat. No. 5,486,359. The cells are grown until colonies are well established and at this point the cells are subcultured (1 to 3) or they can be taken to assay for in vitro adipogenesis.
- hMSCs are subcultured into 35 mm tissue culture dishes at 100,000 cells per dish and fed with 2 milliliters normal hMSC Media (Dulbecco's Modified Eagle's Media (DMEM), 10% selected Fetal Bovine Serum (FBS) and antibiotic/antimycotic mixture (1 ⁇ ) (Life Technologies, Inc.)) and cells are maintained at 37° C., 5% C0 2 and 90% humidity.
- DMEM Dulbecco's Modified Eagle's Media
- FBS Fetal Bovine Serum
- antibiotic/antimycotic mixture (1 ⁇ )
- the cells are refed with the fresh media every third day and are allowed to multiply and become confluent.
- the cells are maintained after reaching confluence by refeeding every third day and this time period of post confluence culturing enhances the adipogenic response in the next step (at least out to 14 days).
- the differentiation into adipocytes is initiated by changing the media to 2 ml of Adipogenic Induction Media (DMEM with 10% fetal bovine serum containing 10 ⁇ g/ml insulin (human recombinant, Boehringer Mannheim Corp.), 0.5 mM methyl isobutylxanthine (MIX)(Sigma Chemical Co.), 1 uM dexamethasone (Dex)(Sigma Chemical Co.)).
- DMEM Adipogenic Induction Media
- MIX methyl isobutylxanthine
- Dex dexamethasone
- This media is left on the cells for 48 hrs with cells maintained at 37° C., 5% C0 2 , 90% humidity and is then replaced with Adipogenic Maintenance Media (DMEM containing 10% FBS and 10 ⁇ g/ml insulin). The medium is changed every 3-4 days. The hMSCs begin to show small lipid vacuoles in 3-7 days and these enlarge and become more numerous over time, out to at least 30 days. There are several variations that have been successfully tried.
- DMEM Adipogenic Maintenance Media
- FIG. 1A shows hMSCs (4 ⁇ ) cultured in normal hMSC media for the same period of time as FIG. 1 B. There is no evidence of lipid containing vacuoles and the cells maintain the appearance of fibroblasts at high density.
- FIG. 1B are hMSCs that were allowed to become confluent and then maintained for 10 days prior to adding the Adipogenic Induction Media for 48 hrs, and then changed to the Adipogenic Maintenance Media for an additional 2 weeks. The lipid vacuoles are first apparent at about 3-7 days but increase in size and abundance over time.
- FIG. 2A shows a similar control culture as FIG.
- FIG. 2B show a culture of confluent hMSCs that were subjected to Adipogenic Induction Media for 48 hours and then maintained in Adipogenic Maintenance Media for 14 days. The many lipid containing vacuoles of adipocytes are evident in a large proportion of the cells.
- FIG. 3 shows the results of culturing hMSCs under a variety of conditions, only one of which shows a high degree of adipogenic differentiation. All photos are at 10 ⁇ magnification.
- FIG. 3A shows a culture of hMSCs maintained in normal hMSC culture media with no additives. The cells grow with a fibroblastic morphology.
- FIG. 3B shows a similar culture that was treated with Adipogenic Induction Media for 48 hours and then with Adipogenic Maintenance Media for an additional 14 days with media changes every 3 days. The adipogenic cells, perhaps as many as 30-35% of the cells, are evident as they contain the large refractile lipid vacuoles.
- FIG. 3A shows a culture of hMSCs maintained in normal hMSC culture media with no additives. The cells grow with a fibroblastic morphology.
- FIG. 3B shows a similar culture that was treated with Adipogenic Induction Media for 48 hours and then with Adipogenic Maintenance Media for an additional 14 days
- FIG. 3C shows a culture of hMSCs that were maintained in the Adipogenic Maintenance Media for 14 days but was never subjected to the dexamethasone/methyl isobutylxanthine treatment. The cells maintain a flat morphological appearance with no evident vacuoles.
- FIG. 3D shows a culture of hMSCs that were treated with normal hMSC media containing 1 ⁇ M dexamethasone for 48 hours and then cultured for 14 days in the Adipogenic Maintenance Media. The cells are disorganized but show very few, if any, lipid vacuoles.
- FIG. 3E shows a culture of hMSCs that was treated with normal hMSC containing 0.5 ml.
- FIG. 3F shows a culture of hMSCs that was treated with a media that induces the cells along a osteogenic pathway.
- This media contains 0.1 ⁇ M dexamethasone, 10 mM ⁇ -glycerol phosphate and 50 ⁇ M ascorbic acid 2-phosphate. The presence of refractile osteoid material is evident but no large lipid vacuoles.
- the adipogenic cells can also be identified using vital dyes and histological stains that label the lipid vacuoles.
- FIG. 4A shows a culture of hMSCs subjected to the adipogenic treatment and cultured for 14 days in the Adipogenic Maintenance Media. The large lipid vacuoles are evident in this bright field image. But the lipids can also be revealed by using a fluorescent lipid soluble dye such as Nile Red (Greenspan, et al. 1985) and viewing by epifluorescence illumination as shown in FIG. 4 B.
- a fluorescent lipid soluble dye such as Nile Red (Greenspan, et al. 1985)
- FIG. 5A shows hMSCs in culture which were not treated with either adipogenic medium but which were cultured, fixed and stained at the same time as the adipogenic cultures shown in 5 B and 5 C.
- adipocytes from human mesenchymal stem cells by the conditions described above produces large numbers of adipocytes, perhaps as many as 30%-40% of the cells present.
- the adipocytes can be isolated from the non-adipogenic hMSCs by several methods as listed below.
- Method one for isolating adipogenic hMSCs uses density gradient centrifugation and takes advantage of the greater buoyancy of the lipid-containing adipogenic cells.
- cultures containing hMSCs and adipocytes derived from hMSCs are treated with 0.05% trypsin/0.53 mM EDTA to remove the cells from the culture dish and the cells are washed by adding 10 ml of normal hMSC media and centrifuged for 10 minutes at 1000 rpm in the GS-6R centrifuge (Beckman Instruments, Inc.) at 20° C.
- the pelleted cells containing adipocytes and hMSCs are resuspended in 2 ml of the Adipogenic Maintenance Media and carefully layered on top of 8 ml of PERCOLL of a density of 1.045 g/ml.
- the tubes are centrifuged at 2,200 rpm (1100 ⁇ g) in a Beckman GS-6R centrifuge for 20 minutes at 3° C.
- the adipocytes are recovered in the uppermost 2 mls and at the interface with the 1.045 density PERCOLL.
- the non-adipogenic MSCs enter into the 1.045 density PERCOLL and can be recovered at the bottom of the tube.
- the recovered adipocytes are washed by addition of 10 mls of the Adipogenic Maintenance Media and centrifuged at 1000 rpm for 10 min at 20° C. in the GS-6R centrifuge.
- the adipocytes are replated at a density of 150,000 cells per 35 mm dish in Adipogenic Maintenance Media and returned to the incubator.
- Method two for isolating adipogenic hMSCs uses fluorescence activated cell sorting (FACS).
- FACS fluorescence activated cell sorting
- the hMSCs differentiating into adipocytes in a culture can be isolated by using a lipid soluble fluorescent dye, such as Nile Red (10-100 ug/ml) to stain lipid vacuole-containing adipocytes.
- the culture is then treated with trypsin/EDTA as above to release the cells from the culture vessel and subjecting the mixed population to fluorescence activated cell sorting (FACS).
- the parameters on the machine are adjusted to select and recover adipogenic cells in the population and they can be used directly or replated and cultured in the incubator.
- Method three of isolating the adipogenic cells in a mixed population is to trypsin/EDTA treat and wash the cells as above.
- the cells are then placed in a tissue culture flask and the flask is filled with media.
- the flask is closed tightly and turned upside-down so that the surface treated for cell adhesion is uppermost.
- the buoyant, lipid-droplet-containing adipocytes rise to top and attach to the surface of the flask.
- the next day the media is removed and the flask rinsed with fresh media and the flask turned right-side-up.
- the flask now with only enough media to cover the cell layer, is returned to the incubator for further maintenance.
- Adipogenic hMSCs accumulate lipid droplets which decreases the bouyant density of the cells.
- the adipogenic hMSCs were then isolated as follows. The dish of cells containing adipocytes and non-adipogenic hMSCs from a culture that were treated for only one 48 hour induction period and then grown for three weeks, was treated with 0.05% trypsin and 5 mM EDTA for 3-5 minutes to release the cells from the dish. The cells were then rinsed from the dish with 10 ml of fresh media and placed in a 25 cm 2 flask and the flask was filled to the brim with fresh media. The flask was turned upside down so the usual culture surface was uppermost and the flask placed in the 37° C. incubator overnight.
- FIG. 6 a shows the adipogenic hMSCs that attached to the uppermost surface. The population is composed of greater than 99% adipogenic cells as evidenced by the lipid droplets in every cell.
- FIG. 6 b shows the non-adipogenic hMSCs that settled to the lower surface of the flask. Very few cells containing lipid droplets were present on the lower surface. These non-adipogenic cells could be treated with trypsin/EDTA and replated to another dish and be shown to retain adipogenic potential (data not shown), indicating that they remain as mesenchymal stem cells, capable of lineage progression.
- test conditions included indomethacin at 50, 100, 200 ⁇ M added to 10 ⁇ 7 M dexamethasone, 0.5 mM methyl isobutylxanthine, 10 ⁇ g/ml insulin in DMEM (w/4.5 g/l glucose); three 48 hour treatments with 24-48 hours in between in DMEM (4.5 g/l glucose) with 10 ⁇ g/ml insulin: cultures were then allowed to accumulate lipid for another one week in DMEM (4.5 g/l glucose) with insulin before fixation for histology and assessment of results.
- indomethacin under the same conditions however in the absence of methyl isobutylxanthine.
- Table 1 show that the inclusion of indomethacin in the MDI induction medium resulted in a dose dependent increase in the commitment of the hMSCs tested to the adipocyte lineage and an increase in the accumulation of intercellular lipid in the culture.
- Indomethacin at 200 ⁇ M in MDI gave the largest increase in adipocytes as shown by nearly 100% of the hMSCs becoming adipocytes.
- the Nile Red staining as determined by the fluorescent plate reader was nearly three times that of the MDI sample alone.
- Indomethacin also increased the adipogenic differentiation of hMSCs in DMEM containing dexamethasone and insulin only (DI), but to a level approximately half that of the MDI+indomethacin sample. Indomethacin with insulin had no significant effect on hMSC adipogenesis.
