US20220315341A1 - Automated locker system for delivery and collection of inventory items - Google Patents
Automated locker system for delivery and collection of inventory items Download PDFInfo
- Publication number
- US20220315341A1 US20220315341A1 US17/668,938 US202217668938A US2022315341A1 US 20220315341 A1 US20220315341 A1 US 20220315341A1 US 202217668938 A US202217668938 A US 202217668938A US 2022315341 A1 US2022315341 A1 US 2022315341A1
- Authority
- US
- United States
- Prior art keywords
- compartments
- robotic apparatus
- locker system
- locker
- control server
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
- B65G1/1373—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
- B65G1/1378—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on fixed commissioning areas remote from the storage areas
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/087—Inventory or stock management, e.g. order filling, procurement or balancing against orders
- G06Q10/0875—Itemisation or classification of parts, supplies or services, e.g. bill of materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/0485—Check-in, check-out devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/0492—Storage devices mechanical with cars adapted to travel in storage aisles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/06—Storage devices mechanical with means for presenting articles for removal at predetermined position or level
- B65G1/065—Storage devices mechanical with means for presenting articles for removal at predetermined position or level with self propelled cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/075—Constructional features or details
- B66F9/12—Platforms; Forks; Other load supporting or gripping members
- B66F9/19—Additional means for facilitating unloading
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/88—Detecting or preventing theft or loss
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0836—Recipient pick-ups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
- B65G1/1373—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/075—Constructional features or details
- B66F9/0755—Position control; Position detectors
Definitions
- the present disclosure relates generally to a locker management system, and more particularly, to a system and a method for an automated locker system for delivery and collection of inventory items.
- Modern storage facilities handle a large number of inventory items on a daily basis.
- the inventory items are handled within the storage facility for the fulfilment of an order or brought inside the storage facility for replenishment of inventory stock.
- Throughputs of such storage facilities have a direct bearing on various business metrics such as time taken to complete orders, the total number of orders completed within a time duration, customer satisfaction, or the like.
- such storage facilities include locker systems having multiple compartments where consolidated orders are stored to be collected by delivery personnel or customers.
- operators at the storage facility open compartment doors of the locker system, place the consolidated orders in the compartments and then close the compartment doors.
- the compartment doors are then operated by the delivery personnel or customers for collecting their orders.
- the compartment door is required to be operated twice; first—for storing the order, and second—for collecting the order.
- Embodiments of the present disclosure provide an automated locker management system.
- the system includes a locker system including a plurality of compartments and a plurality of lockable doors. Each compartment of the plurality of compartments is accessible from a front side and a rear side of the locker system. An access to each compartment of the plurality of compartments from the front side is controlled by a corresponding lockable door of the plurality of lockable doors. Each compartment of the plurality of compartments is open from the rear side.
- the system further includes a plurality of robotic apparatuses. A first robotic apparatus of the plurality of robotic apparatuses is configured to transport one or more first items associated with a first process at a storage facility.
- the system further includes a control server.
- the control server is configured to allocate one or more first compartments of the plurality of compartments to the first process. Further, the control server is configured to communicate a first set of instructions to the first robotic apparatus to cause the first robotic apparatus to align with the locker system from the rear side. Based on the alignment of the first robotic apparatus with the locker system at the rear side, the one or more first items transported by the first robotic apparatus may be accessible from the front side of the one or more first compartments based on opening of corresponding lockable doors of the one or more first compartments.
- Embodiments of the present disclosure provide an automated locker system.
- the system includes a plurality of lockable doors. Opening of each lockable door of the plurality of lockable doors is controlled based on a corresponding security parameter of each lockable door.
- the system further includes a security lock mechanism configured to control opening and closing of each lockable door based on the corresponding security parameter.
- the system further includes a plurality of compartments. Each compartment of the plurality of compartments is accessible from a front side and a rear side of the locker system. An access to each compartment of the plurality of compartments from the front side is controlled by a corresponding lockable door of the plurality of lockable doors. Each compartment of the plurality of compartments is open from the rear side.
- a robotic apparatus transporting one or more items associated with a process at a storage facility, aligns with the locker system from the rear side, the one or more items are accessible from the front side of the locker system based on the opening of one or more corresponding lockable doors of one or more compartments of the plurality of compartments.
- a second robotic apparatus of the plurality of robotic apparatuses is configured to transport one or more second items associated with a second process at the storage facility.
- the control server may be further configured to allocate the one or more first compartments to the second process.
- the control server is configured to communicate a second set of instructions to the second robotic apparatus to cause the second robotic apparatus to align with the locker system from the rear side.
- the second robotic apparatus is configured to align with the locker system from the rear side based on the second set of instructions when the one or more first items are successfully collected from the one or more first compartments.
- the one or more second items transported by the second robotic apparatus are accessible from the front side of the one or more first compartments based on opening of the corresponding lockable doors of the one or more first compartments.
- a second robotic apparatus of the plurality of robotic apparatuses is configured to transport one or more second items associated with a second process at the storage facility.
- the control server may be configured to allocate one or more second compartments of the plurality of compartments to the second process.
- the one or more second compartments are different from the one or more first compartments.
- the control server is configured to communicate a second set of instructions to the second robotic apparatus to cause the second robotic apparatus to align with the locker system from the rear side concurrently with the first robotic apparatus. Based on the alignment of the second robotic apparatus with the locker system at the rear side, the one or more second items transported by the second robotic apparatus are accessible from the front side of the one or more second compartments based on opening of corresponding lockable doors of the one or more second compartments.
- control server is further configured to control opening of each lockable door of the plurality of lockable doors based on a corresponding security parameter.
- the corresponding security parameter is at least one of a password, a machine-readable optical code, or biometric information of a user.
- control server is further configured to control the corresponding lockable doors of the one or more first compartments to open concurrently based on one security parameter.
- control server is further configured to receive, from the locker system, the one or more security parameters provided by a user to open the corresponding lockable doors of the one or more first compartments. Further, the control server is configured to compare the one or more security parameters provided by the user with one or more stored security parameters of the corresponding lockable doors of the one or more first compartments. Further, the control server is configured to control the corresponding lockable doors of the one or more first compartments to open based on the comparison of the one or more security parameters provided by the user with the one or more stored security parameters of the corresponding lockable doors.
- the system may include a set of storage systems such that a first storage system of the set of storage systems is configured to store the one or more first items on one or more shelves thereof.
- the first robotic apparatus is configured to transport the one or more first items by lifting and transporting the first storage system.
- the one or more shelves storing the one or more first items are aligned with the one or more first compartments.
- the first robotic apparatus may include one or more conveyors such that the one or more first items are placed on the one or more conveyers.
- the first robotic apparatus aligns with the locker system based on the first set of instructions, the one or more conveyors, having the one or more first items thereon, are aligned with the one or more first compartments.
- the first robotic apparatus is further configured to actuate the one or more conveyors based on the first set of instructions to transfer the one or more first items from the one or more conveyers to the one or more first compartments.
- the first robotic apparatus includes one or more levels such that the one or more first items are placed on the one or more levels.
- the first robotic apparatus aligns with the locker system based on the first set of instructions, the one or more levels of the first robotic apparatus are aligned with the one or more first compartments.
- FIG. 1 is a diagram that illustrates an exemplary environment of a storage facility, in accordance with an exemplary embodiment of the present disclosure
- FIG. 2A is a diagram that illustrates a front side of a locker system, in accordance with an exemplary embodiment of the disclosure
- FIG. 2B is a diagram that illustrates a rear side of the locker system, in accordance with an exemplary embodiment of the present disclosure
- FIG. 3 is a block diagram that illustrates a control server, in accordance with an exemplary embodiment of the present disclosure
- FIG. 4 is a diagram that illustrates an implementation of a processing station in the storage facility, in accordance with an exemplary embodiment of the disclosure
- FIG. 6 is a diagram that illustrates transfer of inventory items to the locker system using a robotic apparatus, in accordance with an exemplary embodiment of the present disclosure
- FIGS. 7A and 7B are diagrams that illustrates an alignment of one of the fourth robotic apparatus with the rear side of the locker system, in accordance with another embodiment of the present disclosure
- FIG. 8 is a diagram that illustrates collection of inventory items from the locker system, in accordance with another embodiment of the present disclosure.
- FIGS. 9A and 9B are diagrams that illustrate an exemplary scenario for collection of inventory items from the locker system, in accordance with another embodiment of the present disclosure.
- FIG. 10 is a block diagram that illustrates a system architecture of a computer system for inventory management in a storage facility, in accordance with the embodiments of the present disclosure
- FIG. 11 is a flow chart that illustrates an automated locker management method for delivery and collection of inventory items using the automated locker system, in accordance with an exemplary embodiment of the disclosure.
- FIG. 12 is a flow chart that illustrates a method for controlling opening of lockable doors of one or more compartments of the automated locker system, in accordance with an exemplary embodiment of the disclosure.
- Certain embodiments of the disclosure may be found in disclosed systems and methods for an automated locker system for delivery and collection of inventory items.
- Exemplary aspects of the disclosure provide methods and systems for the automated locker systems.
- the systems and methods of the disclosure provide a solution for automated handling of inventory items within the storage facility.
- the disclosed systems and methods include an automated locker system that allows for consolidated orders to be made accessible for collection without requiring various doors of the locker system to be opened and closed for storing the consolidated orders.
- FIG. 1 is a diagram that illustrates an exemplary environment of a storage facility 102 , in accordance with an exemplary embodiment of the present disclosure.
- the storage facility 102 includes a storage area 104 , a processing area 106 , a locker system 108 , an access control interface 109 , robotic apparatuses 110 , a control server 112 , and a communication network 114 .
- the storage area 104 includes a plurality of storage systems 116 a - 116 n .
- the processing area 106 includes a plurality of processing stations (for example, a first processing station 118 a and a second processing station 118 b ).
- the robotic apparatuses 110 may include multiple robotic apparatuses of different architecture, operating principles, or the like.
- the robotic apparatuses 110 may include a plurality of first robotic apparatuses 120 a - 120 n , a plurality of second robotic apparatuses 122 a - 122 n , a plurality of third robotic apparatuses 124 a - 124 n , and a plurality of fourth robotic apparatuses 126 a - 126 n .
- the plurality of first robotic apparatuses 120 a - 120 n may be configured to transport the plurality of storage systems 116 a - 116 n within the storage facility 102 .
- the plurality of second robotic apparatuses 122 a - 122 n may have multiple level conveyors and may be configured to transport one or more inventory items or consolidated orders within the storage facility 102 .
- the plurality of third robotic apparatuses 124 a - 124 n may include storage shelves and movable trays, and may be configured to transport the inventory items or consolidated orders within the storage facility 102 .
- the plurality of fourth robotic apparatuses 126 a - 126 n may have one or more robotic arms and may be configured to pick the inventory items or consolidated orders from a first location and may put the inventory items or consolidated orders at a second location within the storage facility 102 .
- the robotic apparatuses 110 may receive one or more instructions from the control server 112 for their operation.
- the control server 112 may communicate with the robotic apparatuses 110 by way of the communication network 114 .
- the locker system 108 , the access control interface 109 , the robotic apparatuses 110 , the control server 112 , the communication network 114 , and the plurality of storage systems 116 a - 116 n may collectively form an automated locker management system for the storage facility 102 .
