US3909376A - Electrolytic manufacture of alkyl-substituted hydroquinones - Google Patents
Electrolytic manufacture of alkyl-substituted hydroquinones Download PDFInfo
- Publication number
- US3909376A US3909376A US529284A US52928474A US3909376A US 3909376 A US3909376 A US 3909376A US 529284 A US529284 A US 529284A US 52928474 A US52928474 A US 52928474A US 3909376 A US3909376 A US 3909376A
- Authority
- US
- United States
- Prior art keywords
- percent
- electrolysis
- weight
- acetone
- alkylphenol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 title description 8
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 12
- 230000003647 oxidation Effects 0.000 claims abstract description 12
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 12
- 239000002253 acid Substances 0.000 claims abstract description 7
- 150000002576 ketones Chemical class 0.000 claims abstract description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 6
- 239000011707 mineral Substances 0.000 claims abstract description 6
- 230000001590 oxidative effect Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 22
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 claims description 16
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 claims description 11
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 9
- OGRAOKJKVGDSFR-UHFFFAOYSA-N 2,3,5-trimethylphenol Chemical compound CC1=CC(C)=C(C)C(O)=C1 OGRAOKJKVGDSFR-UHFFFAOYSA-N 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 2
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 6
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- AUFZRCJENRSRLY-UHFFFAOYSA-N 2,3,5-trimethylhydroquinone Chemical compound CC1=CC(O)=C(C)C(C)=C1O AUFZRCJENRSRLY-UHFFFAOYSA-N 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- XRUGBBIQLIVCSI-UHFFFAOYSA-N 2,3,4-trimethylphenol Chemical compound CC1=CC=C(O)C(C)=C1C XRUGBBIQLIVCSI-UHFFFAOYSA-N 0.000 description 1
- QWBBPBRQALCEIZ-UHFFFAOYSA-N 2,3-dimethylphenol Chemical compound CC1=CC=CC(O)=C1C QWBBPBRQALCEIZ-UHFFFAOYSA-N 0.000 description 1
- SENUUPBBLQWHMF-UHFFFAOYSA-N 2,6-dimethylcyclohexa-2,5-diene-1,4-dione Chemical compound CC1=CC(=O)C=C(C)C1=O SENUUPBBLQWHMF-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004054 benzoquinones Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
Definitions
- the invention relates to a process for the manufacture of alkylhydroquinones by electrolytic oxidation of alkylphenols and subsequent electrolytic reduction of the quinones thus obtained.
- German Published application No. 1,643,558 has disclosed converting unsubstituted phenol into hydroquinone in 90 per cent yield through appropriate choice of the electrolysis parameters such as current density, depolarizer and electrolyte concentration.
- the current efficiencies are above 60%. If attempts are made to apply these conditions to the anodic oxidation of alkylsubstituted phenols, the corresponding hydroquinones are obtained, but the yields are very low and the current efficiencies even drop below
- Chemical Communications 1971, pp. 1,643, et seq. discloses that dimethylphenol can be oxidized electrolytically to dimethylquinone in the presence of acetonitrile as the solvent.
- alkylhydroquinones of the general formula in which R is alkyl of l to 4 carbon atoms and n is an integer from 1 to 3 can be manufactured particularly advantageously in an electrolyticprocess wherein alkylphenols of the formula group, are oxidized anodically in a non-oxidizing aqueous mineral acid in the presence of a watersoluble ketone and the reaction mixture containing the corresponding alkylquinones is reduced cathodically.
- R is methyl.
- the para-position, where oxidation is to take place, in the initial phenol II must of course always be unsubstituted.
- suitable phenols are 2- methylphenol, 2,6-dimethylphenol, 2,3,6- trimethylphenol and 2,3,5-trimethylphenol.
- the electrolysis is carried out in the presence of an aqueous solution of a non-oxidizing mineral acid, especially sulfuric acid.
- a non-oxidizing mineral acid especially sulfuric acid.
- concentration of the mineral acid used is from 1 to 20 percent by weight, especially from 5 to 10 percent by weight.
- the temperature is maintained at its ambient value or slightly above, for example at from 20 to 40C. Under no circumstances should the boiling points of the solvents used be exceeded.
- the anodes used are lead dioxide, or electrodes coated with lead dioxide, or electrodes of noble metals, such as, for example, platinum, platinized titanium or gold. Lead dioxide anodes are preferred.
- Cathodes which can be used are lead, mercury, cadmium, tin, zinc, copper, nickel, silver amalgam and lead amalgam electrodes. Lead electrodes have acquired particular importance.