- Test conditions included 1 or 10 uM 15d-PGJ 2 added to 10 ⁇ 7 M dexamethasone, 0.5 mM methyl isobutylxanthine, 10 ⁇ g/ml insulin in DMEM (w/4.5 g/l glucose); three 48 hour treatments with 24-48 hours in between in DMEM (4.5 g/l glucose) with 10 ⁇ g/ml insulin: cultures were then allowed to accumulate lipid for another one week in DMEM (4.5 g/l glucose) with insulin before fixation for histology and assessment of results.
- 15d-PGJ 2 under the same conditions without methyl isobutylxanthine present.
- hMSCs were grown in 12 or 24 well tissue culture plates and were treated with adipogenic inducing agents as described above when the cells were post-confluent. After three treatments, the cells were allowed to accumulate lipid for an additional week prior to analysis.
- the cell layers were rinsed with Dulbecco's modified PBS (D.PBS) and fixed for 30 minutes in 10% Neutral Buffered Formalin. The plates were then rinsed with D. PBS and incubated for 30 minutes with 0.02% Saponin, 0.8 ⁇ g/ml DAPI (from an aqueous 2 mg/ml stock) and 1 ⁇ g/ml Nile Red (from a 1 mg/ml stock in acetone) in D. PBS.
- D.PBS Dulbecco's modified PBS
- Saponin 0.8 ⁇ g/ml DAPI (from an aqueous 2 mg/ml stock)
- 1 ⁇ g/ml Nile Red from a 1 mg/ml stock in ace
- GELFOAM can support in vitro differentiation of hMSCs into adipocytes
- GELFOAM sponge (size 100) (Upjohn, Kalamazoo, Mich.) was cut into small pieces approximately 3 mm ⁇ 2 mm ⁇ 2 mm. The samples were hydrated in two changes of MSC culture medium to adjust the pH of the material to that of the medium. The GELFOAM was then blotted onto sterile gauze to remove excess medium and placed on a sterile culture dish. A volume of medium containing MSCs sufficient to fill the voids in the GELFOAM was added to the GELFOAM (0.3 ml suspension containing 300,000 MSCs). The material was gently compressed several times to eliminate bubbles and allow the cell suspension to be drawn into the interstices. The GELFOAM with cells was placed in the incubator and the cells were allowed to attach for 30 minutes.
- the dish was then filled with enough culture medium to cover the Gelfoam and the sample was placed back in the incubator to allow the cells to grow and populate the material further.
- Medium was changed on a regular basis, twice a week for two weeks.
- the medium was then changed to MDI medium to induce differentiation of MSCs to adipocytes.
- the MDI medium was added for 48 hours and then changed to MSC medium for 24 hours. This regimen was repeated twice more and then the GELFOAM with cells was cultured for an additional week to allow lipid to accumulate in the adipocytes.
- Nile red was added to the culture medium for 30 minutes to stain the lipid vacuoles in the adipocytes.
- the sample was observed on an inverted microscope using ultraviolet light and the fluorescence from the dye stained vacuoles recorded on film.
- An example of the fluorescently stained adipogenic MSCs in GELFOAM is shown in FIG. 12 .
- TGF ⁇ 1 prevents the down regulation of type I procollagen, fibrinectin, and TGF ⁇ 1 gene expression associated with 3T3-L1 pre-adipocvte differentiation. J. Cell Biochem. 54:256-263.
- adipocyte storage depot or node on the energy information superhighway. Cell 80:15-18.
- Nile red A selective fluorescent stain for intracellular lipid droplets. J. Cell Biology 100: 965-973.
- Colony stimulating factor I expression is down-regulated during the adipocyte differentiation of H-1/A marrow stromal cells and induced by cachetin/tumor necrosis factor. Mol. Cell. Biol. 11:920-927.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Rheumatology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Developmental Biology & Embryology (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- Immunology (AREA)
- Child & Adolescent Psychology (AREA)
- Obesity (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
| TABLE 1 | ||||
| DAPI | Nile red | Nile red/ | ||
| Sample | Condition | (cor) | (cor) | DAPI |
| 1 | Control | 8.84 | 0.65 | 0.07 |
| 2 | Adipo maintenance | 5.79 | 0.77 | 0.18 |
| 3 | MDI (MIX in H2O) | 7.5 | 6.97 | 0.93 |
| 4 | MDI (MIX in DMSO) | 7.31 | 7.25 | 0.99 |
| 5 | MDI + 50 μM indomethacin | 7.8 | 11.72 | 1.50 |
| 6 | MDI + 100 μM indomethacin | 7.11 | 16.39 | 2.31 |
| 7 | MDI + 200 μM indomethacin | 8.72 | 20.27 | 2.32 |
| 8 | DI + 50 μM indomethacin | 6.66 | 3.11 | 0.47 |
| 9 | DI + 100 μM indomethacin | 6.77 | 5.35 | 0.79 |
| 10 | DI + 200 μM indomethacin | 6.03 | 10.08 | 1.67 |
| 11 | I + 50 μM indomethacin | 5.12 | 0.64 | 0.13 |
| 12 | I + 100 μM indomethacin | 5.81 | 0.74 | 0.13 |
| 13 | I + 200 μM indomethacin | 5.28 | 0.74 | 0.14 |
| cor = corrected (minus background) | ||||
| DAPI = 4,6-Diamino-2-phenylindole | ||||
| TABLE 2 | ||||
| DAPI | Nile red | Nile red/ | ||
| Sample | Condition | (cor) | (cor) | DAPI |
| 1 | Control | 4.71 | 0.79 | 0.17 |
| 2 | Adipo maintenance | 4.96 | 0.85 | 0.17 |
| 3 | MDI | 6.67 | 6.91 | 1.04 |
| 4 | MDI + 1 μM 15d-PGJ2 | 6.53 | 13.16 | 2.02 |
| 5 | MDI + 10 μM 15d-PGJ2 | 7.22 | 17.56 | 2.43 |
| 6 | DI + 1 μM 15d-PGJ2 | 5.99 | 1.19 | 0.20 |
| 7 | DI + 10 15d-PGJ2 | 5.36 | 2.57 | 0.48 |
| 8 | I + 1 μM 15d-PGJ2 | 4.98 | 0.83 | 0.17 |
| 9 | I + 10 μM 15d-PGJ2 | 5.75 | 0.85 | 0.15 |
| cor = corrected (minus background) | ||||
| DAPI = 4,6-Diamino-2-phenylindole | ||||
Claims (12)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/246,003 US6322784B1 (en) | 1996-07-30 | 1998-10-26 | Adipogenic differentiation of human mesenchymal stem cells |
| US09/537,003 US6709864B1 (en) | 1996-07-30 | 2000-03-28 | Adipogenic differentiation of human mesenchymal stem cells |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/700,753 US5827740A (en) | 1996-07-30 | 1996-07-30 | Adipogenic differentiation of human mesenchymal stem cells |
| US09/246,003 US6322784B1 (en) | 1996-07-30 | 1998-10-26 | Adipogenic differentiation of human mesenchymal stem cells |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/700,753 Continuation-In-Part US5827740A (en) | 1996-07-30 | 1996-07-30 | Adipogenic differentiation of human mesenchymal stem cells |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/537,003 Division US6709864B1 (en) | 1996-07-30 | 2000-03-28 | Adipogenic differentiation of human mesenchymal stem cells |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US6322784B1 true US6322784B1 (en) | 2001-11-27 |
Family
ID=24814738
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/700,753 Expired - Lifetime US5827740A (en) | 1996-07-30 | 1996-07-30 | Adipogenic differentiation of human mesenchymal stem cells |
| US09/246,003 Expired - Lifetime US6322784B1 (en) | 1996-07-30 | 1998-10-26 | Adipogenic differentiation of human mesenchymal stem cells |
| US09/537,003 Expired - Lifetime US6709864B1 (en) | 1996-07-30 | 2000-03-28 | Adipogenic differentiation of human mesenchymal stem cells |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/700,753 Expired - Lifetime US5827740A (en) | 1996-07-30 | 1996-07-30 | Adipogenic differentiation of human mesenchymal stem cells |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/537,003 Expired - Lifetime US6709864B1 (en) | 1996-07-30 | 2000-03-28 | Adipogenic differentiation of human mesenchymal stem cells |
Country Status (11)
| Country | Link |
|---|---|
| US (3) | US5827740A (en) |
| EP (2) | EP0954565B1 (en) |
| JP (1) | JP2001523084A (en) |
| AT (1) | ATE342349T1 (en) |
| AU (1) | AU3729097A (en) |
| CA (1) | CA2262014C (en) |
| DE (1) | DE69736814T2 (en) |
| DK (1) | DK0954565T3 (en) |
| ES (1) | ES2274547T3 (en) |
| PT (1) | PT954565E (en) |
| WO (1) | WO1998004682A1 (en) |
Cited By (87)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030032179A1 (en) * | 2000-12-06 | 2003-02-13 | Hariri Robert J. | Post-partum mammalian placenta, its use and placental stem cells therefrom |
| US20030232432A1 (en) * | 2002-04-09 | 2003-12-18 | Reliance Life Sciences Pvt. Ltd. | Growth of human Mesenchymal Stem Cells (hMSC) using umbilical cord blood serum and the method for the peparation thereof |
| US20040028660A1 (en) * | 2002-05-30 | 2004-02-12 | Anthrogenesis Corporation | Methods of using JNK or MKK inhibitors to modulate cell differentiation and to treat myeloproliferative disorders and myelodysplastic syndromes |
| WO2003087333A3 (en) * | 2002-04-12 | 2004-02-26 | Celgene Corp | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
| US20040076622A1 (en) * | 2002-03-02 | 2004-04-22 | Board Of Regents, The University Of Texas System | Local production and/or delivery of anti-cancer agents by stromal cell precursors |
| US20040092011A1 (en) * | 2002-04-03 | 2004-05-13 | Wilkison William O. | Adipocytic differentiated adipose derived adult stem cells and uses thereof |
| US20040096431A1 (en) * | 2001-12-07 | 2004-05-20 | Fraser John K. | Systems and methods for treating patients with processed lipoaspirate cells |
| US20050008626A1 (en) * | 2001-12-07 | 2005-01-13 | Fraser John K. | Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions |
| US20050019911A1 (en) * | 1999-07-07 | 2005-01-27 | Medvet Science Pty Ltd | Mesenchymal precursor cell |
| US20050035342A1 (en) * | 2003-08-14 | 2005-02-17 | Bomy Chen | Phase change memory device employing thermal-electrical contacts with narrowing electrical current paths, and a method of making same |