- the storage facility 102 is a facility where inventory items or packages of inventory items are stored for order fulfillment and/or selling.
- Examples of the storage facility 102 may include, but are not limited to, a forward warehouse, a backward warehouse, a fulfillment center, or a retail store (e.g., a supermarket, an apparel store, a departmental store, a grocery store, or the like).
- Examples of the inventory items may include, but are not limited to, groceries, apparel, electronic goods, mechanical goods, or the like.
- the storage facility 102 has the storage area 104 where the plurality of storage systems 116 a - 116 n (hereinafter, collectively referred to and designated as “the storage systems 116 ”) are placed for storing the inventory items or the packages.
- the storage area 104 may further serve as a resting place for the robotic apparatuses 110 .
- the storage systems 116 may be arranged in the storage area 104 in any arrangement that may be optimal for storage and retrieval of the storage systems 116 as well as the inventory items stored in the storage systems 116 .
- Various plans for arrangement of the storage systems 116 within the storage area 104 may be known in the art.
- Arrangement of the storage systems 116 in the storage area 104 may be automatic, semi-automatic, or manual. Storage of the inventory items in the storage systems 116 may be automatic, semi-automatic, or manual.
- the storage systems 116 may be movable storage systems that store various inventory items and/or various packages, e.g., totes of different dimensions, types, shapes, materials, and capacity. In an embodiment, the storage systems 116 may further store therein various packages of consolidated orders. Each of the storage systems 116 may include multiple shelves, which enable the storage systems 116 to store multiple inventory items or packages. Each of the storage systems 116 may further include a reference marker associated therewith for uniquely identifying a corresponding storage system. Examples of the reference marker may include, but are not limited to, a barcode, a quick response (QR) code, a radio frequency identification device (RFID) tag, or the like. It will be apparent to those of skill in the art that the storage systems 116 may further include additional structural features that aid in transporting the storage systems 116 , without deviating from the scope of the disclosure.
- QR quick response
- RFID radio frequency identification device
- the storage facility 102 may further include the processing area 106 .
- the processing area 106 may refer to a portion of the storage facility 102 where one or more pick/put operations are performed for handling the inventory items.
- the processing area 106 may have a plurality of processing stations (hereinafter, collectively referred to and designated as “the processing stations 118 ”) for executing one or more pick/put operations on the inventory items.
- the processing stations 118 may be associated with corresponding operators assigned to perform the pick/put operations on the inventory items.
- the processing stations 118 may also utilize the plurality of fourth robotic apparatuses 126 a - 126 n for performing the pick/put operations on the inventory items along with the human operators.
- the pick/put operations may be performed at the processing stations 118 for various processes such as, item replenishment in the storage systems 116 , item retrieval from the storage systems 116 for order fulfillment, order consolidation, performing one or more value-added services on the inventory items, performing quality check on the inventory items, or the like.
- Each of the processing stations 118 may have a user interface for presenting one or more instructions to assigned operators for handling the inventory items.
- the processing stations 118 may further include one or more optical sensors that may be configured to capture one or more images or videos to monitor the pick/put operations, alignment and positioning of the inventory items being handled, state of the inventory items, or the like.
- the processing area 106 or the processing stations 118 may serve as resting locations for the robotic apparatuses 110 .
- the storage facility 102 may further include various locker systems and access control interfaces, such as the locker system 108 and the access control interface 109 .
- the locker system 108 and the access control interface 109 may be utilized for order collection and delivery.
- the locker system 108 may serve as a curbside locker where consolidated orders are stored for delivery and collection by delivery personnel or customers.
- the access control interface 109 may serve as a curbside kiosk including an interactive interface.
- the access control interface 109 may be used by the delivery personnel or the customers for collecting their order from the locker system 108 .
- the access control interface 109 may enable the delivery personnel or the customers to access the locker system 108 for collecting their consolidated orders.
- the locker system 108 and the access control interface 109 may be utilized in the storage facility 102 for providing controlled access to inventory items.
- the locker system 108 may serve as a locker where inventory items are stored for collection by operators.
- the access control interface 109 may be used by the operator for collecting the requisite inventory items from the locker system 108 .
- the locker system 108 includes a plurality of compartments and a plurality of lockable doors that control access to the plurality of compartments, respectively.
- Each compartment of the plurality of compartments is accessible from a front side and a rear side of the locker system 108 .
- An access to each compartment from the front side is controlled by a corresponding lockable door positioned at the front side of the corresponding compartment whereas each compartment is open from the rear side.
- the rear side of the locker system 108 serves as an access point for storing inventory items in the plurality of compartments and the front side of the locker system 108 serves as an access point for collecting the stored inventory items from the plurality of compartments.
- the plurality of compartments are open from the rear side, inventory items may be stored in the locker system 108 without the need of opening any compartment door.
- the plurality of lockable doors are only opened for collecting inventory items from the locker system 108 , thereby improving the throughput of various processes in the storage facility 102 .
- the inventory items may be stored in the plurality of compartments by the robotic apparatuses 110 under the control of the control server 112 .
- the robotic apparatuses 110 may access the locker system 108 from the rear side and store the inventory items in the plurality of compartments.
- the robotic apparatuses 110 are used to store the inventory items in the locker system 108 from the rear side of the locker system 108 are described later in conjunction with FIGS. 5A-5C and 6-9 .
- two or more lockable doors of the plurality of lockable doors may be opened concurrently (for example, at the same time) to provide simultaneous access to respective compartments.
- each of the plurality of lockable doors may be associated with a unique security parameter that controls the opening of the respective lockable door.
- a first lockable door may be associated with a first security parameter and a second lockable door may be associated with a second security parameter.
- the first security parameter is inputted to the access control interface 109
- the first lockable door is automatically opened and when the second security parameter is inputted to the access control interface 109 , the second lockable door is automatically opened.
- no lockable door is opened.
- opening of the plurality of lockable doors may be controlled based on corresponding security parameters.
- two or more lockable doors of the locker system 108 may be associated with the same security parameter.
- the first and second lockable doors may be associated with the same security parameter.
- the first and second lockable doors are automatically opened concurrently or at the same time.
- the security parameters of the plurality of lockable doors may be dynamic parameters that are updated periodically by the control server 112 .
- the dynamic parameters may include, but are not limited to, a one-time password (OTP), barcodes, and quick response (QR) codes.
- the security parameters of the plurality of lockable doors may be static parameters that do not change with time. Examples of the static parameters may include, but are not limited to, personal identification numbers (PINs), machine-readable optical codes such as barcodes or QR codes, or biometric information of a user.
- PINs personal identification numbers
- QR codes quick response
- the locker system 108 may further include a plurality of security lock mechanisms for the respective plurality of lockable doors.
- the plurality of security lock mechanisms may be configured to open or close the respective plurality of lockable doors.
- a security lock mechanism is configured to secure a corresponding lockable door in a closed position until a correct security parameter is inputted at the access control interface 109 for opening the lockable door.
- the plurality of security lock mechanisms may receive instructions to lock or unlock the respective plurality of lockable doors from the control server 112 and/or the access control interface 109 .
- the security lock mechanisms may be implemented by way of electromagnetic locks such as solenoid and/or actuators.
- the plurality of compartments and the plurality of lockable doors of the locker system 108 may have same size, shape, dimensions, and weight bearing capacity. In some embodiments, the plurality of compartments and the plurality of lockable doors of the locker system 108 may have different sizes, shapes, dimensions, and weight bearing capacities.
- the locker system 108 may further include a plurality of sensors such as weight sensors, infrared sensors, ultrasonic sensors, or the like for each of the plurality of compartments.
- the weight sensors in a compartment may be configured to generate sensor data that indicates weight of items placed in the compartment.
- the terms “inventory items” and “items” are used interchangeably. For example, when no inventory item is placed in the first compartment of the plurality of compartments, the sensor data generated by the weight sensors of the first compartment indicate that the weight is zero.
- the infrared sensors or the ultrasonic sensors may be coupled to the rear side and the front side of each of the plurality of compartments and may be configured to generate sensor data that indicates whether the plurality of compartments are being accessed from the front side or whether any of the robotic apparatuses 110 is aligned with the compartments from the rear side. For example, when a user attempts to access the first compartment from the front side, the infrared sensors or the ultrasonic sensors coupled to the front side of the first compartment generate sensor data that indicates that a hand of the user is inside the first compartment.
- the infrared sensors or the ultrasonic sensors coupled to the rear side of the first compartment when one of the robotic apparatuses 110 is aligned with the first compartment from the rear side, the infrared sensors or the ultrasonic sensors coupled to the rear side of the first compartment generate sensor data that indicates that one of the robotic apparatuses 110 is aligned with the first compartment from the rear side.
- the sensor data generated by the infrared sensors or the ultrasonic sensors coupled to the rear side of the first compartment may further indicate whether the robotic apparatus is incorrectly or correctly aligned with the first compartment.
- the locker system 108 may have a fixed or a dynamic location within the storage facility 102 .
- the storage facility 102 is shown to include a single locker system 108 and a single access control interface 109 .
- the storage facility 102 may include any number of locker systems having a similar or different architecture.
- the locker system 108 is described in detail in conjunction with FIGS. 2A and 2B .
- Examples of the access control interface 109 may be an electronic kiosk or any user interaction entity (e.g., a human machine interface, HMI).
- the electronic kiosk refers to a computer-based information delivery system generally accessible to some segment of the public for retrieving information or initiating some processes.
- the access control interface 109 may include a display screen for presenting information to the customer and some form of computer input device for the customer such as a touch screen or keypad, although a full keyboard or mouse may also be provided.
- the type of kiosk system of interest here may be an interactive system that may have multiple kiosk sites (for example, the access control interface 109 ) accessible by customers.
- the access control interface 109 may present multiple selectable options to a user (e.g., a customer or an operator), for example, a first option for placing a new order, a second option to search information regarding a previously placed order, a third option for viewing an inventory item catalog of the storage facility 102 , a fourth option for collecting the inventory items for a previously placed order or for executing a process in the storage facility 102 , or the like.
- a user e.g., a customer or an operator
- the access control interface 109 may be configured to prompt the customer to enter the security parameter associated with the previously placed order. If the security parameter provided by the customer is correct, lockable doors corresponding to the inputted security parameter are opened for item or order collection.
- the access control interface 109 and the locker system 108 are shown as separate entities, in some embodiments, the access control interface 109 may be integrated with the locker system 108 without deviating from the scope of the disclosure.
- Transportation of the inventory items or consolidated orders within the storage facility 102 may be performed by the robotic apparatuses 110 .
- the robotic apparatuses 110 may be configured to receive one or more instructions from the control server 112 . Based on the received one or more instructions, the robotic apparatuses 110 may be configured to transport the inventory items or the consolidated orders within the storage facility 102 , for example, from the processing area 106 to the locker system 108 .
- the control server 112 may include suitable logic, circuitry, interfaces, and/or code, executable by the circuitry, to facilitate various inventory management operations in the storage facility 102 .
- Examples of the control server 112 may include, but are not limited to, personal computers, laptops, mini-computers, mainframe computers, any non-transient and tangible machine that can execute a machine-readable code, cloud-based servers, distributed server networks, or a network of computer systems.