- the anodic oxidation of the phenols is preferably carried out in a compartmented anode chamber and the alkylquinones obtained are then reduced in a subsequent stage, in a cathode chamber which is also compartmented. It has proved particularly convenient to use a compartmented cell, carry out the oxidation of the alkylphenols II in the anode chamber, pass the solution thus obtained into the cathode chamber and there carry out the electrochemical reduction to the corresponding hydroquinone.
- An essential feature of the invention is the use of a water-soluble ketone as the solvent.
- suitable water-soluble ketones are acetone, methyl ethyl ketone and diethyl ketone.
- Acetone has proved a particularly suitable solvent.
- the electrolysis mixture used advantageously contains from 20 to percent by weight, especially from 40 to 60 percent by weight, of acetone.
- the initial electrolysis mixture preferably contains from 1 to 10 percent by weight of alkylphenols of the formula II.
- alkylhydroquinones obtained as end products are generally isolated by evaporating off the solvent. They can also be extracted with a suitable waterimmiscible solvent and be isolated therefrom by conventional methods, for example precipitation or fractional crystallization.
- Alkyl-substituted hydroquinones manufactured by the process of the invention can be used for the manufacture of plant protection agents, dyes or biologically active materials, for example vitamin E (cf. S.F. Dyke; On completion of the electrolysis, the catholyte is The Chemistry of the Vitamins, pp. 256 et seq., Interworked up analogously to Example 2. This gives trimescience Publishers 1965). thylhydroquinone which is over 90 percent pure.
- the Alkylhydroquinones can also be used as polymeriy l (based ri y p Converted) is zation inhibitors (cf. Belgian Pat. No. 779,388). 774%- The Examples which follow illustrate the process of COMPARATIVE EXAMPLE the invention.
- the yield of 2,6-dimethyl-o-benzoquinone (based in which R is alkyl of l to 4 carbon atoms and n is an on 2,6-dimethylphenol converted) is 86.2% and the n g from 1 t0 wherein an lkylph n f h g ncurrent efficiency is 54.8%.
- eral formula EXAMPLE 2 Electrochemical synthesis of 2.6-dimethylhydroquinone 0H Apparatus Anode Anolyte As in Example I II Cathode n l and Q Catholyte; the unolyte from Example 1.
- y -P' trolysis mixture contains from 20 to percent by benzoquinone is obtained in 84.6 percent yield (based i h f acetone 2,3,64rimethylphen0l Converted) The current 7.
- 60 trolysis mixture contains from 1 to 10 percent by weight of alkylphenol.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Alkylhydroquinones with from 1 to 3 alkyl radicals, which can contain from 1 to 4 carbon atoms, are produced by electrolytic oxidation of the corresponding alkylphenols which are unsubstituted in the para-position to the hydroxyl group, followed by electrolytic reduction of the resulting alkylquinones, wherein the electrolysis is carried out in the presence of a non-oxidizing aqueous mineral acid and in the presence of a water-soluble ketone.
Description
United States Patent Degner [4 1 Sept. 30, 1975 ELECTROLYTIC MANUFACTURE OF ALKYL-SUBSTITUTED HYDROQUINONES Inventor: Dieter Degner, Ludwigshafen,
Germany BASF Aktiengesellschaft, Ludwigshafen, Rhine, Germany Filed: Dec. 4, 1974 Appl. N0.: 529,284
Assignee:
Foreign Application Priority Data Dec. 5, 1973 Germany 2360494 US. Cl 204/73; 204/78 C25B 3/02; C25B 3/04 Field of Search 204/72, 73, 78
References Cited UNITED STATES PATENTS 10/1971 Covitz et a] 204/78 3,721,615 3/1973 Fremery et a1 204/73 R Primary Examiner-R. L. Andrews Attorney, Agent, or FirmJohnston, Keil, Thompson & Shurtleff [5 7 ABSTRACT 9 Claims, No Drawings ELECTROLYTIC MANUFACTURE OF ALKYL-SUBSTITUTED HYDROQUINONES This application discloses and claims subject matter described in German Pat. application No. P 23 60 494.6, filed Dec. 5, 1973, which is incorporated herein by reference.
The invention relates to a process for the manufacture of alkylhydroquinones by electrolytic oxidation of alkylphenols and subsequent electrolytic reduction of the quinones thus obtained.