| US20050048036A1 (en) * | 2001-12-07 | 2005-03-03 | Hedrick Marc H. | Methods of using regenerative cells in the treatment of inherited and acquired disorders of the bone, bone marrow, liver, and other tissues |
| US20050048034A1 (en) * | 2001-12-07 | 2005-03-03 | Fraser John K. | Methods of using regenerative cells to promote wound healing |
| US20050048644A1 (en) * | 2001-12-07 | 2005-03-03 | Hedrick Marc H. | Methods of using regenerative cells in the treatment of musculoskeletal disorders |
| US20050048033A1 (en) * | 2001-12-07 | 2005-03-03 | Fraser John K. | Methods of using regenerative cells in the treatment of renal diseases and disorders |
| US20050058632A1 (en) * | 2001-12-07 | 2005-03-17 | Hedrick Marc H. | Cell carrier and cell carrier containment devices containing regenerative cells |
| US20050084961A1 (en) * | 2001-12-07 | 2005-04-21 | Hedrick Marc H. | Systems and methods for separating and concentrating regenerative cells from tissue |
| US20050095228A1 (en) * | 2001-12-07 | 2005-05-05 | Fraser John K. | Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders |
| US20050158289A1 (en) * | 1999-07-07 | 2005-07-21 | Simmons Paul J. | Mesenchymal precursor cell and use thereof in the repair of bone defects and fractures in mammals |
| US20050181503A1 (en) * | 2004-02-13 | 2005-08-18 | Goldman Steven A. | Purines are self-renewal signals for neural stem cells, and purine receptor antagonists promote neuronal and glial differentiation therefrom |
| US20050250202A1 (en) * | 2002-03-19 | 2005-11-10 | March Keith L | Adipose stromal stem cells for tissue and vascular modification |
| US20050260175A1 (en) * | 2001-12-07 | 2005-11-24 | Hedrick Marc H | Systems and methods for isolating and using clinically safe adipose derived regenerative cells |
| US20050281790A1 (en) * | 1999-07-07 | 2005-12-22 | Medvet Science Pty Ltd. | Mesenchymal precursor cell |
| US20060134781A1 (en) * | 2004-12-07 | 2006-06-22 | Bacterin International, Inc. | Three-dimensional cell culture system |
| US20060154235A1 (en) * | 2005-01-07 | 2006-07-13 | Takahiro Ochiya | Human hepatocyte-like cells and uses thereof |
| US20060193840A1 (en) * | 2003-03-28 | 2006-08-31 | Stan Gronthos | Perivascular mesenchymal precursor cell induced blood vessel formation |
| US20060204556A1 (en) * | 2001-12-07 | 2006-09-14 | Cytori Therapeutics, Inc. | Cell-loaded prostheses for regenerative intraluminal applications |
| US20060222636A1 (en) * | 2003-09-19 | 2006-10-05 | The Rockefeller University | Compositions, methods and kits relating to reprogramming adult differentiated cells and production of embryonic stem cell-like cells |
| US20070178071A1 (en) * | 2003-04-01 | 2007-08-02 | Christof Westenfelder | Stem-cell, precursor cell, or target cell-based treatment of multiorgan failure and renal dysfunction |
| US20070274960A1 (en) * | 2003-10-08 | 2007-11-29 | Vet-Stem Inc. | Methods of Preparing and Using Novel Stem Cell Compositions and Kits Comprising the Same |
| US7311905B2 (en) | 2002-02-13 | 2007-12-25 | Anthrogenesis Corporation | Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells |
| US7311904B2 (en) | 2001-02-14 | 2007-12-25 | Anthrogenesis Corporation | Tissue matrices comprising placental stem cells, and methods of making the same |
| US20080140451A1 (en) * | 2005-01-10 | 2008-06-12 | Cytori Therapeutics, Inc. | Devices and Methods for Monitoring, Managing, and Servicing Medical Devices |
| US20080216657A1 (en) * | 2007-03-07 | 2008-09-11 | Hamilton Beach/Proctor-Silex, Inc. | Air Purifier for Removing Particles or Contaminants from Air |
| US20080241112A1 (en) * | 2005-05-10 | 2008-10-02 | Christof Westenfelder | Therapy of Kidney Diseases and Multiorgan Failure with Mesenchymal Stem Cells and Mesenchymal Stem Cell Conditioned Media |
| KR100865884B1 (en) | 2003-03-18 | 2008-10-31 | (주)안트로젠 | Differentiated fat cells for use in allografts |
| US20090239295A1 (en) * | 2002-03-28 | 2009-09-24 | Bernd Karl Friedrich Kremer | Dedifferentiated, Programmable Stem Cells of Monocytic Origin, and Their Production and Use |
| US7622108B2 (en) | 2004-04-23 | 2009-11-24 | Bioe, Inc. | Multi-lineage progenitor cells |
| US7651684B2 (en) | 2001-12-07 | 2010-01-26 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in augmenting autologous fat transfer |
| US7670596B2 (en) | 2004-04-23 | 2010-03-02 | Bioe, Inc. | Multi-lineage progenitor cells |
| US7682803B2 (en) | 2005-10-13 | 2010-03-23 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
| US7700090B2 (en) | 2002-02-13 | 2010-04-20 | Anthrogenesis Corporation | Co-culture of placental stem cells and stem cells from a second source |
| US7727763B2 (en) | 2006-04-17 | 2010-06-01 | Bioe, Llc | Differentiation of multi-lineage progenitor cells to respiratory epithelial cells |
| US20100330045A1 (en) * | 1999-07-07 | 2010-12-30 | Angioblast Systems, Incorporated | Mesenchymal precursor cell |
| US7976836B2 (en) | 2000-12-06 | 2011-07-12 | Anthrogenesis Corporation | Treatment of stroke using placental stem cells |
| US7993918B2 (en) | 2006-08-04 | 2011-08-09 | Anthrogenesis Corporation | Tumor suppression using placental stem cells |
| US20110223668A1 (en) * | 2004-09-24 | 2011-09-15 | Angioblast Systems, Inc. | Method of enhancing proliferation and/or survival of mesenchymal precursor cells (MPC) |
| US8057788B2 (en) | 2000-12-06 | 2011-11-15 | Anthrogenesis Corporation | Placental stem cell populations |
| US8263065B2 (en) | 2007-09-28 | 2012-09-11 | Anthrogenesis Corporation | Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells |
| US8367409B2 (en) | 2008-11-19 | 2013-02-05 | Anthrogenesis Corporation | Amnion derived adherent cells |
| WO2013082106A1 (en) | 2011-12-02 | 2013-06-06 | The General Hospital Corporation | Differentiation into brown adipocytes |
| US8460650B2 (en) | 2007-02-12 | 2013-06-11 | Anthrogenesis Corporation | Treatment of inflammatory diseases using placental stem cells |
| US20130266548A1 (en) * | 2005-07-15 | 2013-10-10 | Robert G. Matheny | Compositions for Regenerating Defective or Absent Myocardium |
| US8562973B2 (en) | 2010-04-08 | 2013-10-22 | Anthrogenesis Corporation | Treatment of sarcoidosis using placental stem cells |
| US8586360B2 (en) | 2009-07-02 | 2013-11-19 | Anthrogenesis Corporation | Method of producing erythrocytes without feeder cells |
| US8617535B2 (en) | 2002-11-26 | 2013-12-31 | Anthrogenesis Corporation | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
| US8728805B2 (en) | 2008-08-22 | 2014-05-20 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
| US8784801B2 (en) | 2008-08-19 | 2014-07-22 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease |
| US8828376B2 (en) | 2008-08-20 | 2014-09-09 | Anthrogenesis Corporation | Treatment of stroke using isolated placental cells |
| US8926964B2 (en) | 2010-07-13 | 2015-01-06 | Anthrogenesis Corporation | Methods of generating natural killer cells |
| US8969315B2 (en) | 2010-12-31 | 2015-03-03 | Anthrogenesis Corporation | Enhancement of placental stem cell potency using modulatory RNA molecules |
| US9040035B2 (en) | 2011-06-01 | 2015-05-26 | Anthrogenesis Corporation | Treatment of pain using placental stem cells |
| US9121007B2 (en) | 2010-01-26 | 2015-09-01 | Anthrogenesis Corporatin | Treatment of bone-related cancers using placental stem cells |
| US9133431B2 (en) | 2009-05-01 | 2015-09-15 | Bimini Technologies Llc | Systems, methods and compositions for optimizing tissue and cell enriched grafts |
| US9200253B1 (en) | 2007-08-06 | 2015-12-01 | Anthrogenesis Corporation | Method of producing erythrocytes |
| US9254302B2 (en) | 2010-04-07 | 2016-02-09 | Anthrogenesis Corporation | Angiogenesis using placental stem cells |
| US9301975B2 (en) | 2009-05-01 | 2016-04-05 | Biocardia, Inc. | Method of preparing autologous cells and method of use for therapy |
| US9597395B2 (en) | 2001-12-07 | 2017-03-21 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions |
| US9763983B2 (en) | 2013-02-05 | 2017-09-19 | Anthrogenesis Corporation | Natural killer cells from placenta |
| US9808558B2 (en) | 2008-11-20 | 2017-11-07 | Allosource | Allografts combined with tissue derived stem cells for bone healing |
| US9925221B2 (en) | 2011-09-09 | 2018-03-27 | Celularity, Inc. | Treatment of amyotrophic lateral sclerosis using placental stem cells |
| US10104880B2 (en) | 2008-08-20 | 2018-10-23 | Celularity, Inc. | Cell composition and methods of making the same |
| US10568990B2 (en) | 2013-03-15 | 2020-02-25 | Allosource | Cell repopulated collagen matrix for soft tissue repair and regeneration |
| EP3708654A4 (en) * | 2017-11-16 | 2020-12-23 | Nissan Chemical Corporation | Method for inducing differentiation into and producing beige and white adipocytes |
| US11608486B2 (en) | 2015-07-02 | 2023-03-21 | Terumo Bct, Inc. | Cell growth with mechanical stimuli |
| US11613727B2 (en) | 2010-10-08 | 2023-03-28 | Terumo Bct, Inc. | Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
| US11624046B2 (en) | 2017-03-31 | 2023-04-11 | Terumo Bct, Inc. | Cell expansion |
| US11629332B2 (en) | 2017-03-31 | 2023-04-18 | Terumo Bct, Inc. | Cell expansion |
| US11634677B2 (en) | 2016-06-07 | 2023-04-25 | Terumo Bct, Inc. | Coating a bioreactor in a cell expansion system |
| US11667881B2 (en) | 2014-09-26 | 2023-06-06 | Terumo Bct, Inc. | Scheduled feed |
| US11667876B2 (en) | 2013-11-16 | 2023-06-06 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