- the control server 112 may be realized through various web-based technologies such as, but not limited to, a Java web-framework, a .NET framework, a personal home page (PHP) framework, or any other web-application framework.
- the control server 112 may be maintained by a storage facility management authority or a third-party entity that facilitates inventory management and handling operations for the storage facility 102 . It will be understood by a person having ordinary skill in the art that the control server 112 may execute other storage facility management operations as well along with the inventory management operations.
- the control server 112 may be configured to communicate with the locker system 108 , the access control interface 109 , and the robotic apparatuses 110 by way of the communication network 114 .
- the control server 112 may be further configured to remotely control the robotic apparatuses 110 and the locker system 108 .
- the control server 112 may be further configured to store, in a memory of the control server 112 , a virtual map of the storage facility 102 and inventory storage data of inventory stock.
- the virtual map is indicative of current locations of the robotic apparatuses 110 , entry and exit points of the storage facility 102 , various reference markers in the storage facility 102 , a current location of each inventory item, a current location of each storage system 116 , locations of the first and second processing stations 118 a and 118 b , location of the locker system 108 , or the like.
- the inventory storage data is indicative of associations between the inventory items stored in the storage facility 102 and the storage systems 116 in the storage facility 102 .
- the inventory storage data may further include historic storage locations of each inventory item.
- the inventory storage data may further include parameters (for example, weight, shape, size, color, dimensions, or the like) associated with each inventory item.
- the control server 112 may be further configured to manage allocation of the plurality of compartments to various processes in the storage facility and allocation of the robotic apparatuses 110 for transporting the inventory items associated with the processes.
- the control server 112 may be further configured to generate and store therein the security parameters of the plurality of lockable doors of the locker system 108 so as to control the opening of the plurality of lockable doors.
- the control server 112 may be configured to receive security parameters inputted by a user (e.g., a customer, delivery personnel, or an operator of the storage facility 102 ) from the access control interface 109 and match the received security parameters with stored security parameters. When the inputted security parameters match any of the stored security parameters, the control server 112 may be configured to control unlocking of one or more lockable doors of one or more compartments corresponding to the matched security parameters.
- the communication network 114 is a medium through which instructions and messages are transmitted between the control server 112 , the robotic apparatuses 110 , the locker system 108 , and the access control interface 109 .
- Examples of the communication network 114 may include, but are not limited to, a wireless fidelity (Wi-Fi) network, a light fidelity (Li-Fi) network, a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a satellite network, the Internet, a fiber optic network, a coaxial cable network, an infrared (IR) network, a radio frequency (RF) network, and a combination thereof.
- Wi-Fi wireless fidelity
- Li-Fi light fidelity
- LAN local area network
- WAN wide area network
- MAN metropolitan area network
- satellite network the Internet
- a fiber optic network a coaxial cable network
- IR infrared
- RF radio frequency
- Various entities in the storage facility 102 may be coupled to the communication network 114 in accordance with various wired and wireless communication protocols, such as Transmission Control Protocol and Internet Protocol (TCP/IP), User Datagram Protocol (UDP), Long Term Evolution (LTE) communication protocols, or any combination thereof.
- TCP/IP Transmission Control Protocol and Internet Protocol
- UDP User Datagram Protocol
- LTE Long Term Evolution
- the control server 112 may be configured to receive a process request for executing a first process.
- the first process may be associated with one or more first inventory items of the plurality of inventory items stored in the storage facility 102 and may require the first inventory items to be made accessible to a delivery personnel, a customer, or an operator in the storage facility 102 .
- the first process may correspond to providing an access to a consolidated order via the locker system 108 so that the delivery personnel or the customer may be able to collect the consolidated order.
- the first process may correspond to an internal process of the storage facility 102 where the first inventory items are to be made accessible to a specific operator via the locker system 108 .
- the internal process may refer to any process (for example, quality check process, item replenishment process, order fulfilment process, or the like) that is executed within the storage facility 102 for carrying out one or more operations in the storage facility 102 .
- the control server 112 may be configured to allocate one or more first compartments of the plurality of compartments of the locker system 108 to the first process.
- the control server 112 may further communicate instructions to a robotic apparatus of the robotic apparatuses 110 to transport the first inventory items from a current storage location to the locker system 108 .
- the robotic apparatus may be any of the plurality of first robotic apparatuses 120 a - 120 n , the plurality of second robotic apparatuses 122 a - 122 n , the plurality of third robotic apparatuses 124 a - 124 n , and the plurality of fourth robotic apparatuses 126 a - 126 n .
- the control server 112 may be configured to select the robotic apparatus from the robotic apparatuses 110 based on an availability of the robotic apparatus, a type of the first process, compatibility of the robotic apparatus with the first process, or the like. Based on the instructions from the control server 112 , the robotic apparatus may be configured to transport the first inventory items associated with the first process to the locker system 108 . The control server 112 may be further configured to communicate a set of instructions to the robotic apparatus to cause the robotic apparatus to align with the locker system 108 from the rear side. In an embodiment, the set of instructions may include path information of a first path that the robotic apparatus is to travel in the storage facility 102 to reach the location of the locker system 108 to align with the one or more first compartments. The first set of instructions may further include unique identifiers of the one or more first compartments that enable the robotic apparatus to identify the one or more first compartments from the plurality of compartments.
- the robotic apparatus may travel along the first path and align with the one or more first compartments from the rear side of the locker system 108 .
- the first inventory items transported by the robotic apparatus are accessible from the front side of the one or more first compartments upon opening of corresponding lockable doors of the one or more first compartments.
- the robotic apparatus may transfer the first inventory items to the one or more first compartments after successfully aligning with the one or more first compartments and once the transfer is complete, the robotic apparatus may become available for executing one or more other operations in the storage facility 102 .
- the robotic apparatus may not transfer the first inventory items to the one or more first compartments and may remain aligned with the one or more first compartments until the first inventory items are collected from the robotic apparatus by a designated entity by opening the corresponding lockable doors of the one or more first compartments from the front side of the locker system 108 .
- the robotic apparatus may become available for executing one or more other operations in the storage facility 102 after the first inventory items are successfully collected by the designated entity.
- the control server 112 may be further configured to store therein security parameters of the plurality of lockable doors.
- the control server 112 may be configured to communicate security parameters of the one or more first compartments, that provide access to the first inventory items, to a customer device (for example, a smartphone, a laptop, a wearable device, a mobile phone, or the like) of the customer or a delivery personnel.
- the customer or the delivery personnel may then input the security parameters into the access control interface 109 at the storage facility 102 .
- the access control interface 109 may communicate the inputted security parameters to the control server 112 .
- the control server 112 may compare the received security parameters with the stored security parameters and when the received security parameters match any of the stored security parameters, the control server 112 may communicate an unlock signal to the locker system 108 or the access control interface 109 .
- the control server 112 may communicate the unlock signal to the locker system 108 or the access control interface 109 when the sensor data generated by the infrared sensors or the ultrasonic sensors coupled to the rear side of the one or more first compartments indicate that the robotic apparatus is correctly aligned with the one or more first compartments from the rear side. However, if the sensor data generated by the infrared sensors or the ultrasonic sensors coupled to the rear side of the one or more first compartments indicates that the robotic apparatus is incorrectly aligned with the one or more first compartments, the control server 112 may communicate an instruction to the robotic apparatus to correct the alignment with the one or more first compartments.
- the instruction communicated to the robotic apparatus may include distance, rotation, or height adjustment information.
- the robotic apparatus may move as per the instruction and may get correctly aligned with the one or more first compartments. Since the infrared sensors or the ultrasonic sensors generate sensor data periodically, new sensor data generated by the infrared sensors or the ultrasonic sensors may indicate that the robotic apparatus is now correctly aligned with the one or more first compartments from the rear side.
- control server 112 may communicate the unlock signal to the access control interface 109 and the access control interface 109 may actuate the security lock mechanism of the one or more first compartments to open the lockable doors of the one or more first compartments.
- control server 112 may communicate the unlock signal directly to the locker system 108 to actuate the security lock mechanism of the one or more first compartments for opening the lockable doors of the one or more first compartments.
- the control server 112 may control the opening of the lockable doors of the one or more first compartments based on the comparison of the received security parameters with the stored security parameters.
- the customer or the delivery personnel may collect the consolidated order from the one or more first compartments and the security lock mechanism may then close the opened lockable doors.
- the security lock mechanism may close the opened lockable doors when sensor data generated by the weight sensors of the one or more first compartments indicate that the weight of items placed in the one or more first compartments has changed to zero due to retrieval of the first inventory items by the customer or the delivery personnel.
- the security lock mechanism may not close the opened lockable doors until the sensor data generated by the infrared sensors or the ultrasonic sensors at the front side of the one or more first compartments indicate that a human hand is present inside the one or more first compartments.
- control server 112 may change or update the security parameters associated with the one or more first compartments once the order is collected, to enhance the security of the locker system 108 .
- control server 112 may be configured to communicate security parameters of the one or more first compartments from where the first inventory items could be collected, to an operator device of the operator executing the internal process.
- the first inventory items are collected by the operator from the one or more first compartments in the same manner as described above in the first exemplary scenario.
- FIG. 2A is a diagram that illustrates a front side 200 A of the locker system 108 , in accordance with an exemplary embodiment of the disclosure.
- two of the compartments 202 a and 202 b of the locker system 108 are labelled and three of the lockable doors 204 a , 204 b , and 204 c of the locker system 108 are labelled. Labelling of other compartments and lockable doors is omitted for the sake of brevity.
- the locker system 108 includes a plurality of shelves that are spaced in a vertical direction and a plurality of walls that are disposed on each of the plurality of shelves to define the plurality of compartments on each shelf. The walls and the shelves, in combination, define the plurality of compartments of the locker system 108 .
- the lockable doors 204 a and 204 b are open at the same time.
- the compartments 202 a and 202 b and items stored in the compartments 202 a and 202 b are accessible to users 206 a and 206 b from the front side 200 A.
- the users 206 a and 206 b may be operators, delivery personnel, or customers.
- the lockable door 204 c is closed, and hence a compartment 202 c (shown in FIG. 2B ) of the lockable door 204 c is not accessible from the front side 200 A.
- the users 206 a and 206 b may have provided the security parameters to the access control interface 109 (shown in FIG. 1 ) for requesting access to the compartments 202 a and 202 b , respectively.
- FIG. 2B is a diagram that illustrates a rear side 200 B of the locker system 108 , in accordance with an exemplary embodiment of the present disclosure.
- the plurality of compartments e.g., the compartments 202 a , 202 b , and 202 c ) remain open at the rear side 200 B.
- the exemplary usage of locker system 108 is for illustration purposes and does not limit the scope of the disclosure.
- the plurality of compartments of the locker system 108 have dedicated shelves; however, the scope of the disclosure is not limited to it.
- the plurality of compartments of the locker system 108 may not have dedicated shelves (as described in FIGS. 7A-9 ), and therefore may only serve as access points instead of access and storage points.
- FIG. 3 is a block diagram that illustrates the control server 112 , in accordance with an exemplary embodiment of the present disclosure.