The anodic oxidation of phenols to the corresponding benzoquinones in a compartmented cell; and the electrochemical synthesis of hydroquinones in a noncompartmented cell, have been known for a considerable time (cf. Berichte der deutschen Chemischen Gesellschaft, Vol. 47, p. 2,003 (1914), Helv. Chim. Acta, Vol. 2, p. 583 (1919), Vol. 8, p. 74(1925), Vol.10, p. 40 1927) and Vol. 10, p. 102 (1927). However, in this process neither the product yield nor the current efficiency are very high, and furthermore a number of un desired byproducts are formed. These by-products necessitate expensive purification operations.
German Published application No. 1,643,558 has disclosed converting unsubstituted phenol into hydroquinone in 90 per cent yield through appropriate choice of the electrolysis parameterssuch as current density, depolarizer and electrolyte concentration. The current efficiencies are above 60%. If attempts are made to apply these conditions to the anodic oxidation of alkylsubstituted phenols, the corresponding hydroquinones are obtained, but the yields are very low and the current efficiencies even drop below Further, Chemical Communications 1971, pp. 1,643, et seq. discloses that dimethylphenol can be oxidized electrolytically to dimethylquinone in the presence of acetonitrile as the solvent. However, if attempts are made to reduce an alkylquinone, thus obtained, to the corresponding hydroquinone, the yields obtained leave much to be desired. An essential disadvantage is that the hydroquinones obtained are insufficiently pure for further conversion and thus necessitate an expensive purification process. I
I have found that alkylhydroquinones of the general formula in which R is alkyl of l to 4 carbon atoms and n is an integer from 1 to 3 can be manufactured particularly advantageously in an electrolyticprocess wherein alkylphenols of the formula group, are oxidized anodically in a non-oxidizing aqueous mineral acid in the presence of a watersoluble ketone and the reaction mixture containing the corresponding alkylquinones is reduced cathodically.
It is an advantage of the new process that both the yields and the current efficiences are good. A decisive advantage of the new process is that the hydroquinones as obtained are more than 90 per cent pure and require no additional purification before further processing.
In the preferred alkylphenols of the formula II, R is methyl. The para-position, where oxidation is to take place, in the initial phenol II must of course always be unsubstituted. Examples of suitable phenols are 2- methylphenol, 2,6-dimethylphenol, 2,3,6- trimethylphenol and 2,3,5-trimethylphenol.
2,6-Dimethylphenol and 2,3,6-trimethylphenol have acquired particularly great importance in industry.
The electrolysis is carried out in the presence of an aqueous solution of a non-oxidizing mineral acid, especially sulfuric acid. In general, the concentration of the mineral acid used is from 1 to 20 percent by weight, especially from 5 to 10 percent by weight.
During the anodic oxidation and the cathodic reduction, the temperature is maintained at its ambient value or slightly above, for example at from 20 to 40C. Under no circumstances should the boiling points of the solvents used be exceeded.
It is advantageous to maintain current densities greater than 5 amperes per dm during the electrolysis. In general, the range of current densities used is from 5 to 20 amperes per dm The anodes used are lead dioxide, or electrodes coated with lead dioxide, or electrodes of noble metals, such as, for example, platinum, platinized titanium or gold. Lead dioxide anodes are preferred.
Cathodes which can be used are lead, mercury, cadmium, tin, zinc, copper, nickel, silver amalgam and lead amalgam electrodes. Lead electrodes have acquired particular importance.
The anodic oxidation of the phenols is preferably carried out in a compartmented anode chamber and the alkylquinones obtained are then reduced in a subsequent stage, in a cathode chamber which is also compartmented. It has proved particularly convenient to use a compartmented cell, carry out the oxidation of the alkylphenols II in the anode chamber, pass the solution thus obtained into the cathode chamber and there carry out the electrochemical reduction to the corresponding hydroquinone.
An essential feature of the invention is the use of a water-soluble ketone as the solvent. Examples of suitable water-soluble ketones are acetone, methyl ethyl ketone and diethyl ketone. Acetone has proved a particularly suitable solvent. The electrolysis mixture used advantageously contains from 20 to percent by weight, especially from 40 to 60 percent by weight, of acetone.
The initial electrolysis mixture preferably contains from 1 to 10 percent by weight of alkylphenols of the formula II.
The alkylhydroquinones obtained as end products are generally isolated by evaporating off the solvent. They can also be extracted with a suitable waterimmiscible solvent and be isolated therefrom by conventional methods, for example precipitation or fractional crystallization.