| US11685883B2 (en) | 2016-06-07 | 2023-06-27 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
| US11795432B2 (en) | 2014-03-25 | 2023-10-24 | Terumo Bct, Inc. | Passive replacement of media |
| US11965175B2 (en) | 2016-05-25 | 2024-04-23 | Terumo Bct, Inc. | Cell expansion |
| US12043823B2 (en) | 2021-03-23 | 2024-07-23 | Terumo Bct, Inc. | Cell capture and expansion |
| US12152699B2 (en) | 2022-02-28 | 2024-11-26 | Terumo Bct, Inc. | Multiple-tube pinch valve assembly |
| US12234441B2 (en) | 2017-03-31 | 2025-02-25 | Terumo Bct, Inc. | Cell expansion |
| US12410405B2 (en) | 2010-10-08 | 2025-09-09 | Mesoblast International Sàrl | Enhanced MSC preparations |
Families Citing this family (102)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5827740A (en) * | 1996-07-30 | 1998-10-27 | Osiris Therapeutics, Inc. | Adipogenic differentiation of human mesenchymal stem cells |
| US7037717B1 (en) | 1997-03-07 | 2006-05-02 | Chugai Seiyaku Kabushiki Kaisha | Cell line and screening method with the use of the same |
| US6153432A (en) * | 1999-01-29 | 2000-11-28 | Zen-Bio, Inc | Methods for the differentiation of human preadipocytes into adipocytes |
| US20030082152A1 (en) | 1999-03-10 | 2003-05-01 | Hedrick Marc H. | Adipose-derived stem cells and lattices |
| US20050076396A1 (en) * | 1999-03-10 | 2005-04-07 | Katz Adam J. | Adipose-derived stem cells and lattices |
| AU784580B2 (en) | 1999-03-10 | 2006-05-04 | Regents Of The University Of California, The | Adipose-derived stem cells and lattices |
| US6777231B1 (en) * | 1999-03-10 | 2004-08-17 | The Regents Of The University Of California | Adipose-derived stem cells and lattices |
| PT1226233E (en) | 1999-08-05 | 2011-10-04 | Abt Holding Co | MULTI-POTENT ADULT STEM CELLS AND INSULATION METHODS |
| CA2390053A1 (en) * | 1999-11-05 | 2001-05-10 | Gerigene Medical Corporation | Augmentation and repair of age-related soft tissue defects |
| WO2001036663A2 (en) * | 1999-11-15 | 2001-05-25 | Chemclean Corporation | Bio-burden visualization system |
| AU2001268449A1 (en) | 2000-06-14 | 2001-12-24 | Vistagen, Inc. | Toxicity typing using liver stem cells |
| JP2004504024A (en) * | 2000-07-18 | 2004-02-12 | ソシエテ デ プロデユイ ネツスル ソシエテ アノニム | Preadipocyte cell line |
| US20080152629A1 (en) * | 2000-12-06 | 2008-06-26 | James Edinger | Placental stem cell populations |
| US6869766B2 (en) * | 2000-12-22 | 2005-03-22 | The Regents Of The University Of California | Gene associated with regulation of adiposity and insulin response |
| EP1467746A4 (en) * | 2001-12-20 | 2006-10-04 | Macropore Inc | Systems and methods for treating patients with collagen-rich material extracted from adipose tissue |
| CA2471147C (en) * | 2002-01-04 | 2010-08-10 | Henry Ford Health System | Nitric oxide donors for treatment of disease and injury |
| WO2003065994A2 (en) * | 2002-02-07 | 2003-08-14 | University Of Miami | Schwann cell and phosphodiesterase inhibitors based therapy |
| CN1770976A (en) * | 2003-02-13 | 2006-05-10 | 人类起源公司 | Use of umbilical cord blood to treat an individual suffering from a disease, disorder or condition |
| EP1702062A2 (en) * | 2003-06-11 | 2006-09-20 | Jan Remmereit | Differentiation of stem cells for therapeutic use |
| WO2005017117A2 (en) * | 2003-08-14 | 2005-02-24 | Martin Haas | Multipotent amniotic fetal stem cells (mafsc) and banking of same |
| GB0321337D0 (en) * | 2003-09-11 | 2003-10-15 | Massone Mobile Advertising Sys | Method and system for distributing advertisements |
| WO2006052991A2 (en) | 2004-11-11 | 2006-05-18 | The General Hosptial Corporation | Parathyroid hormone receptor activation and stem and progenitor cell expansion |
| JP2008545703A (en) | 2005-05-27 | 2008-12-18 | バイアセル インコーポレーティッド | Treatment of ischemia using stem cells |
| US7531355B2 (en) | 2005-07-29 | 2009-05-12 | The Regents Of The University Of California | Methods and compositions for smooth muscle reconstruction |
| JP4395193B2 (en) * | 2005-08-01 | 2010-01-06 | ニューポテンシャル,インコーポレイテッド | Production of reprogrammed cells with ability to recover |
| CA2925688C (en) | 2005-09-09 | 2019-10-22 | Farshid Guilak | Tissue engineering methods and compositions |
| US20080070303A1 (en) * | 2005-11-21 | 2008-03-20 | West Michael D | Methods to accelerate the isolation of novel cell strains from pluripotent stem cells and cells obtained thereby |
| CA2641022A1 (en) * | 2006-01-30 | 2007-08-09 | University Of Virginia Patent Foundation | Methods of preparing and characterizing mesenchymal stem cell aggregates and uses thereof |
| US20090304644A1 (en) * | 2006-05-30 | 2009-12-10 | Cytori Therapeutics, Inc. | Systems and methods for manipulation of regenerative cells separated and concentrated from adipose tissue |
| MX2008015645A (en) * | 2006-06-09 | 2009-02-06 | Anthrogenesis Corp | Placental niche and use thereof to culture stem cells. |
| WO2008013863A2 (en) * | 2006-07-26 | 2008-01-31 | Cytori Therapeutics, Inc. | Generation of adipose tissue and adipocytes |
| KR20090086066A (en) * | 2006-10-06 | 2009-08-10 | 유니버시티 오브 버지니아 페이턴트 파운데이션 | Useful methods and compositions for the treatment of diabetic wounds |
| CN103255098A (en) | 2006-10-23 | 2013-08-21 | 人类起源公司 | Methods and compositions for treatment of bone defects with placental cell populations |
| TW200822930A (en) * | 2006-11-22 | 2008-06-01 | Chao-Song Hsue | Composition for reducing weight and curing hypertriglyceridemia, the effective ingredients thereof containing cyclic AMP, nicotinic acid, prostaglandin, gamma linolenic acid, and xanthine derivates |
| MX2009008559A (en) | 2007-02-12 | 2009-08-21 | Anthrogenesis Corp | Hepatocytes and chondrocytes from adherent placental stem cells; and cd34+, cd45- placental stem cell-enriched cell populations. |
| US8574567B2 (en) * | 2007-05-03 | 2013-11-05 | The Brigham And Women's Hospital, Inc. | Multipotent stem cells and uses thereof |
| WO2008137115A1 (en) * | 2007-05-03 | 2008-11-13 | The Brigham And Women's Hospital, Inc. | Multipotent stem cells and uses thereof |
| TWM322542U (en) * | 2007-05-23 | 2007-11-21 | Universal Scient Ind Co Ltd | Testing machine |
| CA2693827A1 (en) * | 2007-07-25 | 2009-01-29 | Bioe, Inc. | Differentiation of multi-lineage progenitor cells to chondrocytes |
| WO2009042201A1 (en) * | 2007-09-26 | 2009-04-02 | Celgene Cellular Therapeutics | Angiogenic cells from human placental perfusate |
| KR20170116221A (en) * | 2007-11-07 | 2017-10-18 | 안트로제네시스 코포레이션 | Use of umbilical cord blood in the treatment of premature birth complications |
| US20100278788A1 (en) * | 2008-01-11 | 2010-11-04 | Bone Therapeutics, S.A. | Osteogenic Differentiation Of Bone Marrow Stem Cells And Mesenchymal Stem Cells Using A Combination Of Growth Factors |
| US20100189338A1 (en) * | 2008-04-09 | 2010-07-29 | Nexcelom Bioscience | Systems and methods for counting cells and biomolecules |
| WO2009137613A2 (en) * | 2008-05-06 | 2009-11-12 | Joslin Diabetes Center, Inc. | Methods and compositions for inducing brown adipogenesis |
| WO2009135905A2 (en) | 2008-05-07 | 2009-11-12 | Bone Therapeutics S.A. | Novel mesenchymal stem cells and bone-forming cells |
| CA2724839A1 (en) * | 2008-05-21 | 2009-11-26 | Bioe Llc | Differentiation of multi-lineage progenitor cells to pancreatic cells |
| BRPI0917993B8 (en) * | 2008-08-14 | 2021-05-25 | Mesoblast Int Sarl | purified mesenchymal stem cell compositions |
| EP2182055A1 (en) | 2008-10-14 | 2010-05-05 | Heinrich-Heine-Universität Düsseldorf | Human cord blood derived unrestricted somatic stem cells (USSC) |
| US20100098739A1 (en) * | 2008-10-20 | 2010-04-22 | University Of Virginia Patent Foundation | Compositions and methods for modular soft tissue repair |
| EP2375907B1 (en) * | 2008-11-21 | 2019-02-27 | Celularity, Inc. | Treatment of diseases, disorders or conditions of the lung using placental cells |
| ES2690199T3 (en) | 2009-07-21 | 2018-11-19 | Abt Holding Company | Use of stem cells to reduce leukocyte extravasation |
| JP6243119B2 (en) | 2009-07-21 | 2017-12-06 | エイビーティー ホールディング カンパニー | Use of stem cells to reduce leukocyte extravasation |
| KR101243276B1 (en) * | 2009-10-08 | 2013-03-13 | 서울대학교병원 | Method and medium for inducing high activity of stem cells from human adipose tissue |
| WO2011043524A1 (en) * | 2009-10-08 | 2011-04-14 | 주식회사 알앤엘바이오 | Anticancer composition containing human-derived adult stem cells |
| US8476227B2 (en) | 2010-01-22 | 2013-07-02 | Ethicon Endo-Surgery, Inc. | Methods of activating a melanocortin-4 receptor pathway in obese subjects |
| US9044606B2 (en) | 2010-01-22 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Methods and devices for activating brown adipose tissue using electrical energy |
| SG10201907877YA (en) | 2010-02-25 | 2019-09-27 | Abt Holding Co | Modulation of macrophage activation |
| JP5968871B2 (en) | 2010-04-13 | 2016-08-10 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Production of hepatocytes by forward programming |
| US20110312001A1 (en) | 2010-06-15 | 2011-12-22 | Emile Nuwaysir | Compendium of ready-built stem cell models for interrogation of biological response |
| CA2804595C (en) | 2010-07-07 | 2018-11-13 | Cellular Dynamics International, Inc. | Endothelial cell production by programming |
| WO2013106655A1 (en) | 2012-01-11 | 2013-07-18 | The Gid Group, Inc. | Method for processing adipose tissue and processing apparatus |