- the control server 112 may include processing circuitry 302 , a memory 304 , and a transceiver 306 .
- the processing circuitry 302 may include a security parameter generator 308 , an allocation manager 310 , a comparator 312 , and an access controller 313 . It will be apparent to a person having ordinary skill in the art that the control server 112 is for illustrative purposes and not limited to any specific combination of hardware circuitry and/or software.
- the processing circuitry 302 may execute and manage various operations (such as allotting compartments to processes, generating and updating security parameters, remotely controlling opening and closing of the plurality of lockable doors, inventory management, or the like) in the storage facility 102 .
- the processing circuitry 302 may execute the operations using the security parameter generator 308 , the allocation manager 310 , the comparator 312 , and the access controller 313 .
- the security parameter generator 308 may include suitable logic, instructions, circuitry, interfaces, and/or code for generating unique security parameters for the plurality of lockable doors (e.g., the lockable doors 204 a , 204 b , and 204 c ) of the locker system 108 .
- the generated security parameters for the plurality of lockable doors may be static.
- the generated security parameters for the plurality of lockable doors may be dynamic.
- the dynamic security parameters may be time-limited parameters which the security parameter generator 308 updates after a specific time period.
- the dynamic security parameters may be process-based which the security parameter generator 308 updates after completion of the process. The opening of the plurality of lockable doors is controlled based on the unique security parameters.
- the security parameter generator 308 may generate a single security parameter for multiple lockable doors. For example, when two or more compartments of the plurality of compartments are allocated to a single process, the security parameter generator 308 may generate a single security parameter for the two or more compartments. Thus, the security parameter generator 308 may be configured to generate the security parameters for the plurality of lockable doors based on allotment of the plurality of compartments to various processes. The security parameter generator 308 may be configured to store the generated security parameters in the memory 304 .
- the allocation manager 310 may include suitable logic, instructions, circuitry, interfaces, and/or code for dynamically and continuously allocating and re-allocating the robotic apparatuses 110 for inventory item transportation.
- the allocation manager 310 may be further configured to manage the allocation of the plurality of compartments to various processes.
- the allocation manager 310 may allocate one or more compartments of the locker system 108 to a process based on the availability of the one or more compartments and compatibility between the one or more compartments and one or more inventory items associated with the process. For example, different compartments of the locker system 108 may have different sizes. In such a scenario, the allocation manager 310 may allocate those compartments to a process that have sufficient size to accommodate the inventory items of the process.
- the allocation manager 310 may either allocate a single compartment of the locker system 108 that matches a size of the order or may split the consolidated order into two or more sub-orders and allocate two or more compartments that match the size of the two or more sub-orders, respectively.
- the allocation manager 310 may manage allocation of the robotic apparatuses 110 to transport inventory items based on a compatibility between the robotic apparatuses 110 and the inventory items.
- the allocation manager 310 may allocate the first robotic apparatus 120 a to transport a batch of inventory items when a weight handling capacity, a size, dimensions, or the like of the first robotic apparatus 120 a are sufficient to transport the batch of inventory items.
- the allocation manager 310 may select another robotic apparatus for the task.
- the comparator 312 may include suitable logic, instructions, circuitry, interfaces, and/or code for comparing security parameters received from the access control interface 109 with the security parameters stored in the memory 304 . Opening of the plurality of lockable doors of the locker system 108 is controlled based on comparison results generated by the comparator 312 .
- the comparator 312 may be further configured to provide the comparison results to the access controller 313 .
- the access controller 313 may include suitable logic, instructions, circuitry, interfaces, and/or code for controlling opening of the plurality of lockable doors of the locker system 108 .
- the access controller 313 may be configured to receive the comparison results generated by the comparator 312 .
- the access controller 313 when a comparison result generated by the comparator 312 indicates that a received security parameter does not match any of the stored security parameters, the access controller 313 generates an error notification and communicates the error notification to the access control interface 109 .
- the access controller 313 when a comparison result generated by the comparator 312 indicates that a received security parameter matches any of the stored security parameters, the access controller 313 generates an unlock signal and communicates the unlock signal to the access control interface 109 or the security lock mechanism of the locker system 108 .
- the unlock signal may indicate which lockable doors of the plurality of lockable doors are to be opened. For example, if the received security parameter matches the stored security parameter of the lockable door 204 a , the access controller 313 generates an unlock signal that indicates that the lockable door 204 a is to be opened. In another example, if the received security parameter matches the stored security parameter of the two or more lockable doors, the access controller 313 generates an unlock signal that indicates that the two or more lockable doors are to be opened concurrently.
- Examples of the security parameter generator 308 , the allocation manager 310 , the comparator 312 , and the access controller 313 may include, but are not limited to, an application-specific integrated circuit (ASIC) processor, a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a field-programmable gate array (FPGA), a microcontroller, a combination of a central processing unit (CPU) and a graphics processing unit (GPU), or the like.
- ASIC application-specific integrated circuit
- RISC reduced instruction set computing
- CISC complex instruction set computing
- FPGA field-programmable gate array
- microcontroller a combination of a central processing unit (CPU) and a graphics processing unit (GPU), or the like.
- the memory 304 may include suitable logic, instructions, circuitry, interfaces to store one or more instructions that are executed by entities such as the security parameter generator 308 , the allocation manager 310 , the comparator 312 , and the access controller 313 for performing one or more operations. Additionally, the memory 304 may be configured to store therein an inventory list 314 , inventory storage data 316 , layout information 318 , robotic apparatus data 320 , and security parameters 322 . Examples of the memory 304 may include a random access memory (RAM), a read only memory (ROM), a removable storage drive, a hard disk drive (HDD), a flash memory, a solid-state memory, and the like.
- RAM random access memory
- ROM read only memory
- HDD hard disk drive
- flash memory a solid-state memory, and the like.
- the inventory list 314 may include a list of inventory items and packages stored in the storage facility 102 and a number of units of each inventory item stored in the storage facility 102 .
- the layout information 318 may include information regarding the layout of the storage facility 102 , such as location data of the storage systems 116 , the first and second processing stations 118 a and 118 b , the locker system 108 , or the like.
- the layout information 318 may further include real-time path availability information of various paths in the storage facility 102 . For example, a first path in the storage facility 102 may be under maintenance, and hence may be unavailable for traversing.
- the inventory storage data 316 is indicative of storage locations of the inventory items stored in the storage systems 116 .
- the inventory storage data 316 may further include the reference markers of the storage systems 116 .
- the reference identifiers are unique codes assigned to each of the storage systems 116 .
- the reference markers are radio frequency identification (RFID) tags that are readable by the robotic apparatuses 110 .
- RFID radio frequency identification
- the security parameters 322 may act as a repository of security parameters associated with the plurality of lockable doors of the locker system 108 .
- the comparator 312 may refer to the security parameters 322 for generating comparison results.
- the security parameters 322 may be dynamically updated by the security parameter generator 308 .
- the security parameters 322 may be a look-up table that stores security parameters generated by the security parameter generator 308 in association with identifiers of the plurality of compartments and/or the plurality of lockable doors of the locker system 108 .
- the unlock signal generated by the access controller 313 may include identifiers of those compartments and/or lockable doors whose security parameters matched the security parameters provided by a user.
- the transceiver 306 may include suitable logic, instructions, circuitry, interfaces to transmit and receive data over the communication network 114 using one or more communication network protocols.
- the transceiver 306 may transmit various messages and commands to the robotic apparatuses 110 , the locker system 108 , and the access control interface 109 and receive data from the one or more optical sensors deployed in the storage facility 102 , the robotic apparatuses 110 , the locker system 108 , and the access control interface 109 .
- transceiver 306 may include, but are not limited to, an antenna, a radio frequency transceiver, a wireless transceiver, a Bluetooth transceiver, an ethernet-based transceiver, a universal serial bus (USB) transceiver, or any other device configured to transmit and receive data.
- processing circuitry 302 is depicted as a hardware component in FIG. 3 , a person skilled in the art will appreciate that the scope of the disclosure is not limited to realizing the processing circuitry 302 as the hardware component. In another embodiment, the functionality of the processing circuitry 302 may be implemented by way of a computer-executable code or a set of computer-readable instructions stored in the memory 304 , without deviating from the scope of the disclosure.
- FIG. 4 is a diagram 400 that illustrates an implementation of the first processing station 118 a in the storage facility 102 , in accordance with an exemplary embodiment of the disclosure.
- the control server 112 may receive a first process request for executing a first process.
- the first process corresponds to an order collection process and is associated with one or more first inventory items (e.g., items I 1 and I 2 ).
- the first inventory items I 1 and I 2 may be stored in the storage system 116 a in the storage area 104 and may need to be transported to the first processing station 118 a in the processing area 106 for order consolidation.
- the control server 112 may be configured to select one of the plurality of first robotic apparatuses 120 a - 120 n (for example, the first robotic apparatus 120 a ) that is available and compatible for transporting the storage system 116 a from the storage area 104 to the first processing station 118 a .
- the control server 112 may be further configured to communicate a first instruction to the first robotic apparatus 120 a .
- the first instruction may be indicative of the storage system 116 a that stores the first inventory items I 1 and I 2 , a path to reach a location of the storage system 116 a in the storage area 104 , and a path to be followed by the first robotic apparatus 120 a to reach the first processing station 118 a where the first inventory items I 1 and I 2 —are to be handled.
- the first robotic apparatus 120 a may transport the storage system 116 a from the storage area 104 to the first processing station 118 a . As shown in FIG. 4 , the first robotic apparatus 120 a has successfully transported the storage system 116 a to the first processing station 118 a.
- the control server 112 may be further configured to allocate one or more first compartments of the plurality of compartments of the locker system 108 to the first process based on the first process request.
- the allocation of the one or more first compartments to the first process may be based on compatibility of the first inventory items I 1 and I 2 with the plurality of compartments, for example, size, weight, and dimension compatibility, and availability of the one or more first compartments.
- each of the plurality of compartments may have a weight-bearing capacity of 20 kilograms and the first inventory items I 1 and I 2 may have a collective weight of 15 kilograms.
- the control server 112 may allocate any of the plurality of compartments that is currently unoccupied or is available, to the first process.
- the plurality of compartments may have different weight-bearing capacities and only two compartments may have a weight-bearing capacity greater than 15 kilograms. In such a scenario, the control server 112 may allocate one of the two compartments that is available and has a weight-bearing capacity greater than 15 kilograms, to the first process.
- none of the plurality of compartments may have a weight-bearing capacity greater than or equal to 15 kilograms.
- the control server 112 may allocate two different compartments that are available to the first inventory items I 1 and I 2 such that each compartment has a weight bearing capacity greater than or equal to a weight of the corresponding item.
- none of the plurality of compartments may have a size that is sufficient to collectively hold the first inventory items I 1 and I 2 .
- the control server 112 may allocate two different compartments that are available to the first inventory items I 1 and I 2 such that each compartment has a size that is compatible with a size of the corresponding item.
- the control server 112 may be further configured to select one of the robotic apparatuses 110 that is available and compatible for collecting the first inventory items I 1 and I 2 from the first processing station 118 a and transporting the collected first inventory items I 1 and I 2 to the locker system 108 .