Alkyl-substituted hydroquinones manufactured by the process of the invention can be used for the manufacture of plant protection agents, dyes or biologically active materials, for example vitamin E (cf. S.F. Dyke; On completion of the electrolysis, the catholyte is The Chemistry of the Vitamins, pp. 256 et seq., Interworked up analogously to Example 2. This gives trimescience Publishers 1965). thylhydroquinone which is over 90 percent pure. The Alkylhydroquinones can also be used as polymeriy l (based ri y p Converted) is zation inhibitors (cf. Belgian Pat. No. 779,388). 774%- The Examples which follow illustrate the process of COMPARATIVE EXAMPLE the invention.
If the procedure described in Examples 3 and 4 is fol- EXAMPLE 1 lowed but acetonitrile is used instead of acetone, the I 10 yield of 2,3,6-trimethylhydroquinone is 45 55% and Anodic oxidation of 2,6dimethylphenol. the. purity is only 70 75%. Apparatus: compartmented cell with Cation exchange membrane w l Anode: PbO electrode; surface area: 0.66 dm e C Anolyte: 24.4 g (0.2 mole) of 2,6-dimethylphenol 1. A process for the electrochemical manufacture of 550 ml of H20 450 ml of acetone an alkylhydroquinone of the general formula I 49 g of concentrated H2804 Catholyte: IN H2504 Cathode: Pb electrode Charge O: 0.8 F Y Current l: l0 A OH 1 On completion of the electrolysis, a sample of the an- (R olyte was taken, the. acetone was distilled off and the residue was repeatedly extracted with ether. After dis- I OH tilling off the ether, the 2,6-dimethyl-p-benzoquinone and unconverted starting material are determined by gas chromatography. According to these determinations, the yield of 2,6-dimethyl-o-benzoquinone (based in which R is alkyl of l to 4 carbon atoms and n is an on 2,6-dimethylphenol converted) is 86.2% and the n g from 1 t0 wherein an lkylph n f h g ncurrent efficiency is 54.8%. eral formula EXAMPLE 2 Electrochemical synthesis of 2.6-dimethylhydroquinone 0H Apparatus Anode Anolyte As in Example I II Cathode n l and Q Catholyte; the unolyte from Example 1.
Af o lt' fth ltrlsis,theat c mp e [on o e ec O y Ce one Is in which R and n have the above meanings, and which distilled off and the residue is steam-distilled to remove 1S unsubstituted in the para-position to the hydroxyl unconverted 2,6-dimethylphenol. On cooling the resi- 40 g p is Oxidized anodicany in a nomoxidizing q duefiom h Steam dlsnn'fmoni z'dlmethylhydroqul' ous mineral acid and in the presence of a water-soluble f preclpltates' The yled based on ketone, and the reaction mixture containing the corredimethylphenol converted. The 2,6-dimethylhydroquisponding alkylquinone is reduced cathodicany obtamed 90% pure 2. a process as claimed in claim 1, wherein the anodic EXAMPLE 3 5 oxidation and the cathodic reduction are carried out at room temperature or at a temperature of up to 40C. 3. A process as claimed in claim 1, wherein sulfuric Anodic oxidation of 2,3,6-trimethylphenol Apparatus: compartmented cellowgthzatzion exchange membrane acid of from 1 to 20 percent strength by weight iS used 1123 i i iii i rfw i ei er 2,3,6- trimethyIphenQI as the non'oxldlzmg aque9us mfneral 500 ml of H20 4. A process as claimed in claim 1, wherein a current :3 0f d H 0 density of 5 to 20 amperes per dm is maintained during catholyte: i z gj C Is the electrolysis. I I Cathode: Pb 5. A process as claimed in claim 1, wherein acetone, QI R115 methyl ethyl ketone or diethyl ketone is used as the water-soluble ketone; on Working p a sample of the material leaving the 6. A process as claimed in claim 1, wherein the elecelectrolysis, analogously to Example 1, y -P' trolysis mixture contains from 20 to percent by benzoquinone is obtained in 84.6 percent yield (based i h f acetone 2,3,64rimethylphen0l Converted) The current 7. A process as claimed in claim 1, wherein the elecciency is 54%. 60 trolysis mixture contains from 1 to 10 percent by weight of alkylphenol.
8. A process as claimed in claim 1, wherein an alkylphenol of the formula II, in which R is methyl, is used.
9. A process as claimed in claim 1, wherein 2- EXAMPLE 4 Electrochemical synthesis of trimethylhydroquinone Apparatus v Anode methylphenol, 2,6-dimethylphenol, 2,3,6- Amlyte As Example 3 trimethylphenol or 2,3,5-trimethylphenol is used as the Cathode I and Q alkylphenol.