| US9296984B2 (en) | 2010-07-09 | 2016-03-29 | The Gid Group, Inc. | Tissue processing apparatus and method for processing adipose tissue |
| EP2590695B1 (en) | 2010-07-09 | 2024-11-20 | GID BIO, Inc. | Apparatus and methods relating to collecting and processing human biological material containing adipose |
| US9206387B2 (en) | 2010-07-09 | 2015-12-08 | The Gid Group, Inc. | Method and apparatus for processing adipose tissue |
| US20130259807A1 (en) * | 2010-09-01 | 2013-10-03 | The Regents Of The University Of California | Cell culture screen for agents that control adipogenesis and myofibroblast differentiation |
| US9381219B2 (en) | 2010-12-29 | 2016-07-05 | Ethicon Endo-Surgery, Inc. | Brown adipocyte modification |
| JP6012629B2 (en) | 2011-01-25 | 2016-10-25 | ユニヴェルシテ カソリック ド ルーヴァンUniversite Catholique De Louvain | Compositions and methods for cell transplantation |
| EP2673358B1 (en) | 2011-02-08 | 2019-01-09 | FUJIFILM Cellular Dynamics, Inc. | Hematopoietic precursor cell production by programming |
| ES2763331T3 (en) | 2011-06-06 | 2020-05-28 | ReGenesys BVBA | Stem cell expansion in hollow fiber bioreactors |
| WO2013010045A1 (en) | 2011-07-12 | 2013-01-17 | Biotime Inc. | Novel methods and formulations for orthopedic cell therapy |
| US20140286916A1 (en) | 2011-10-11 | 2014-09-25 | Bone Therapeutics | Uses of Growth and Differentiation Factor 8 (GDF-8) |
| US9775890B2 (en) | 2012-01-25 | 2017-10-03 | Université Catholique de Louvain | Factor Xa inhibitor used with liver-derived progenitor cells |
| US10041039B2 (en) | 2012-03-29 | 2018-08-07 | Jcr Pharmaceuticals Co., Ltd. | Method for producing pluripotent stem cells derived from dental pulp |
| BR112015004003B1 (en) | 2012-09-06 | 2020-05-19 | The Gid Group Inc | apparatus for processing human biological material containing fibrous tissue and method for processing adipose tissue |
| CN104703612B (en) | 2012-09-26 | 2021-03-19 | 骨治疗公司 | Formulations comprising solvent/detergent-treated plasma (S/D plasma) and uses thereof |
| US10494402B2 (en) | 2012-11-25 | 2019-12-03 | The Regents Of The University Of California | Peptides that stimulate subcutaneous adipogenesis |
| CN105229144A (en) | 2013-02-22 | 2016-01-06 | 细胞动力学国际有限公司 | By combination genetic engineering and chemical engineering via forward programming produce liver cell |
| CN105358680B (en) | 2013-04-03 | 2019-06-25 | 富士费勒姆细胞动力学有限公司 | Methods and compositions for suspension culture of endodermal progenitor cells |
| EP3795159A1 (en) | 2013-04-12 | 2021-03-24 | Houston Methodist Hospital | Improving organs for transplantation |
| EP2992088B1 (en) | 2013-04-30 | 2019-08-21 | Katholieke Universiteit Leuven | Cell therapy for myelodysplastic syndromes |
| US10336980B2 (en) | 2013-09-05 | 2019-07-02 | The Gid Group, Inc. | Tissue processing apparatus and method for processing adipose tissue |
| WO2015164228A1 (en) | 2014-04-21 | 2015-10-29 | Cellular Dynamics International, Inc. | Hepatocyte production via forward programming by combined genetic and chemical engineering |
| US10844102B2 (en) | 2014-05-28 | 2020-11-24 | The Regents Of The University Of California | Peptides, compositions, and methods for stimulating subcutaneous adipogenesis |
| WO2016044030A1 (en) | 2014-09-19 | 2016-03-24 | Osiris Therapeutics, Inc. | Bone repair product and methods of use thereof |
| WO2016049156A1 (en) | 2014-09-23 | 2016-03-31 | Case Western Reserve University | Compositions and methods for treating lung remodeling diseases |
| CN118161529A (en) | 2014-11-07 | 2024-06-11 | 胞外体干细胞株式会社 | Composition for inducing adipogenic differentiation, regenerating adipose tissue, whitening skin or improving wrinkles comprising stem cell-derived exosomes |
| KR101629151B1 (en) * | 2014-11-07 | 2016-06-10 | 한양대학교 에리카산학협력단 | Composition including stem cell-derived exosome for inducing adipogenic differentiation and adipose tissue regeneration |
| US10092738B2 (en) | 2014-12-29 | 2018-10-09 | Ethicon Llc | Methods and devices for inhibiting nerves when activating brown adipose tissue |
| US10080884B2 (en) | 2014-12-29 | 2018-09-25 | Ethicon Llc | Methods and devices for activating brown adipose tissue using electrical energy |
| KR101938182B1 (en) | 2015-04-23 | 2019-01-14 | 본 테라퓨틱스 소시에테아노님 | In vitro preservation of therapeutic cells |
| US20200325449A1 (en) | 2016-06-02 | 2020-10-15 | The Cleveland Clinic Foundation | Complement inhibition for improving cell viability |
| WO2018044791A1 (en) | 2016-08-30 | 2018-03-08 | Lifecell Corporation | Systems and methods for medical device control |
| USD851777S1 (en) | 2017-01-30 | 2019-06-18 | Lifecell Corporation | Canister-type device for tissue processing |
| US11732233B2 (en) | 2017-07-18 | 2023-08-22 | Gid Bio, Inc. | Adipose tissue digestion system and tissue processing method |
| SG11202003524XA (en) | 2017-10-20 | 2020-05-28 | Bone Therapeutics Sa | Methods for differentiating mesenchymal stem cells |
| IL280387B2 (en) | 2018-07-31 | 2024-07-01 | Japan Chem Res | Method for producing dental pulp-derived cells |
| JP2022502034A (en) | 2018-09-25 | 2022-01-11 | ボーン、セラピューティクス、エスアーBone Thrapeutics Sa | Methods and Uses for Determining the Bone Forming Ability of In Vitro Differentiated Cells |
| JP2022501053A (en) | 2018-09-25 | 2022-01-06 | ボーン、セラピューティクス、エスアーBone Thrapeutics Sa | Methods for Differentiating Mesenchymal Stem Cells |
| AR118008A1 (en) | 2019-02-07 | 2021-09-08 | Vitricell Sa | COMPOSITIONS FOR CRYOPRESERVATION OF A BIOLOGICAL MATERIAL |
| BE1027216B1 (en) | 2019-05-13 | 2021-06-21 | Bone Therapeutics | ENHANCED LYOPHILIZED FORMULATIONS INCLUDING HYALURONIC ACID AND PLASMATIC PROTEINS, AND THEIR USES |
| WO2021007180A1 (en) | 2019-07-05 | 2021-01-14 | Case Western Reserve University | Priming media and methods for stem cell culture and therapy |
| WO2021153719A1 (en) | 2020-01-30 | 2021-08-05 | Jcrファーマ株式会社 | Medicinal composition comprising dental pulp-derived cells |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5486359A (en) | 1990-11-16 | 1996-01-23 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells |
| US5827740A (en) * | 1996-07-30 | 1998-10-27 | Osiris Therapeutics, Inc. | Adipogenic differentiation of human mesenchymal stem cells |
-
1996
- 1996-07-30 US US08/700,753 patent/US5827740A/en not_active Expired - Lifetime
-
1997
- 1997-07-21 EP EP97934171A patent/EP0954565B1/en not_active Expired - Lifetime
- 1997-07-21 JP JP50885998A patent/JP2001523084A/en active Pending
- 1997-07-21 ES ES97934171T patent/ES2274547T3/en not_active Expired - Lifetime
- 1997-07-21 EP EP06002113A patent/EP1659172A1/en not_active Ceased
- 1997-07-21 WO PCT/US1997/012356 patent/WO1998004682A1/en active IP Right Grant
- 1997-07-21 DK DK97934171T patent/DK0954565T3/en active
- 1997-07-21 AT AT97934171T patent/ATE342349T1/en not_active IP Right Cessation
- 1997-07-21 PT PT97934171T patent/PT954565E/en unknown
- 1997-07-21 DE DE69736814T patent/DE69736814T2/en not_active Expired - Lifetime
- 1997-07-21 AU AU37290/97A patent/AU3729097A/en not_active Abandoned
- 1997-07-21 CA CA2262014A patent/CA2262014C/en not_active Expired - Fee Related
-
1998
- 1998-10-26 US US09/246,003 patent/US6322784B1/en not_active Expired - Lifetime
-
2000
- 2000-03-28 US US09/537,003 patent/US6709864B1/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5486359A (en) | 1990-11-16 | 1996-01-23 | Osiris Therapeutics, Inc. | Human mesenchymal stem cells |
| US5827740A (en) * | 1996-07-30 | 1998-10-27 | Osiris Therapeutics, Inc. | Adipogenic differentiation of human mesenchymal stem cells |
Non-Patent Citations (14)
Cited By (187)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8158118B2 (en) | 1999-07-07 | 2012-04-17 | Angioblast Systems, Inc. | Mesenchymal precursor cell |
| US7122178B1 (en) | 1999-07-07 | 2006-10-17 | Angioblast Systems, Incorporated | Mesenchymal precursor cell |
| US20050158289A1 (en) * | 1999-07-07 | 2005-07-21 | Simmons Paul J. | Mesenchymal precursor cell and use thereof in the repair of bone defects and fractures in mammals |
| US7399632B2 (en) | 1999-07-07 | 2008-07-15 | Angioblast Systems, Incorporated | Mesenchymal precursor cell |
| US7670628B2 (en) | 1999-07-07 | 2010-03-02 | Angioblast Systems, Inc. | Mesenchymal precursor cell |
| US8546138B2 (en) | 1999-07-07 | 2013-10-01 | Angioblast Systems, Incorporated | Mesenchymal precursor cell |
| US20100330045A1 (en) * | 1999-07-07 | 2010-12-30 | Angioblast Systems, Incorporated | Mesenchymal precursor cell |
| US20050281790A1 (en) * | 1999-07-07 | 2005-12-22 | Medvet Science Pty Ltd. | Mesenchymal precursor cell |
| US8062675B2 (en) | 1999-07-07 | 2011-11-22 | Angioblast Systems, Inc. | Mesenchymal precursor cell |
| US20050019911A1 (en) * | 1999-07-07 | 2005-01-27 | Medvet Science Pty Ltd | Mesenchymal precursor cell |
| US8057788B2 (en) | 2000-12-06 | 2011-11-15 | Anthrogenesis Corporation | Placental stem cell populations |
| US7255879B2 (en) | 2000-12-06 | 2007-08-14 | Anthrogenesis Corporation | Post-partum mammalian placenta, its use and placental stem cells therefrom |
| US20030032179A1 (en) * | 2000-12-06 | 2003-02-13 | Hariri Robert J. | Post-partum mammalian placenta, its use and placental stem cells therefrom |
| US7976836B2 (en) | 2000-12-06 | 2011-07-12 | Anthrogenesis Corporation | Treatment of stroke using placental stem cells |