- the control server 112 may select one of the plurality of second robotic apparatuses 122 a - 122 n (e.g., the second robotic apparatus 122 a ) to collect and transport the first inventory items I 1 and I 2 to the locker system 108 .
- the second robotic apparatus 122 a may have a plurality of levels L 1 , L 2 , and L 3 .
- Each level of the plurality of levels L 1 , L 2 , and L 3 may have one or more conveyors for receiving inventory items.
- each level L 1 , L 2 , and L 3 is shown to include two conveyors that are rotatable in clockwise or anti-clockwise directions.
- each level of the plurality of levels L 1 , L 2 , and L 3 may have same or different physical attributes.
- the physical attributes of each level of the plurality of levels L 1 , L 2 , and L 3 may include a weight-bearing capacity, a size, one or more dimensions, a height, and a count of conveyors.
- the conveyors of each level may be actuated independent of each other.
- the control server 112 may then communicate a second set of instructions to the second robotic apparatus 122 a .
- the second set of instructions may be indicative of a path to be followed by the second robotic apparatus 122 a to reach a location of the first processing station 118 a for the collection of the first inventory items I 1 and I 2 and a subsequent path to be followed by the second robotic apparatus 122 a to reach the locker system 108 from the first processing station 118 a .
- the second robotic apparatus 122 a may reach the first processing station 118 a for collection of the first inventory items I 1 and I 2 .
- the second robotic apparatus 122 a has successfully reached the first processing station 118 a and is waiting to receive the first inventory items I 1 and I 2 .
- the control server 112 may be further configured to render, via a user interface 402 , information (for example, a position, a shape, a size, a weight, or the like) of the first inventory items I 1 and I 2 that are to be handled at the first processing station 118 a .
- the rendered information may further indicate a shelf of the storage system 116 a on which the first inventory items I 1 and I 2 are stored.
- a first set of pick/put operations may be performed by an operator 404 present at the first processing station 118 a for handling the first inventory items I 1 and I 2 .
- the first set of pick/put operations may include picking of the first inventory items I 1 and I 2 from the storage system 116 a and putting the first inventory items I 1 and I 2 on a target level (for example, the level L 1 ) of the second robotic apparatus 122 a .
- the target level may be indicated to the operator 404 via the user interface 402 .
- the first processing station 118 a may further include a pick/put to light (PPTL) device or a projector for providing visual cues to indicate the target level and/or the shelf of the storage system 116 a storing the first inventory items I 1 and I 2 to the operator 404 .
- PPTL pick/put to light
- the first inventory items I 1 and I 2 and the target level of the second robotic apparatus 122 a may be identified by the operator 404 based on the information rendered via the user interface 402 and/or the visual cues. Subsequently, the first inventory items I 1 and I 2 may be placed on the target level (for example, the level L 1 ) of the second robotic apparatus 122 a by the operator 404 .
- the second robotic apparatus 122 a and/or the control server 112 may be configured to determine a correct placement of the first inventory items I 1 and I 2 on the target level.
- the second robotic apparatus 122 a and/or the control server 112 may determine the correct placement based on one of one or more images or videos captured by one or more optical sensors deployed at the first processing station 118 a , a weight of the first inventory items I 1 and I 2 , or the like.
- the one or more images or videos captured by the optical sensors deployed at the first processing station 118 a may indicate that the first inventory items I 1 and I 2 are only partially placed on the target level of the second robotic apparatus 122 a .
- the control server 112 may instruct the operator 404 via the user interface 402 to adjust the placement of the first inventory items I 1 and I 2 so as to ensure that the first inventory items I 1 and I 2 are completely placed on the target level.
- one or more weight sensors placed on or beneath the conveyors of the target level may detect that the weight of the first inventory items I 1 and I 2 is not evenly distributed on the target level.
- the second robotic apparatus 122 a may either generate an audio/visual or haptic signal to alert the operator 404 regarding the incorrect placement of the first inventory items I 1 and I 2 or communicate an error signal to the control server 112 to indicate the incorrect placement of the first inventory items I 1 and I 2 on the target level.
- the second robotic apparatus 122 a may not follow the subsequent path indicated in the second set of instructions until the first inventory items I 1 and I 2 are correctly placed on the target level by the operator 404 .
- the second robotic apparatus 122 a may start following the subsequent path indicated in the second set of instructions to reach the locker system 108 . As shown in FIG. 4 , the second robotic apparatuses 122 c and 122 d are also present at the first processing station 118 a for other operations.
- FIG. 4 is described in conjunction with the control server 112 selecting one of the plurality of first robotic apparatuses 120 a - 120 n to transport the storage system 116 a storing the first inventory items I 1 and I 2 , the scope of the disclosure is not limited to it. In another embodiment, the control server 112 may select any of the plurality of third robotic apparatuses 124 a - 124 n or any of the plurality of fourth robotic apparatuses 126 a - 126 n to transport the first inventory items I 1 and I 2 from the storage area 104 to the first processing station 118 a.
- FIG. 4 is described in conjunction with the control server 112 selecting one of the plurality of second robotic apparatuses 122 a - 122 n to transport the first inventory items I 1 and I 2 , the scope of the disclosure is not limited to it.
- the control server 112 may select any of the plurality of third robotic apparatuses 124 a - 124 n or any of the plurality of fourth robotic apparatuses 126 a - 126 n to transport the first inventory items I 1 and I 2 from the first processing station 118 a to the locker system 108 .
- the transfer of the first inventory items I 1 and I 2 to the locker system 108 by the second robotic apparatus 122 a is described in conjunction with FIGS. 5A-5C .
- control server 112 may instruct the operator 404 to put the first inventory items I 1 and I 2 picked from the storage system 116 a onto a shelf of another storage system carried by one of the plurality of first robotic apparatuses 120 b - 120 n . In some embodiments, the control server 112 may instruct the first robotic apparatus 120 a to directly transport the storage system 116 a from the storage area 104 to the location of the locker system 108 .
- FIGS. 5A-5C are diagrams that illustrate exemplary scenarios 500 A- 500 C for operating the locker system 108 , in accordance with an exemplary embodiment of the disclosure.
- the second robotic apparatus 122 a is shown to have reached the location of the locker system 108 .
- the second robotic apparatus 122 a may be configured to identify the one or more first compartments (for example, a compartment 502 a ) that are allocated to the first process. Upon identification of the compartment 502 a , the second robotic apparatus 122 a may align with the compartment 502 a.
- Alignment of the second robotic apparatus 122 a with the compartment 502 a may include alignment of a conveyor 504 a of the level L 1 on which the first inventory items I 1 and I 2 are placed with a shelf of the compartment 502 a from the rear side 200 B of the locker system 108 .
- the level L 1 of the second robotic apparatus 122 a is also aligned with the compartment 502 a.
- the infrared sensors or the ultrasonic sensors coupled to the rear side 200 B of the compartment 502 a may generate sensor data indicating the alignment of the second robotic apparatus 122 a with the compartment 502 a and may communicate the sensor data to the control server 112 .
- the control server 112 may receive the sensor data from the infrared sensors or the ultrasonic sensors coupled to the rear side 200 B of the compartment 502 a and/or one or more images or videos captured by one or more image sensors deployed on at least one of the locker system 108 and the second robotic apparatus 122 a . Based on the received sensor data and/or the one or more images, the control server 112 may be configured to determine whether the second robotic apparatus 122 a is correctly aligned with the compartment 502 a.
- the control server 112 may determine that the second robotic apparatus 122 a is incorrectly aligned with the compartment 502 a .
- the incorrect alignment may be due to an incorrect height of the level L 1 (for example, the level L 1 may not be at the same height as the shelf of the compartment 502 a ), a gap between the level L 1 and the shelf of the compartment 502 a , or a left or right offset between the conveyor 504 a of the level L 1 and the shelf of the compartment 502 a .
- the control server 112 may be configured to instruct the second robotic apparatus 122 a to adjust the alignment with the compartment 502 a by lowering or raising the level L 1 , eliminating the gap between the level L 1 and the shelf of the compartment 502 a , or eliminating the left or right offset between the conveyor 504 a of the level L 1 and the shelf of the compartment 502 a .
- the control server 112 may determine that the second robotic apparatus 122 a is correctly aligned with the compartment 502 a .
- the control server 112 may be configured to instruct the second robotic apparatus 122 a to transfer the first inventory items I 1 and I 2 to the compartment 502 a.
- the second robotic apparatus 122 a may be configured to actuate (for example, rotate) the conveyor 504 a at the level L 1 in a clockwise direction (as shown by arrow 506 ) so that the first inventory items I 1 and I 2 are transferred onto the shelf of the compartment 502 a .
- another item I 3 placed at a conveyor 504 b of the level L 2 may also be transferred to another compartment 502 b that is allocated to another process associated with the item I 3 .
- same robotic apparatus may be utilized by the control server 112 to transfer inventory items of different processes to different compartments of the locker system 108 concurrently.
- control server 112 may be further configured to determine whether a correct item has been transferred into the compartment 502 a .
- the weight sensor placed on or beneath the shelf of the compartment 502 a may be able to sense the weight of the first inventory items I 1 and I 2 .
- the sensor data of the weight sensor may be communicated to the control server 112 , which compares the sensed weight with the actual weight of the first inventory items I 1 and I 2 .
- a code scanner for example, a barcode scanner, a QR code scanner, or a radio frequency identifier (RFID) reader
- a code scanner present at the compartment 502 a may be configured to scan identifiers of the first inventory items I 1 and I 2 and communicate the scanned identifiers to the control server 112 .
- the control server 112 may determine whether the items transferred to the compartment 502 a are correct. In other words, the control server 112 may determine whether the transfer of the first inventory items I 1 and I 2 is a success or a failure. In an event of a failure of transfer, the control server 112 may determine a cause of the operational failure and generate correction-based instructions to correct the operational failure.
- the failure may have occurred due to a placement of an incorrect item in the compartment 502 a .
- the control server 112 may generate correction-based instructions for the second robotic apparatus 122 a to transfer the correct first inventory items I 1 and I 2 to the compartment 502 a and may instruct an operator to remove the incorrect item from the compartment 502 a .
- the control server 112 may communicate a transfer success signal to the second robotic apparatus 122 a to indicate the successful transfer of the first inventory items I 1 and I 2 .
- control server 112 may further provide instructions to the second robotic apparatus 122 a to pick-up other inventory items from the first or second processing stations 118 a or 118 b for transfer.
- the first inventory items I 1 and I 2 transported by the second robotic apparatus 122 a are accessible from the front side 200 A of the compartment 502 a upon opening of a corresponding lockable door of the compartment 502 a.
- FIG. 5A another second robotic apparatus 122 b is shown to be transporting one or more second inventory items I 4 associated with a second process that is different from the first process.
- the control server 112 may have allocated the compartment 502 a to the second process and may have communicated a third set of instructions to the second robotic apparatus 122 b to facilitate collection and transport of the second inventory items I 4 by the second robotic apparatus 122 b .
- the second robotic apparatus 122 b may only align with the locker system 108 from the rear side 200 B based on the third set of instructions, when the first inventory items I 1 and I 2 are successfully collected from the compartment 502 a and the second robotic apparatus 122 a has moved away from the locker system 108 .