Catholyte: the anolyte from Example 3. =i
Claims (9)
1. A PROCESS FOR THE ELCTROCHEMICAL MANUFACTURE OF AN ALKYLHYDROQUINONE OF THE GENERAL FORMULA
2. a process as claimed in claim 1, wherein the anodic oxidation and the cathodic reduction are carried out at room temperature or at a temperature of up to 40*C.
3. A process as claimed in claim 1, wherein sulfuric acid of from 1 to 20 percent strength by weight is used as the non-oxidizing aqueous mineral acid.
4. A process as claimed in claim 1, wherein a current density of 5 to 20 amperes per dm2 is maintained during the electrolysis.
5. A process as claimed in claim 1, wherein acetone, methyl ethyl ketone or diethyl ketone is used as the water-soluble ketone.
6. A process as claimed in claim 1, wherein the electrolysis mixture contains from 20 to 60 percent by weight of acetone.
7. A process as claimed in claim 1, wherein the electrolysis mixture contains from 1 to 10 percent by weight of alkylphenol.
8. A process as claimed in claim 1, wherein an alkylphenol of the formula II, in which R is methyl, is used.
9. A process as claimed in claim 1, wherein 2-methylphenol, 2,6-dimethylphenol, 2,3,6-trimethylphenol or 2,3,5-trimethylphenol is used as the alkylphenol.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US529284A US3909376A (en) | 1974-12-04 | 1974-12-04 | Electrolytic manufacture of alkyl-substituted hydroquinones |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US529284A US3909376A (en) | 1974-12-04 | 1974-12-04 | Electrolytic manufacture of alkyl-substituted hydroquinones |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3909376A true US3909376A (en) | 1975-09-30 |
Family
ID=24109258
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US529284A Expired - Lifetime US3909376A (en) | 1974-12-04 | 1974-12-04 | Electrolytic manufacture of alkyl-substituted hydroquinones |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3909376A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4464236A (en) * | 1982-05-10 | 1984-08-07 | The Dow Chemical Company | Selective electrochemical oxidation of organic compounds |
| US5098531A (en) * | 1988-03-24 | 1992-03-24 | Istituto Guido Donegani S.P.A. | Electrochemical synthesis of 2-aryl-hydroquinones |
| US20070072943A1 (en) * | 2005-09-15 | 2007-03-29 | Miller Guy M | Tail variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| EP2471530A1 (en) | 2005-06-01 | 2012-07-04 | Edison Pharmaceuticals, Inc. | Redox-active Therapeutics For Treatment Of Mitochondrial Diseases And Other Conditions And Modulation Of Energy Biomarkers |
| US9278085B2 (en) | 2006-02-22 | 2016-03-08 | Edison Pharmaceuticals, Inc. | Side-chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| US20160175875A1 (en) * | 2013-08-07 | 2016-06-23 | Meler Aplicadores De Hot-Melt, S.A. | Melter |
| US9399612B2 (en) | 2008-09-10 | 2016-07-26 | Edison Pharmaceuticals, Inc. | Treatment of pervasive developmental disorders with redox-active therapeutics |
| US10703701B2 (en) | 2015-12-17 | 2020-07-07 | Ptc Therapeutics, Inc. | Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3616324A (en) * | 1970-02-19 | 1971-10-26 | Union Carbide Corp | Electrochemical conversion of phenol to hydroquinone |
| US3721615A (en) * | 1971-02-24 | 1973-03-20 | Union Rheinische Braunkohlen | Process for the production of hydroquinone |
-
1974
- 1974-12-04 US US529284A patent/US3909376A/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3616324A (en) * | 1970-02-19 | 1971-10-26 | Union Carbide Corp | Electrochemical conversion of phenol to hydroquinone |
| US3721615A (en) * | 1971-02-24 | 1973-03-20 | Union Rheinische Braunkohlen | Process for the production of hydroquinone |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4464236A (en) * | 1982-05-10 | 1984-08-07 | The Dow Chemical Company | Selective electrochemical oxidation of organic compounds |
| US5098531A (en) * | 1988-03-24 | 1992-03-24 | Istituto Guido Donegani S.P.A. | Electrochemical synthesis of 2-aryl-hydroquinones |