| US8293223B2 (en) | 2000-12-06 | 2012-10-23 | Anthrogenesis Corporation | Treatment of organ injuries and burns using placental stem cells |
| US9149569B2 (en) | 2000-12-06 | 2015-10-06 | Anthrogenesis Corporation | Treatment of diseases or disorders using placental stem cells |
| US8545833B2 (en) | 2000-12-06 | 2013-10-01 | Anthrogenesis Corporation | Treatment of radiation injury using placental stem cells |
| US7468276B2 (en) | 2000-12-06 | 2008-12-23 | Anthrogenesis Corporation | Placental stem cells |
| US8580563B2 (en) | 2000-12-06 | 2013-11-12 | Anthrogenesis Corporation | Placental stem cells |
| US7914779B2 (en) | 2001-02-14 | 2011-03-29 | Anthrogenesis Corporation | Tissue matrices comprising placental stem cells, and methods of making the same |
| US7311904B2 (en) | 2001-02-14 | 2007-12-25 | Anthrogenesis Corporation | Tissue matrices comprising placental stem cells, and methods of making the same |
| US9139813B2 (en) | 2001-02-14 | 2015-09-22 | Anthrogenesis Corporation | Renovation and repopulation of decellularized tissues and cadaveric organs by stem cells |
| US20080131966A1 (en) * | 2001-02-14 | 2008-06-05 | Hariri Robert J | Renovation and repopulation of decellularized tissues and cadaveric organs by stem cells |
| US8435788B2 (en) | 2001-02-14 | 2013-05-07 | Anthrogenesis Corporation | Tissue matrices comprising placental stem cells |
| US8404229B2 (en) | 2001-12-07 | 2013-03-26 | Cytori Therapeutics, Inc. | Methods of using adipose derived stem cells to treat acute tubular necrosis |
| US8883499B2 (en) | 2001-12-07 | 2014-11-11 | Cytori Therapeutics, Inc. | Systems and methods for isolating and using clinically safe adipose derived regenerative cells |
| US20050260175A1 (en) * | 2001-12-07 | 2005-11-24 | Hedrick Marc H | Systems and methods for isolating and using clinically safe adipose derived regenerative cells |
| US20040096431A1 (en) * | 2001-12-07 | 2004-05-20 | Fraser John K. | Systems and methods for treating patients with processed lipoaspirate cells |
| US20040106196A1 (en) * | 2001-12-07 | 2004-06-03 | Fraser John K. | Systems and methods for treating patients with processed lipoaspirate cells |
| US9872877B2 (en) | 2001-12-07 | 2018-01-23 | Cytori Therapeutics, Inc. | Methods of using regenerative cells to promote epithelialization or neodermis formation |
| WO2003053346A3 (en) * | 2001-12-07 | 2006-08-17 | Macropore Biosurgery Inc | Systems and methods for treating patients with processed lipoaspirate cells |
| US8337834B2 (en) | 2001-12-07 | 2012-12-25 | Cytori Therapeutics, Inc. | Methods of making enhanced, autologous fat grafts |
| US20060204556A1 (en) * | 2001-12-07 | 2006-09-14 | Cytori Therapeutics, Inc. | Cell-loaded prostheses for regenerative intraluminal applications |
| US9849149B2 (en) | 2001-12-07 | 2017-12-26 | Cytori Therapeutics, Inc. | Methods of using regenerative cells in the treatment of erectile dysfunction |
| US20050008626A1 (en) * | 2001-12-07 | 2005-01-13 | Fraser John K. | Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions |
| US20050260174A1 (en) * | 2001-12-07 | 2005-11-24 | Fraser John K | Systems and methods for treating patients with processed lipoaspirate cells |
| US8246947B2 (en) | 2001-12-07 | 2012-08-21 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in augmenting autologous fat transfer |
| US20070036768A1 (en) * | 2001-12-07 | 2007-02-15 | Fraser John K | Systems and methods for treating patients with processed lipoaspirate cells |
| US8691216B2 (en) | 2001-12-07 | 2014-04-08 | Cytori Therapeutics, Inc. | Methods of using regenerative cells to promote wound healing |
| US9597395B2 (en) | 2001-12-07 | 2017-03-21 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions |
| US9511096B2 (en) | 2001-12-07 | 2016-12-06 | Cytori Therapeutics, Inc. | Methods of using regenerative cells to treat an ischemic wound |
| US9511094B2 (en) | 2001-12-07 | 2016-12-06 | Cytori Therapeutics, Inc. | Methods of using regenerative cells in the treatment of stroke and related diseases and disorders |
| US8771678B2 (en) | 2001-12-07 | 2014-07-08 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in augmenting autologous fat transfer |
| US8119121B2 (en) | 2001-12-07 | 2012-02-21 | Cytori Therapeutics, Inc. | Autologous adipose tissue implant with concentrated stem cells |
| US20050095228A1 (en) * | 2001-12-07 | 2005-05-05 | Fraser John K. | Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders |
| US9504716B2 (en) | 2001-12-07 | 2016-11-29 | Cytori Therapeutics, Inc. | Methods of using adipose derived regenerative cells to promote restoration of intevertebral disc |
| US7390484B2 (en) | 2001-12-07 | 2008-06-24 | Cytori Therapeutics, Inc. | Self-contained adipose derived stem cell processing unit |
| US20050084961A1 (en) * | 2001-12-07 | 2005-04-21 | Hedrick Marc H. | Systems and methods for separating and concentrating regenerative cells from tissue |
| US9492483B2 (en) | 2001-12-07 | 2016-11-15 | Cytori Therapeutics, Inc. | Methods of using regenerative cells to treat a burn |
| US7429488B2 (en) | 2001-12-07 | 2008-09-30 | Cytori Therapeutics, Inc. | Method for processing lipoaspirate cells |
| US9480718B2 (en) | 2001-12-07 | 2016-11-01 | Cytori Therapeutics, Inc. | Methods of using adipose-derived regenerative cells in the treatment of peripheral vascular disease and related disorders |
| US8105580B2 (en) | 2001-12-07 | 2012-01-31 | Cytori Therapeutics, Inc. | Methods of using adipose derived stem cells to promote wound healing |
| US20050074436A1 (en) * | 2001-12-07 | 2005-04-07 | Fraser John K. | Systems and methods for treating patients with processed lipoaspirate cells |
| US7473420B2 (en) | 2001-12-07 | 2009-01-06 | Cytori Therapeutics, Inc. | Systems and methods for treating patients with processed lipoaspirate cells |
| US7501115B2 (en) | 2001-12-07 | 2009-03-10 | Cytori Therapeutics, Inc. | Systems and methods for treating patients with processed lipoaspirate cells |
| US7514075B2 (en) | 2001-12-07 | 2009-04-07 | Cytori Therapeutics, Inc. | Systems and methods for separating and concentrating adipose derived stem cells from tissue |
| US7585670B2 (en) | 2001-12-07 | 2009-09-08 | Cytori Therapeutics, Inc. | Automated methods for isolating and using clinically safe adipose derived regenerative cells |
| US20050048036A1 (en) * | 2001-12-07 | 2005-03-03 | Hedrick Marc H. | Methods of using regenerative cells in the treatment of inherited and acquired disorders of the bone, bone marrow, liver, and other tissues |
| US7595043B2 (en) | 2001-12-07 | 2009-09-29 | Cytori Therapeutics, Inc. | Method for processing and using adipose-derived stem cells |
| US9463203B2 (en) | 2001-12-07 | 2016-10-11 | Cytori Therapeutics, Inc. | Methods of using regenerative cells in the treatment of cartilage defects |
| US20090297488A1 (en) * | 2001-12-07 | 2009-12-03 | John K Fraser | Methods of using regenerative cells in the treatment of peripheral vascular disease and related disorders |
| US20100015204A1 (en) * | 2001-12-07 | 2010-01-21 | Hedrick Marc H | Cell carrier and cell carrier containment devices containing regenerative cells |
| US7651684B2 (en) | 2001-12-07 | 2010-01-26 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in augmenting autologous fat transfer |
| US9198937B2 (en) | 2001-12-07 | 2015-12-01 | Cytori Therapeutics, Inc. | Adipose-derived regenerative cells for treating liver injury |
| US20050058632A1 (en) * | 2001-12-07 | 2005-03-17 | Hedrick Marc H. | Cell carrier and cell carrier containment devices containing regenerative cells |
| US20050048034A1 (en) * | 2001-12-07 | 2005-03-03 | Fraser John K. | Methods of using regenerative cells to promote wound healing |
| US7687059B2 (en) | 2001-12-07 | 2010-03-30 | Cytori Therapeutics, Inc. | Systems and methods for treating patients with processed lipoaspirate cells |
| US20050048035A1 (en) * | 2001-12-07 | 2005-03-03 | Fraser John K. | Methods of using regenerative cells in the treatment of stroke and related diseases and disorders |
| US20050048644A1 (en) * | 2001-12-07 | 2005-03-03 | Hedrick Marc H. | Methods of using regenerative cells in the treatment of musculoskeletal disorders |
| US7771716B2 (en) | 2001-12-07 | 2010-08-10 | Cytori Therapeutics, Inc. | Methods of using regenerative cells in the treatment of musculoskeletal disorders |
| US20100233139A1 (en) * | 2001-12-07 | 2010-09-16 | Hedrick Marc H | Methods of using adipose tissue-derived cells in augmenting autologous fat transfer |
| US20050048033A1 (en) * | 2001-12-07 | 2005-03-03 | Fraser John K. | Methods of using regenerative cells in the treatment of renal diseases and disorders |
| US7311905B2 (en) | 2002-02-13 | 2007-12-25 | Anthrogenesis Corporation | Embryonic-like stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells |
| US7700090B2 (en) | 2002-02-13 | 2010-04-20 | Anthrogenesis Corporation | Co-culture of placental stem cells and stem cells from a second source |
| US8057789B2 (en) | 2002-02-13 | 2011-11-15 | Anthrogenesis Corporation | Placental stem cells derived from post-partum mammalian placenta, and uses and methods of treatment using said cells |
| US8753883B2 (en) | 2002-02-13 | 2014-06-17 | Anthrogenesis Corporation | Treatment of psoriasis using placental stem cells |
| US20040076622A1 (en) * | 2002-03-02 | 2004-04-22 | Board Of Regents, The University Of Texas System | Local production and/or delivery of anti-cancer agents by stromal cell precursors |