- the second robotic apparatus 122 b may align with the compartment 502 a from the rear side 200 B of the locker system 108 in a similar manner as the second robotic apparatus 122 a had aligned with the compartment 502 a .
- the second inventory items I 4 transported by the second robotic apparatus 122 b are accessible from the front side 200 A of the compartment 502 a based on opening of the corresponding lockable door of the compartment 502 a.
- control server 112 may allocate another compartment 502 c that is different from the compartment 502 a to the second process.
- the second robotic apparatus 122 b may align with the locker system 108 from the rear side 200 B concurrently with the second robotic apparatus 122 a . Based on the alignment of the second robotic apparatus 122 b with the locker system 108 at the rear side 200 B, the second inventory items I 4 transported by the second robotic apparatus 122 b are accessible from the front side 200 A of the compartment 502 c based on opening of a corresponding lockable door of the compartment 502 c.
- Collection of an inventory item from a compartment of the locker system 108 is described in conjunction with FIG. 5B .
- FIG. 5B a schematic diagram for collection of an item from the front side 200 A of the locker system 108 , in accordance with an exemplary embodiment of the present disclosure, is shown.
- a user for example, an operator, a delivery personnel, or a customer
- a user is able to collect inventory items associated with a process from the front side 200 A of the locker system 108 .
- the ongoing exemplary scenario is described for a user 508 a who has placed an order (for example, a process request) and now wants to collect ordered inventory items 510 .
- the user 508 a may input a security parameter at the access control interface 109 (shown in FIG. 1 ).
- the security parameter may have been communicated to a user device of the user 508 a by the control server 112 when the user 508 a had placed the order.
- the security parameter communicated to the user device is associated with a compartment (for example, the compartment 202 a ) in which the inventory items 510 ordered by the user 508 a are transferred for collection by the user 508 a .
- the control server 112 may communicate the security parameter of the compartment 202 a that is allocated to the order of the user 508 a to the user device.
- the security parameter may be a barcode and the user 508 a may scan the barcode using a barcode scanner of the access control interface 109 .
- the security parameter may be a QR code and the user 508 a may scan the QR code using a QR code scanner of the access control interface 109 .
- the security parameter may be an OTP and the user 508 a may input the OTP using a keypad of the access control interface 109 .
- the access control interface 109 may communicate the inputted security parameter to the control server 112 over the communication network 114 .
- the control server 112 may determine whether the received security parameter matches any of the security parameters stored in the memory 304 . Based on a match of the received security parameter with at least one of the stored security parameters, the control server 112 may be configured to provide an unlock signal to the locker system 108 or the access control interface 109 .
- the unlock signal may include an identifier of a compartment (for example, the compartment 202 a ) whose stored security parameter matched the received security parameter. The unlock signal is then communicated to the security lock mechanism of the compartment 202 a .
- the security lock mechanism of the compartment 202 a Upon receiving the unlock signal, the security lock mechanism of the compartment 202 a opens the lockable door 204 a of the compartment 202 a such that the inventory items 510 placed in the compartment 202 a become accessible to the user 508 a from the front side 200 A of the locker system 108 . The user 508 a is thus able to collect the inventory items 510 from the compartment 202 a .
- the security lock mechanism of the compartment 202 a locks or closes the lockable door 204 a . After the lockable door 204 a is closed, new inventory items may be stored in the compartment 202 a by the robotic apparatuses 110 .
- the security parameter provided by the user 508 a may be associated with multiple compartments due to the ordered inventory items being stored in multiple compartments.
- the unlock signal generated by the control server 112 is capable of concurrently (e.g., at the same time) unlocking lockable doors of all the compartments that are allocated to the order of the user 508 a .
- the access control interface 109 may present an identifier of the compartment 202 a to the user 508 a .
- the identifier of the compartment 202 a may be included in the unlock signal communicated by the control server 112 to the access control interface 109 .
- multiple robotic apparatuses may be configured to store inventory items in different compartments of the locker system 108 concurrently.
- multiple users may concurrently collect corresponding inventory items from the locker system 108 .
- the lockable doors 204 a and 204 b are open at the same time so that the users 508 a and 508 b may concurrently collect their ordered inventory items 510 and 512 from the locker system 108 .
- FIG. 5C a schematic diagram that illustrates a side view of the locker system 108 , in accordance with an embodiment of the present disclosure, is shown.
- the plurality of compartments of the locker system 108 are shown to have slanting shelves.
- a compartment 502 d of the locker system 108 has a slanting shelf 514 such that an elevated side of the slanting shelf 514 is positioned towards the rear side 200 B of the locker system 108 , whereas a slanting side of the slanting shelf 514 is positioned towards the front side 200 A of the locker system 108 .
- the slanting shelf 514 may cause the inventory item 516 to slide towards the front side 200 A of the compartment 502 d from the rear side 200 B.
- the compartment 502 d may have a mechanical stopper and/or a plate coupled to the front side 200 A of the compartment 502 d that prevents the inventory item 516 from falling off the compartment 502 d when a lockable door 518 of the compartment 502 d is opened.
- FIG. 6 is a diagram 600 that illustrates transfer of inventory items to the locker system 108 using a robotic apparatus, in accordance with an embodiment of the present disclosure.
- the fourth robotic apparatus 126 a has a robotic arm 602 with multiple degrees of freedom and a spatula-shaped end effector 604 coupled to the robotic arm 602 .
- the spatula-shaped end effector 604 may include a conveyor 606 that could be rotated (e.g., actuated) in clockwise or anti-clockwise direction.
- the fourth robotic apparatus 126 a may be selected by the control server 112 to transfer inventory items 608 associated with a process to an allocated compartment (e.g., the compartment 502 a ) of the locker system 108 .
- the control server 112 may communicate instructions to the fourth robotic apparatus 126 a to place the inventory item 608 in the compartment 502 a . Based on the instructions, the fourth robotic apparatus 126 a carrying the inventory items 608 may align with the compartment 502 a at the rear side 200 B after identifying the compartment 502 a .
- the instructions may further include position and identifier of the compartment 502 a and a degree of movement required for the robotic arm 602 to move the spatula-shaped end effector 604 from an original position to a desired height to place the inventory item 608 in the compartment 502 a . Once the spatula-shaped end effector 604 has attained the desired position, the fourth robotic apparatus 126 a actuates the conveyor 606 to transfer the inventory item 608 into the compartment 502 a.
- another fourth robotic apparatus 126 b may concurrently transfer another inventory item into a different compartment 610 of the locker system 108 .
- FIG. 6 shows two fourth robotic apparatuses 126 a and 126 b concurrently transferring the inventory items to different compartments 502 a and 610 of the locker system 108
- the scope of the disclosure is not limited to it.
- different types of robotic apparatuses 110 may concurrently transfer inventory items into different compartments of the locker system 108 , without deviating from the scope of the disclosure.
- FIGS. 7A and 7B are diagrams 700 A and 700 B that illustrate a locker system 702 to be used in the storage facility 102 for delivery and collection of inventory items, in accordance with another embodiment of the present disclosure.
- the locker system 702 is operationally similar to the locker system 108 shown in FIGS. 2A and 2B but differs in structure, for example, the locker system 702 includes a plurality of compartments that do not have any shelves and a plurality of lockable doors that control access to the plurality of compartments, respectively.
- Each compartment of the plurality of compartments is accessible from a front side 704 a and a rear side (shown in FIG. 7B ) of the locker system 702 .
- An access to each compartment from the front side 704 a is controlled by a corresponding lockable door positioned at the front side 704 a , and each compartment is open from the rear side.
- the locker system 702 is a frame-like structure that has a plurality of openings that are formed in longitudinal axis and vertical axis where each opening defines a compartment without shelf and the compartment is secured at the front side 704 a with a lockable door.
- the compartments 706 a , 706 b , and 706 c of the plurality of compartments and four of the lockable doors 708 a , 708 b , 708 c , and 708 d of the plurality of lockable doors are labelled.
- access to the compartments 706 a , 706 b , and 706 c is controlled by the lockable doors 708 a , 708 b , and 708 c , respectively. Since the lockable doors 708 a , 708 b , and 708 c are open, the respective compartments 706 a , 706 b , and 706 c are accessible from the front side 704 a ; however, the lockable door 708 d is closed and as a result, a corresponding compartment is not accessible from the front side 704 a.
- the plurality of compartments may have same size and dimensions. In another embodiment, the plurality of compartments may have different sizes and dimensions. For example, as shown in FIG. 7A , the compartments 706 a , 706 b , and 706 c are of the same size; however, the compartment of the lockable door 708 d is larger in size and dimensions as compared to the compartments 706 a , 706 b , and 706 c.
- the rear side 704 b of the locker system 702 serves as an access point for the robotic apparatuses 110 whereas the front side 704 a serves as an access point for collecting the inventory items from the plurality of compartments.
- the robotic apparatuses 110 may collect the inventory items associated with different processes from the first and second processing stations 118 a and 118 b and transport the collected inventory items to the locker system 702 under the control of the control server 112 (as described in the foregoing description of FIGS. 1-6 ). Upon reaching a location of the locker system 702 , the robotic apparatuses 110 may align with those compartments that are allocated to the respective processes by the control server 112 . As the plurality of compartments of the locker system 702 do not have any storage shelves, the robotic apparatuses 110 remain aligned with the respective compartments until the inventory items are collected by corresponding users from the front side 704 a upon opening of the lockable doors of the respective compartments.
- the second robotic apparatus 122 a is aligned with the compartments 706 b and 706 c so that inventory items 710 a and 710 b placed on the level L 1 of the second robotic apparatus 122 a could be accessed from the front side 704 a of the locker system 702 when the lockable doors 708 b and 708 c are opened.
- the lockable doors 708 b and 708 c are shown to be open and a user 712 is collecting the inventory items 710 a and 710 b from the level L 1 of the second robotic apparatus 122 a via the compartments 706 a and 706 b , respectively.
- Opening and closing of the plurality of lockable doors of the locker system 702 are controlled by the control server 112 in a similar manner as the plurality of lockable doors of the locker system 108 (as described in the foregoing description of the FIGS. 1-6 ).
- the inventory items 710 a and 710 b of the user 712 are made accessible concurrently by concurrent opening of the lockable doors 708 b and 708 c .
- the user 712 may collect both the inventory items 710 a and 710 b from the second robotic apparatus 122 a at the same time.
- FIG. 7B shows another second robotic apparatus 122 b , carrying inventory items 710 c and 710 d , aligned with the compartments 706 a and 706 d .
- the inventory item 710 c may be collected from the front side 704 a of the compartment 706 a and the inventory item 710 d may be collected from the front side 704 a of the compartment 706 d .
- the lockable door 708 a of the compartment 706 a is open, and hence the inventory item 710 c may be collected from the second robotic apparatus 122 b by a corresponding user (not shown) via the compartment 706 a .
- the lockable door of the compartment 706 d is closed, and hence the inventory item 710 d is inaccessible from the front side 704 a .
- Such controlled opening and closing of the plurality of lockable doors of the locker system 702 prevents unauthorized access to the inventory items.
- multiple conveyors on a level of a second robotic apparatus could be aligned with a single compartment of the locker system 702 .