| US11021424B2 (en) | 2005-06-01 | 2021-06-01 | Ptc Therapeutics, Inc. | Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| US9447006B2 (en) | 2005-06-01 | 2016-09-20 | Edison Pharmaceuticals, Inc. | Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| EP2471530A1 (en) | 2005-06-01 | 2012-07-04 | Edison Pharmaceuticals, Inc. | Redox-active Therapeutics For Treatment Of Mitochondrial Diseases And Other Conditions And Modulation Of Energy Biomarkers |
| EP2564843A1 (en) | 2005-06-01 | 2013-03-06 | Edison Pharmaceuticals, Inc. | Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| EP2564842A1 (en) | 2005-06-01 | 2013-03-06 | Edison Pharmaceuticals, Inc. | Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| US7432305B2 (en) | 2005-09-15 | 2008-10-07 | Edison Pharmaceuticals, Inc. | Tail variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| US20070072943A1 (en) * | 2005-09-15 | 2007-03-29 | Miller Guy M | Tail variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| US9278085B2 (en) | 2006-02-22 | 2016-03-08 | Edison Pharmaceuticals, Inc. | Side-chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| US9932286B2 (en) | 2006-02-22 | 2018-04-03 | Bioelectron Technology Corporation | Side-chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers |
| US9399612B2 (en) | 2008-09-10 | 2016-07-26 | Edison Pharmaceuticals, Inc. | Treatment of pervasive developmental disorders with redox-active therapeutics |
| US10736857B2 (en) | 2008-09-10 | 2020-08-11 | Ptc Therapeutics, Inc. | Treatment of pervasive developmental disorders with redox-active therapeutics |
| US10105325B2 (en) | 2008-09-10 | 2018-10-23 | Bioelectron Technology Corporation | Treatment of pervasive developmental disorders with redox-active therapeutics |
| US20160175875A1 (en) * | 2013-08-07 | 2016-06-23 | Meler Aplicadores De Hot-Melt, S.A. | Melter |
| US10010903B2 (en) * | 2013-08-07 | 2018-07-03 | Meler Aplicadores De Hot-Melt, S.A. | Melter |
| US10703701B2 (en) | 2015-12-17 | 2020-07-07 | Ptc Therapeutics, Inc. | Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders |
| US10981855B2 (en) | 2015-12-17 | 2021-04-20 | Ptc Therapeutics, Inc. | Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders |
| US11680034B2 (en) | 2015-12-17 | 2023-06-20 | Ptc Therapeutics, Inc. | Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4714530A (en) | Method for producing high purity quaternary ammonium hydroxides | |
| US3899401A (en) | Electrochemical production of pinacols | |
| US4318783A (en) | Process for the preparation of optionally substituted benzaldehyde dialkyl acetals | |
| CA1053707A (en) | Process for preparing p-benzoquinone diketals | |
| US3909376A (en) | Electrolytic manufacture of alkyl-substituted hydroquinones | |
| EP0254982B1 (en) | Electrolytic cell with nickel alloy anodes for electrochemical dechlorination | |
| US3509031A (en) | Electrochemical oxidation of phenol | |
| US4061548A (en) | Electrolytic hydroquinone process | |
| US4517062A (en) | Process for the electrochemical synthesis of ethylene glycol from formaldehyde | |
| US4133729A (en) | Production of 1,2-bis(hydroxy-phenyl)ethane-1,2-diols by electrolytic reduction | |
| US3879271A (en) | Production of diesters of dicarboxylic acids by electrochemical condensation of monoesters of dicarboxylic acids | |
| EP0638665A1 (en) | Process for the preparation of benzaldehyde dialkyl acetals | |
| US3257298A (en) | Method for the preparation of acetals | |
| US3994788A (en) | Electrochemical oxidation of phenol | |
| JPS63176487A (en) | Production of oxatetramethylene dicarboxylic acid | |
| US3969200A (en) | Manufacture of propiolic acid | |
| US4035253A (en) | Electrolytic oxidation of phenol at lead-thallium anodes | |
| CN1985024B (en) | Process for the preparation of primary amines comprising primary amino and cyclopropyl units bonded to an aliphatic or cycloaliphatic C atom | |
| JPH02179890A (en) | Preparation of dihydroxydione | |
| Udupa et al. | A comparative study of the reduction of aromatic aldehydes at stationary and rotating amalgamated cathodes | |
| US3493477A (en) | Electrochemical reduction of benzene | |
| JP2602655B2 (en) | Method for producing alkylbenzoquinones | |
| US4624757A (en) | Electrocatalytic method for producing quinone methides | |
| JPS5819483A (en) | Manufacture of cyclopentadecanolide | |
| US4624758A (en) | Electrocatalytic method for producing dihydroxybenzophenones |