| US20050250202A1 (en) * | 2002-03-19 | 2005-11-10 | March Keith L | Adipose stromal stem cells for tissue and vascular modification |
| US20090239295A1 (en) * | 2002-03-28 | 2009-09-24 | Bernd Karl Friedrich Kremer | Dedifferentiated, Programmable Stem Cells of Monocytic Origin, and Their Production and Use |
| US20040092011A1 (en) * | 2002-04-03 | 2004-05-13 | Wilkison William O. | Adipocytic differentiated adipose derived adult stem cells and uses thereof |
| EP1496978A4 (en) * | 2002-04-03 | 2006-11-29 | Artecel Sciences Inc | Improvements of adipocytic differentiated adipose derived adult stem cells and uses thereof |
| US7060494B2 (en) * | 2002-04-09 | 2006-06-13 | Reliance Life Sciences Pvt. Ltd. | Growth of human Mesenchymal Stem Cells (hMSC) using umbilical cord blood serum and the method for the preparation thereof |
| US20030232432A1 (en) * | 2002-04-09 | 2003-12-18 | Reliance Life Sciences Pvt. Ltd. | Growth of human Mesenchymal Stem Cells (hMSC) using umbilical cord blood serum and the method for the peparation thereof |
| US20050118715A1 (en) * | 2002-04-12 | 2005-06-02 | Hariri Robert J. | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
| WO2003087333A3 (en) * | 2002-04-12 | 2004-02-26 | Celgene Corp | Modulation of stem and progenitor cell differentiation, assays, and uses thereof |
| US20040028660A1 (en) * | 2002-05-30 | 2004-02-12 | Anthrogenesis Corporation | Methods of using JNK or MKK inhibitors to modulate cell differentiation and to treat myeloproliferative disorders and myelodysplastic syndromes |
| US8617535B2 (en) | 2002-11-26 | 2013-12-31 | Anthrogenesis Corporation | Cytotherapeutics, cytotherapeutic units and methods for treatments using them |
| KR100865884B1 (en) | 2003-03-18 | 2008-10-31 | (주)안트로젠 | Differentiated fat cells for use in allografts |
| US20070065938A1 (en) * | 2003-03-28 | 2007-03-22 | Stan Gronthos | Perivascular mesenchymal precursor cells |
| US20060286077A1 (en) * | 2003-03-28 | 2006-12-21 | Stan Gronthos | Perivascular mesenchymal precursor cell induced blood vessel formation |
| US9175267B2 (en) | 2003-03-28 | 2015-11-03 | Mesoblast, Inc. | Perivascular mesenchymal precursor cell induced blood vessel formation |
| US20060193840A1 (en) * | 2003-03-28 | 2006-08-31 | Stan Gronthos | Perivascular mesenchymal precursor cell induced blood vessel formation |
| US10421946B2 (en) | 2003-03-28 | 2019-09-24 | Mesoblast, Inc. | Perivascular mesenchymal precursor cells |
| US7947266B2 (en) | 2003-03-28 | 2011-05-24 | Angioblast Systems Inc. | Perivascular mesenchymal precursor cells |
| US9169466B2 (en) | 2003-03-28 | 2015-10-27 | Mesoblast, Inc. | Perivascular mesenchymal precursor cell induced blood vessel formation |
| US8603462B2 (en) | 2003-04-01 | 2013-12-10 | University Of Utah Research Foundation | Stem-cell, precursor cell, or target cell-based treatment of multi-organ failure and renal dysfunction |
| US20070178071A1 (en) * | 2003-04-01 | 2007-08-02 | Christof Westenfelder | Stem-cell, precursor cell, or target cell-based treatment of multiorgan failure and renal dysfunction |
| US20050035342A1 (en) * | 2003-08-14 | 2005-02-17 | Bomy Chen | Phase change memory device employing thermal-electrical contacts with narrowing electrical current paths, and a method of making same |
| US20060222636A1 (en) * | 2003-09-19 | 2006-10-05 | The Rockefeller University | Compositions, methods and kits relating to reprogramming adult differentiated cells and production of embryonic stem cell-like cells |
| US11129855B2 (en) | 2003-10-08 | 2021-09-28 | Vetstem Biopharma, Inc. | Methods of preparing and using novel stem cell compositions and kits comprising the same |
| US10668105B2 (en) | 2003-10-08 | 2020-06-02 | Vetstem Biopharma, Inc. | Methods of preparing and using novel stem cell compositions and kits comprising the same |
| US9453202B2 (en) | 2003-10-08 | 2016-09-27 | Vet-Stem, Inc. | Methods of preparing and using novel stem cell compositions and kits comprising the same |
| US20070274960A1 (en) * | 2003-10-08 | 2007-11-29 | Vet-Stem Inc. | Methods of Preparing and Using Novel Stem Cell Compositions and Kits Comprising the Same |
| US7829332B2 (en) | 2004-02-13 | 2010-11-09 | Cornell Research Foundation, Inc. | Purines are self-renewal signals for neural stem cells, and purine receptor antagonists promote neuronal and glial differentiation therefrom |
| US20050181503A1 (en) * | 2004-02-13 | 2005-08-18 | Goldman Steven A. | Purines are self-renewal signals for neural stem cells, and purine receptor antagonists promote neuronal and glial differentiation therefrom |
| US7670596B2 (en) | 2004-04-23 | 2010-03-02 | Bioe, Inc. | Multi-lineage progenitor cells |
| US8163275B2 (en) | 2004-04-23 | 2012-04-24 | Bioe Llc | Multi-lineage progenitor cells |
| US7622108B2 (en) | 2004-04-23 | 2009-11-24 | Bioe, Inc. | Multi-lineage progenitor cells |
| US10544394B2 (en) | 2004-09-24 | 2020-01-28 | Mesoblast, Inc. | Method of increasing proliferation of bone marrow mononuclear cells expressing STRO1-dim |
| US20110223668A1 (en) * | 2004-09-24 | 2011-09-15 | Angioblast Systems, Inc. | Method of enhancing proliferation and/or survival of mesenchymal precursor cells (MPC) |
| US20060134781A1 (en) * | 2004-12-07 | 2006-06-22 | Bacterin International, Inc. | Three-dimensional cell culture system |
| US20060154235A1 (en) * | 2005-01-07 | 2006-07-13 | Takahiro Ochiya | Human hepatocyte-like cells and uses thereof |
| US20080140451A1 (en) * | 2005-01-10 | 2008-06-12 | Cytori Therapeutics, Inc. | Devices and Methods for Monitoring, Managing, and Servicing Medical Devices |
| US20080241112A1 (en) * | 2005-05-10 | 2008-10-02 | Christof Westenfelder | Therapy of Kidney Diseases and Multiorgan Failure with Mesenchymal Stem Cells and Mesenchymal Stem Cell Conditioned Media |
| US20130266548A1 (en) * | 2005-07-15 | 2013-10-10 | Robert G. Matheny | Compositions for Regenerating Defective or Absent Myocardium |
| US9125972B2 (en) * | 2005-07-15 | 2015-09-08 | Cormatrix Cardiovascular, Inc. | Compositions for regenerating defective or absent myocardium |
| US8216566B2 (en) | 2005-10-13 | 2012-07-10 | Anthrogenesis Corporation | Treatment of multiple sclerosis using placental stem cells |
| US8895256B2 (en) | 2005-10-13 | 2014-11-25 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
| US7682803B2 (en) | 2005-10-13 | 2010-03-23 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
| US9539288B2 (en) | 2005-10-13 | 2017-01-10 | Anthrogenesis Corporation | Immunomodulation using placental stem cells |
| US9078898B2 (en) | 2005-12-29 | 2015-07-14 | Anthrogenesis Corporation | Placental stem cell populations |
| US8691217B2 (en) | 2005-12-29 | 2014-04-08 | Anthrogenesis Corporation | Placental stem cell populations |
| US8591883B2 (en) | 2005-12-29 | 2013-11-26 | Anthrogenesis Corporation | Placental stem cell populations |
| US10383897B2 (en) | 2005-12-29 | 2019-08-20 | Celularity, Inc. | Placental stem cell populations |
| US8202703B2 (en) | 2005-12-29 | 2012-06-19 | Anthrogenesis Corporation | Placental stem cell populations |
| US8455250B2 (en) | 2005-12-29 | 2013-06-04 | Anthrogenesis Corporation | Co-culture of placental stem cells and stem cells from a second source |
| US7727763B2 (en) | 2006-04-17 | 2010-06-01 | Bioe, Llc | Differentiation of multi-lineage progenitor cells to respiratory epithelial cells |
| US7993918B2 (en) | 2006-08-04 | 2011-08-09 | Anthrogenesis Corporation | Tumor suppression using placental stem cells |
| US8916146B2 (en) | 2007-02-12 | 2014-12-23 | Anthrogenesis Corporation | Treatment of inflammatory diseases using placental stem cells |
| US8460650B2 (en) | 2007-02-12 | 2013-06-11 | Anthrogenesis Corporation | Treatment of inflammatory diseases using placental stem cells |
| US20080216657A1 (en) * | 2007-03-07 | 2008-09-11 | Hamilton Beach/Proctor-Silex, Inc. | Air Purifier for Removing Particles or Contaminants from Air |
| US9200253B1 (en) | 2007-08-06 | 2015-12-01 | Anthrogenesis Corporation | Method of producing erythrocytes |
| US9216200B2 (en) | 2007-09-28 | 2015-12-22 | Anthrogenesis Corporation | Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells |
| US8263065B2 (en) | 2007-09-28 | 2012-09-11 | Anthrogenesis Corporation | Tumor suppression using human placental perfusate and human placenta-derived intermediate natural killer cells |
| US9486484B2 (en) | 2008-08-19 | 2016-11-08 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease |
| US8784801B2 (en) | 2008-08-19 | 2014-07-22 | Cytori Therapeutics, Inc. | Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease |
| US10104880B2 (en) | 2008-08-20 | 2018-10-23 | Celularity, Inc. | Cell composition and methods of making the same |
| US8828376B2 (en) | 2008-08-20 | 2014-09-09 | Anthrogenesis Corporation | Treatment of stroke using isolated placental cells |
| US8728805B2 (en) | 2008-08-22 | 2014-05-20 | Anthrogenesis Corporation | Methods and compositions for treatment of bone defects with placental cell populations |
| US8367409B2 (en) | 2008-11-19 | 2013-02-05 | Anthrogenesis Corporation | Amnion derived adherent cells |
| US9198938B2 (en) | 2008-11-19 | 2015-12-01 | Antrhogenesis Corporation | Amnion derived adherent cells |
| US9808558B2 (en) | 2008-11-20 | 2017-11-07 | Allosource | Allografts combined with tissue derived stem cells for bone healing |