- two conveyors at the level L 2 of the second robotic apparatus 122 a may concurrently align with a compartment corresponding to the lockable door 708 d (shown in FIG. 7A ). Therefore, any inventory items placed on the two conveyors of the level L 2 of the second robotic apparatus 122 a may be accessed concurrently from the same compartment upon opening of the lockable door 708 d (shown in FIG. 7A ).
- FIG. 8 is a diagram 800 that illustrates collection of inventory items from the locker system 702 , in accordance with another embodiment of the present disclosure.
- the fourth robotic apparatus 126 a may be selected by the control server 112 to make an inventory item 802 a associated with a process accessible from an allocated compartment (e.g., the compartment 706 b ) of the locker system 702 .
- the control server 112 may communicate instructions to the fourth robotic apparatus 126 a to align with the compartment 706 b at the rear side 704 b of the locker system 702 .
- the instructions may further include a position and an identifier of the compartment 706 b and a degree of movement required for the robotic arm 602 to move the spatula-shaped end effector 604 from an original position to a desired height of the compartment 706 b .
- the fourth robotic apparatus 126 a remains aligned with the compartment 706 b until the inventory item 802 a is collected by a corresponding user 804 .
- the lockable door 708 b of the compartment 706 b is open and the user 804 is stretching their hand to collect the inventory item 802 a .
- the lockable door 708 b closes and the fourth robotic apparatus 126 a becomes available for executing a next operation.
- FIGS. 9A and 9B are diagrams that illustrate an exemplary scenario 900 for collection of inventory items from the locker system 702 , in accordance with another embodiment of the present disclosure.
- the first robotic apparatus 120 a is shown to have transported a storage system 901 to a location of the locker system 702 .
- the storage system 901 is structurally and functionally similar to the storage systems 116 shown in FIG. 1 .
- the storage system 901 may have a plurality of shelves 902 a - 902 d each storing inventory items corresponding to a unique process.
- the shelf 902 a may store thereon inventory items 904 associated with an order of a customer 906 .
- the control server 112 may have instructed the first robotic apparatus 120 a to transport the inventory items 904 to the location of the locker system 702 by lifting and transporting the storage system 901 , and aligning with the locker system 702 from the rear side 704 b .
- the shelf 902 a storing the inventory items 904 is aligned with the compartment 706 b which is allocated to the process associated with the inventory items 904 .
- the first robotic apparatus 120 a may be configured to adjust a height of the storage system 901 such that the shelf 902 a is aligned with the compartment 706 b from the rear side 704 b of the locker system 702 .
- the first robotic apparatus 120 a may remain aligned with the locker system 702 until the inventory items 904 are collected by the customer 906 via the compartment 706 b.
- FIG. 9B the front side 704 a of the locker system 702 is shown while the first robotic apparatus 120 a carrying the storage system 901 is aligned with the locker system 702 from the rear side 704 b .
- the lockable door 708 b is shown to be open and the customer 906 is attempting to collect the inventory items 904 from the shelf 902 a via the compartment 706 b .
- the lockable door 708 b is closed and the first robotic apparatus 120 a transports the storage system 901 to another location for executing a next operation. Opening and closing of the plurality of lockable doors of the locker system 702 are controlled by the control server 112 in a similar manner as the plurality of lockable doors of the locker system 108 (as described in the foregoing description of the FIGS. 1-6 ).
- FIG. 10 is a block diagram that illustrates a system architecture of a computer system 1000 for inventory management in the storage facility 102 , in accordance with an exemplary embodiment of the disclosure.
- An embodiment of the disclosure, or portions thereof, may be implemented as computer readable code on the computer system 1000 .
- the control server 112 of FIG. 1 may be implemented in the computer system 1000 using hardware, software, firmware, non-transitory computer-readable media having instructions stored thereon, or a combination thereof and may be implemented in one or more computer systems or other processing systems.
- Hardware, software, or any combination thereof may embody modules and components used to implement the methods of FIGS. 11 and 12 .
- the computer system 1000 may include a main memory 1002 , a secondary memory 1004 , a processor 1006 , a communication interface 1008 , an input/output (I/O) port 1010 , and a communication infrastructure 1012 .
- I/O input/output
- Examples of the main memory 1002 may include random access memory (RAM), read-only memory (ROM), and the like.
- the secondary memory 1004 may include a hard disk drive or a removable storage drive (not shown), such as a floppy disk drive, a magnetic tape drive, a compact disc, an optical disk drive, a flash memory, or the like. Further, the removable storage drive may read from and/or write to a removable storage device in a manner known in the art. In an embodiment, the removable storage system may be a non-transitory computer-readable recording media.
- the processor 1006 may be a special purpose or a general-purpose processing device.
- the processor 1006 may be a single processor or multiple processors.
- the processor 1006 may have one or more processor “cores.” Further, the processor 1006 may be coupled to the communication interface 1008 such as a bus, a bridge, a message queue, the communication network 114 , multi-core message-passing scheme, or the like.
- the I/O port 1010 may include various input and output devices that are configured to communicate with the processor 1006 .
- Examples of the input devices may include a keyboard, a mouse, a joystick, a touchscreen, a microphone, and the like.
- Examples of the output devices may include a display screen, a speaker, headphones, and the like.
- the communication infrastructure 1012 may be configured to allow data to be transferred between the computer system 1000 and various devices that are communicatively coupled to the computer system 1000 .
- Examples of the communication infrastructure 1012 may include a modem, a network interface, i.e., an Ethernet card, a communication port, and the like.
- Data transferred via the communication infrastructure 1012 may be signals, such as electronic, electromagnetic, optical, or other signals as will be apparent to a person skilled in the art.
- the signals may travel via a communications channel, such as the communication network 114 , which may be configured to transmit the signals to the various devices that are communicatively coupled to the computer system 1000 .
- Examples of the communication channel may include a wired, wireless, and/or optical medium such as cable, fiber optics, a phone line, a cellular phone link, a radio frequency link, and the like.
- the main memory 1002 and the secondary memory 1004 may refer to non-transitory computer-readable mediums that may provide data that enables the computer system 1000 to implement the method illustrated in FIGS. 11 and 12 .
- FIG. 11 is a flow chart 1100 that illustrates an automated locker management method for delivery and collection of inventory items using the locker system 108 or the locker system 702 in the storage facility 102 , in accordance with an exemplary embodiment of the disclosure.
- one or more first compartments of a plurality of compartments in the locker system 108 or the locker system 702 are allocated to a first process in the storage facility 102 .
- the control server 112 may be configured to allocate the one or more first compartments of the plurality of compartments in the locker system 108 or the locker system 702 to the first process in the storage facility 102 .
- Each compartment of the plurality of compartments may be accessible from a front side and a rear side of the locker system 108 or the locker system 702 .
- An access to each compartment of the plurality of compartments from the front side is controlled by a corresponding lockable door of a plurality of lockable doors of the locker system 108 or the locker system 702 .
- Each compartment of the plurality of compartments is open from the rear side.
- a first set of instructions is communicated to a robotic apparatus (e.g., any of the robotic apparatuses 110 ) to cause the robotic apparatus to align with the locker system 108 or the locker system 702 from the rear side.
- the control server 112 may be configured to communicate the first set of instructions to the robotic apparatus (e.g., any of the robotic apparatuses 110 ) to cause the robotic apparatus to align with the locker system 108 or the locker system 702 from the rear side.
- the robotic apparatus e.g., any of the robotic apparatuses 110
- one or more first items transported by the robotic apparatus are accessible from the front side of the one or more first compartments based on opening of corresponding lockable doors of the one or more first compartments.
- the one or more first items are associated with the first process allocated to the one or more first compartments.
- opening of corresponding lockable doors of the one or more first compartments of the locker system 108 or the locker system 702 is controlled, so that the one or more first items of the first process are accessible from the front side of the locker system 108 or the locker system 702 .
- the control server 112 may be configured to control opening of the corresponding lockable doors of the one or more first compartments, so that the one or more first items of the first process are accessible from the front side of the locker system 108 or the locker system 702 .
- a method for controlling the opening of the corresponding lockable doors by the control server 112 is described later in conjunction with FIG. 12 .
- the one or more first compartments or one or more second compartments are allocated to a second process.
- the control server 112 may be further configured to allocate the one or more first compartments or the one or more second compartments to the second process.
- a second set of instructions are communicated to another robotic apparatus (any of the remaining robotic apparatuses 110 ) to cause the other robotic apparatus to align with the locker system 108 or the locker system 702 from the rear side.
- the control server 112 may be configured to communicate the second set of instructions to the other robotic apparatus (e.g., any of the robotic apparatuses 110 ) to cause the other robotic apparatus to align with the locker system 108 or the locker system 702 from the rear side. Based on the second set of instructions, the other robotic apparatus aligns with the locker system 108 or the locker system 702 from the rear side.
- one or more second items transported by the other robotic apparatus are accessible from the front side of the one or more first compartments or the one or more second compartments based on opening of corresponding lockable doors of the one or more first compartments or the one or more second compartments, respectively.
- FIG. 12 is a flow chart 1200 that illustrates a method for controlling opening of lockable doors of one or more compartments of the automated locker system 108 or 702 , in accordance with an exemplary embodiment of the disclosure.
- one or more security parameters provided by a user is received by the control server 112 .
- the control server 112 may be configured to receive the security parameters provided by the user from the access control interface 109 over the communication network 114 .
- the one or more security parameters provided by the user are compared with one or more stored security parameters of the plurality of lockable doors of the locker system 108 or 702 .
- the control server 112 may be configured to compare the one or more security parameters provided by the user with the one or more security parameters stored in the memory 304 (as shown in FIG. 3 ).
- corresponding lockable doors of the one or more first compartments are controlled to open based on the comparison of the one or more security parameters provided by the user with the one or more stored security parameters of the corresponding lockable doors.
- the control server 112 may be further configured to control opening of the corresponding lockable doors of the one or more first compartments based on the comparison of the one or more security parameters provided by the user with the one or more stored security parameters of the corresponding lockable doors.
- the disclosed embodiments encompass numerous advantages. Exemplary advantages of the disclosed methods include, but are not limited to, an automated locker system management for delivery and collection of inventory items.
- the disclosed methods and systems significantly reduce manual labor requirement (e.g., conventionally a compartment needs to be opened twice, one for transporting item into the compartment and then to retrieve the item) during handling of the inventory items in the storage facilities.
- the disclosed methods and systems offer a no-walk solution for the storage facility 102 where operators are not required to move from one location to another for any operation. Therefore, the disclosed methods and systems significantly reduce a time required for processing an order. Consequently, the disclosed methods and systems increase the throughput of the storage facility 102 .
- the disclosed methods and systems significantly reduce inconvenience caused to operators and users in the storage facility 102 during collection of inventory items associated with a process.
- the locker system 108 or the locker system 702 enables a physical partition between a non-man zone (e.g., an area in a storage facility where the robotic apparatuses 110 are deployed) and a manned zone (e.g., an area where human presence is allowed) for delivery and collection of inventory items.
- the disclosed methods and systems significantly reduce chances of human errors during transportation and delivery of orders. Since the delivery and collection of inventory items is automated by the control server 112 , a likelihood of an incorrect order or items being presented to a user is eliminated.