| US9814803B2 (en) | 2008-11-20 | 2017-11-14 | Allosource | Allografts combined with tissue derived stem cells for bone healing |
| US9133431B2 (en) | 2009-05-01 | 2015-09-15 | Bimini Technologies Llc | Systems, methods and compositions for optimizing tissue and cell enriched grafts |
| US9301975B2 (en) | 2009-05-01 | 2016-04-05 | Biocardia, Inc. | Method of preparing autologous cells and method of use for therapy |
| US9752123B2 (en) | 2009-05-01 | 2017-09-05 | Biocardia, Inc. | Method of preparing autologous cells and methods of use for therapy |
| US10035982B2 (en) | 2009-05-01 | 2018-07-31 | Biocardia, Inc. | Method of preparing autologous cells and methods of use for therapy |
| US9255248B2 (en) | 2009-07-02 | 2016-02-09 | Anthrogenesis Corporation | Method of producing erythrocytes without feeder cells |
| US8586360B2 (en) | 2009-07-02 | 2013-11-19 | Anthrogenesis Corporation | Method of producing erythrocytes without feeder cells |
| US9121007B2 (en) | 2010-01-26 | 2015-09-01 | Anthrogenesis Corporatin | Treatment of bone-related cancers using placental stem cells |
| US9254302B2 (en) | 2010-04-07 | 2016-02-09 | Anthrogenesis Corporation | Angiogenesis using placental stem cells |
| US8562973B2 (en) | 2010-04-08 | 2013-10-22 | Anthrogenesis Corporation | Treatment of sarcoidosis using placental stem cells |
| US9464274B2 (en) | 2010-07-13 | 2016-10-11 | Anthrogenesis Corporation | Methods of generating natural killer cells |
| US8926964B2 (en) | 2010-07-13 | 2015-01-06 | Anthrogenesis Corporation | Methods of generating natural killer cells |
| US11613727B2 (en) | 2010-10-08 | 2023-03-28 | Terumo Bct, Inc. | Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
| US11773363B2 (en) | 2010-10-08 | 2023-10-03 | Terumo Bct, Inc. | Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
| US11746319B2 (en) | 2010-10-08 | 2023-09-05 | Terumo Bct, Inc. | Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system |
| US12410405B2 (en) | 2010-10-08 | 2025-09-09 | Mesoblast International Sàrl | Enhanced MSC preparations |
| US8969315B2 (en) | 2010-12-31 | 2015-03-03 | Anthrogenesis Corporation | Enhancement of placental stem cell potency using modulatory RNA molecules |
| US11090339B2 (en) | 2011-06-01 | 2021-08-17 | Celularity Inc. | Treatment of pain using placental stem cells |
| US9040035B2 (en) | 2011-06-01 | 2015-05-26 | Anthrogenesis Corporation | Treatment of pain using placental stem cells |
| US9925221B2 (en) | 2011-09-09 | 2018-03-27 | Celularity, Inc. | Treatment of amyotrophic lateral sclerosis using placental stem cells |
| WO2013082106A1 (en) | 2011-12-02 | 2013-06-06 | The General Hospital Corporation | Differentiation into brown adipocytes |
| US9763983B2 (en) | 2013-02-05 | 2017-09-19 | Anthrogenesis Corporation | Natural killer cells from placenta |
| US10568990B2 (en) | 2013-03-15 | 2020-02-25 | Allosource | Cell repopulated collagen matrix for soft tissue repair and regeneration |
| US11229725B2 (en) | 2013-03-15 | 2022-01-25 | Allosource | Cell repopulated collagen matrix for soft tissue repair and regeneration |
| US11667876B2 (en) | 2013-11-16 | 2023-06-06 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
| US11708554B2 (en) | 2013-11-16 | 2023-07-25 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
| US11795432B2 (en) | 2014-03-25 | 2023-10-24 | Terumo Bct, Inc. | Passive replacement of media |
| US12065637B2 (en) | 2014-09-26 | 2024-08-20 | Terumo Bct, Inc. | Scheduled feed |
| US11667881B2 (en) | 2014-09-26 | 2023-06-06 | Terumo Bct, Inc. | Scheduled feed |
| US11608486B2 (en) | 2015-07-02 | 2023-03-21 | Terumo Bct, Inc. | Cell growth with mechanical stimuli |
| US11965175B2 (en) | 2016-05-25 | 2024-04-23 | Terumo Bct, Inc. | Cell expansion |
| US11685883B2 (en) | 2016-06-07 | 2023-06-27 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
| US12077739B2 (en) | 2016-06-07 | 2024-09-03 | Terumo Bct, Inc. | Coating a bioreactor in a cell expansion system |
| US11634677B2 (en) | 2016-06-07 | 2023-04-25 | Terumo Bct, Inc. | Coating a bioreactor in a cell expansion system |
| US11999929B2 (en) | 2016-06-07 | 2024-06-04 | Terumo Bct, Inc. | Methods and systems for coating a cell growth surface |
| US11629332B2 (en) | 2017-03-31 | 2023-04-18 | Terumo Bct, Inc. | Cell expansion |
| US11624046B2 (en) | 2017-03-31 | 2023-04-11 | Terumo Bct, Inc. | Cell expansion |
| US11702634B2 (en) | 2017-03-31 | 2023-07-18 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
| US12234441B2 (en) | 2017-03-31 | 2025-02-25 | Terumo Bct, Inc. | Cell expansion |
| US12359170B2 (en) | 2017-03-31 | 2025-07-15 | Terumo Bct, Inc. | Expanding cells in a bioreactor |
| EP3708654A4 (en) * | 2017-11-16 | 2020-12-23 | Nissan Chemical Corporation | Method for inducing differentiation into and producing beige and white adipocytes |
| US11530387B2 (en) | 2017-11-16 | 2022-12-20 | Nissan Chemical Corporation | Method for inducing differentiation into and producing beige and white adipocytes |
| US12043823B2 (en) | 2021-03-23 | 2024-07-23 | Terumo Bct, Inc. | Cell capture and expansion |
| US12152699B2 (en) | 2022-02-28 | 2024-11-26 | Terumo Bct, Inc. | Multiple-tube pinch valve assembly |
| US12209689B2 (en) | 2022-02-28 | 2025-01-28 | Terumo Kabushiki Kaisha | Multiple-tube pinch valve assembly |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69736814D1 (en) | 2006-11-23 |
| US6709864B1 (en) | 2004-03-23 |
| AU3729097A (en) | 1998-02-20 |
| US5827740A (en) | 1998-10-27 |
| JP2001523084A (en) | 2001-11-20 |
| CA2262014A1 (en) | 1998-02-05 |
| EP0954565B1 (en) | 2006-10-11 |
| WO1998004682A1 (en) | 1998-02-05 |
| CA2262014C (en) | 2010-09-14 |
| PT954565E (en) | 2007-01-31 |
| EP0954565A1 (en) | 1999-11-10 |
| EP1659172A1 (en) | 2006-05-24 |
| DE69736814T2 (en) | 2007-08-16 |
| ATE342349T1 (en) | 2006-11-15 |
| ES2274547T3 (en) | 2007-05-16 |
| EP0954565A4 (en) | 2002-09-18 |
| DK0954565T3 (en) | 2007-02-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6322784B1 (en) | Adipogenic differentiation of human mesenchymal stem cells | |
| Grigoriadis et al. | Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. | |
| Beresford | Osteogenic stem cells and the stromal system of bone and marrow | |
| TWI278518B (en) | Methods and compositions for the differentiation of human preadipocytes into adipocytes | |
| Kinner et al. | Regulation of smooth muscle actin expression and contraction in adult human mesenchymal stem cells | |
| Yablonka-Reuveni et al. | Regulation of proliferation and differentiation of myoblasts derived from adult mouse skeletal muscle by specific isoforms of PDGF. | |
| US5942225A (en) | Lineage-directed induction of human mesenchymal stem cell differentiation | |
| US20100129330A1 (en) | Adipocytic differentiated adipose derived adult stem cells and uses thereof | |
| WO2000027996A1 (en) | Serum free medium for chondrocyte-like cells | |
| US20080187518A1 (en) | Production of Osteoclasts from Adipose Tissues | |
| Sakai et al. | Bone marrow capacity for bone cells and trabecular bone turnover in immobilized tibia after sciatic neurectomy in mice | |
| AU765354B2 (en) | Adipogenic differentiation of human mesenchymal stem cells | |
| Wang et al. | Peroxisome Proliferator‐Activated Receptor‐γ Promotes Adipogenic Changes in Growth Plate Chondrocytes In Vitro | |
| AU2003234740B2 (en) | Adipogenic Differentiation of Human Mesenchymal Stem Cells | |
| Hung et al. | Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells | |
| EP1619242A1 (en) | Control of stem cell differentiation induction and differentiation potency | |
| Zhou et al. | A novel experimental study on establish a myoblasts differentiated cell sheet using induced adipose-derived stem cell technology | |
| US20030103947A1 (en) | In vitro engineered cartilage constructs produced by coating biodegradable polymer with human mesenchymal stem cells | |
| Shumakov et al. | Differentiation of bone marrow stromal stem cells into cardiomyocyte-like cells in different mammalian species | |
| Roodman | Model systems of osteoclast differentiation | |
| Price et al. | O8. Type X collagen and aggrecan expression in deer antler an in situ hybridization and immunocytochemical study | |
| Gundle et al. | P1. Bone formation in vivo by cultured human marrow stromal and trabecular bone-derived cells | |
| Chen et al. | In vitro osteoblast characteristics and in vivo bone formation of adult human and rabbit adipose-derived cells | |
| Beck | Regulation of growth of normal and preneoplastic mammary epithelium by mammary adipose tissue | |
| Chow et al. | O6. Effect of mechanical stimulation and indomethacin on cancellous bone formation in rat tail vertebrae |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: OSIRIS THERAPEUTICS, INC., MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PITTENGER, MARK F.;BECK, STEPHEN C.;REEL/FRAME:010250/0759 Effective date: 19991129 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 12 |
|
| AS | Assignment |
Owner name: MESOBLAST INTERNATIONAL S?RL, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSIRIS THERAPEUTICS, INC.;REEL/FRAME:031533/0828 Effective date: 20131010 Owner name: MESOBLAST INTERNATIONAL SARL, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSIRIS THERAPEUTICS, INC.;REEL/FRAME:031533/0828 Effective date: 20131010 |