- the disclosed methods and systems enable automated handling of inventory items without having to make any significant change to existing infrastructure of the storage facility 102 . Hence, the disclosed methods and systems are cost-efficient and provide an optimal solution for hassle-free handling of the inventory items.
- the locker system 108 or the locker system 702 is portable and can be moved from one location to another location by any of the plurality of first robotic apparatuses 120 a - 120 n .
- the portability feature of the locker system 108 or the locker system 702 enables easy and convenient set up of a delivery and collection area in the storage facility 102 .
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Transportation (AREA)
- Structural Engineering (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Warehouses Or Storage Devices (AREA)
- Lock And Its Accessories (AREA)
Abstract
Description
- This application claims priority of Indian Provisional Application No. 202111015301, filed Mar. 31, 2021, the contents of which are incorporated herein by reference.
- The present disclosure relates generally to a locker management system, and more particularly, to a system and a method for an automated locker system for delivery and collection of inventory items.
- Modern storage facilities handle a large number of inventory items on a daily basis. The inventory items are handled within the storage facility for the fulfilment of an order or brought inside the storage facility for replenishment of inventory stock. Throughputs of such storage facilities have a direct bearing on various business metrics such as time taken to complete orders, the total number of orders completed within a time duration, customer satisfaction, or the like.
- In certain scenarios, such storage facilities include locker systems having multiple compartments where consolidated orders are stored to be collected by delivery personnel or customers. In order to store consolidated orders in the locker system, operators at the storage facility open compartment doors of the locker system, place the consolidated orders in the compartments and then close the compartment doors. The compartment doors are then operated by the delivery personnel or customers for collecting their orders. As for a single order, the compartment door is required to be operated twice; first—for storing the order, and second—for collecting the order. Thus, such locker systems are inefficient and decrease the throughput of order deliveries, resulting in the order collection being suboptimal.
- In light of the foregoing, there exists a need for a technical solution that overcomes the abovementioned problems.
- Limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of described systems with some aspects of the present disclosure, as set forth in the remainder of the present application and with reference to the drawings.
- Embodiments of the present disclosure provide an automated locker management system. The system includes a locker system including a plurality of compartments and a plurality of lockable doors. Each compartment of the plurality of compartments is accessible from a front side and a rear side of the locker system. An access to each compartment of the plurality of compartments from the front side is controlled by a corresponding lockable door of the plurality of lockable doors. Each compartment of the plurality of compartments is open from the rear side. The system further includes a plurality of robotic apparatuses. A first robotic apparatus of the plurality of robotic apparatuses is configured to transport one or more first items associated with a first process at a storage facility. The system further includes a control server. The control server is configured to allocate one or more first compartments of the plurality of compartments to the first process. Further, the control server is configured to communicate a first set of instructions to the first robotic apparatus to cause the first robotic apparatus to align with the locker system from the rear side. Based on the alignment of the first robotic apparatus with the locker system at the rear side, the one or more first items transported by the first robotic apparatus may be accessible from the front side of the one or more first compartments based on opening of corresponding lockable doors of the one or more first compartments.
- Embodiments of the present disclosure provide an automated locker system. The system includes a plurality of lockable doors. Opening of each lockable door of the plurality of lockable doors is controlled based on a corresponding security parameter of each lockable door. The system further includes a security lock mechanism configured to control opening and closing of each lockable door based on the corresponding security parameter. The system further includes a plurality of compartments. Each compartment of the plurality of compartments is accessible from a front side and a rear side of the locker system. An access to each compartment of the plurality of compartments from the front side is controlled by a corresponding lockable door of the plurality of lockable doors. Each compartment of the plurality of compartments is open from the rear side. When a robotic apparatus, transporting one or more items associated with a process at a storage facility, aligns with the locker system from the rear side, the one or more items are accessible from the front side of the locker system based on the opening of one or more corresponding lockable doors of one or more compartments of the plurality of compartments.
- In some embodiments, a second robotic apparatus of the plurality of robotic apparatuses is configured to transport one or more second items associated with a second process at the storage facility. The control server may be further configured to allocate the one or more first compartments to the second process. Further, the control server is configured to communicate a second set of instructions to the second robotic apparatus to cause the second robotic apparatus to align with the locker system from the rear side. The second robotic apparatus is configured to align with the locker system from the rear side based on the second set of instructions when the one or more first items are successfully collected from the one or more first compartments. Based on the alignment of the second robotic apparatus with the locker system at the rear side, the one or more second items transported by the second robotic apparatus are accessible from the front side of the one or more first compartments based on opening of the corresponding lockable doors of the one or more first compartments.
- In some embodiments, a second robotic apparatus of the plurality of robotic apparatuses is configured to transport one or more second items associated with a second process at the storage facility. The control server may be configured to allocate one or more second compartments of the plurality of compartments to the second process. The one or more second compartments are different from the one or more first compartments. The control server is configured to communicate a second set of instructions to the second robotic apparatus to cause the second robotic apparatus to align with the locker system from the rear side concurrently with the first robotic apparatus. Based on the alignment of the second robotic apparatus with the locker system at the rear side, the one or more second items transported by the second robotic apparatus are accessible from the front side of the one or more second compartments based on opening of corresponding lockable doors of the one or more second compartments.
- In some embodiments, the control server is further configured to control opening of each lockable door of the plurality of lockable doors based on a corresponding security parameter.
- In some embodiments, the corresponding security parameter is at least one of a password, a machine-readable optical code, or biometric information of a user.
- In some embodiments, the control server is further configured to control the corresponding lockable doors of the one or more first compartments to open concurrently based on one security parameter.
- In some embodiments, the control server is further configured to receive, from the locker system, the one or more security parameters provided by a user to open the corresponding lockable doors of the one or more first compartments. Further, the control server is configured to compare the one or more security parameters provided by the user with one or more stored security parameters of the corresponding lockable doors of the one or more first compartments. Further, the control server is configured to control the corresponding lockable doors of the one or more first compartments to open based on the comparison of the one or more security parameters provided by the user with the one or more stored security parameters of the corresponding lockable doors.
- In some embodiments, the system may include a set of storage systems such that a first storage system of the set of storage systems is configured to store the one or more first items on one or more shelves thereof. The first robotic apparatus is configured to transport the one or more first items by lifting and transporting the first storage system.
- In some embodiments, when the first robotic apparatus aligns with the locker system based on the first set of instructions, the one or more shelves storing the one or more first items are aligned with the one or more first compartments.
- In some embodiments, the first robotic apparatus may include one or more conveyors such that the one or more first items are placed on the one or more conveyers. When the first robotic apparatus aligns with the locker system based on the first set of instructions, the one or more conveyors, having the one or more first items thereon, are aligned with the one or more first compartments.
- In some embodiments, the first robotic apparatus is further configured to actuate the one or more conveyors based on the first set of instructions to transfer the one or more first items from the one or more conveyers to the one or more first compartments.
- In some embodiments, the first robotic apparatus includes one or more levels such that the one or more first items are placed on the one or more levels. When the first robotic apparatus aligns with the locker system based on the first set of instructions, the one or more levels of the first robotic apparatus are aligned with the one or more first compartments.
- These and other features and advantages of the present disclosure may be appreciated from a review of the following detailed description of the present disclosure, along with the accompanying figures in which like reference numerals refer to like parts throughout.
- The accompanying drawings illustrate the various embodiments of systems, methods, and other aspects of the disclosure. It will be apparent to a person skilled in the art that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. In some examples, one element may be designed as multiple elements, or multiple elements may be designed as one element. In some examples, an element shown as an internal component of one element may be implemented as an external component in another, and vice versa.
- Various embodiments of the present disclosure are illustrated by way of example, and not limited by the appended figures, in which like references indicate similar elements:
-
FIG. 1 is a diagram that illustrates an exemplary environment of a storage facility, in accordance with an exemplary embodiment of the present disclosure; -
FIG. 2A is a diagram that illustrates a front side of a locker system, in accordance with an exemplary embodiment of the disclosure; -
FIG. 2B is a diagram that illustrates a rear side of the locker system, in accordance with an exemplary embodiment of the present disclosure; -
FIG. 3 is a block diagram that illustrates a control server, in accordance with an exemplary embodiment of the present disclosure; -
FIG. 4 is a diagram that illustrates an implementation of a processing station in the storage facility, in accordance with an exemplary embodiment of the disclosure; -
FIGS. 5A-5C are diagrams that illustrate exemplary scenarios for operating the locker system, in accordance with an exemplary embodiment of the disclosure; -
FIG. 6 is a diagram that illustrates transfer of inventory items to the locker system using a robotic apparatus, in accordance with an exemplary embodiment of the present disclosure; -
FIGS. 7A and 7B are diagrams that illustrates an alignment of one of the fourth robotic apparatus with the rear side of the locker system, in accordance with another embodiment of the present disclosure; -
FIG. 8 is a diagram that illustrates collection of inventory items from the locker system, in accordance with another embodiment of the present disclosure; -
FIGS. 9A and 9B are diagrams that illustrate an exemplary scenario for collection of inventory items from the locker system, in accordance with another embodiment of the present disclosure; -
FIG. 10 is a block diagram that illustrates a system architecture of a computer system for inventory management in a storage facility, in accordance with the embodiments of the present disclosure; -
FIG. 11 is a flow chart that illustrates an automated locker management method for delivery and collection of inventory items using the automated locker system, in accordance with an exemplary embodiment of the disclosure; and -
FIG. 12 is a flow chart that illustrates a method for controlling opening of lockable doors of one or more compartments of the automated locker system, in accordance with an exemplary embodiment of the disclosure. - Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description of exemplary embodiments is intended for illustration purposes only and is, therefore, not intended to necessarily limit the scope of the disclosure.
- The present disclosure is best understood with reference to the detailed figures and description set forth herein. Various embodiments are discussed below with reference to the figures. However, those skilled in the art will readily appreciate that the detailed descriptions given herein with respect to the figures are simply for explanatory purposes as the methods and systems may extend beyond the described embodiments. In one example, the teachings presented and the needs of a particular application may yield multiple alternate and suitable approaches to implement the functionality of any detail described herein. Therefore, any approach may extend beyond the particular implementation choices in the following embodiments that are described and shown.
- References to “an embodiment”, “another embodiment”, “yet another embodiment”, “one example”, “another example”, “yet another example”, “for example”, and so on, indicate that the embodiment(s) or example(s) so described may include a particular feature, structure, characteristic, property, element, or limitation, but that not every embodiment or example necessarily includes that particular feature, structure, characteristic, property, element or limitation. Furthermore, repeated use of the phrase “in an embodiment” does not necessarily refer to the same embodiment.
- Certain embodiments of the disclosure may be found in disclosed systems and methods for an automated locker system for delivery and collection of inventory items. Exemplary aspects of the disclosure provide methods and systems for the automated locker systems. The systems and methods of the disclosure provide a solution for automated handling of inventory items within the storage facility. Specifically, the disclosed systems and methods include an automated locker system that allows for consolidated orders to be made accessible for collection without requiring various doors of the locker system to be opened and closed for storing the consolidated orders.
-
FIG. 1 is a diagram that illustrates an exemplary environment of astorage facility 102, in accordance with an exemplary embodiment of the present disclosure. Thestorage facility 102 includes astorage area 104, aprocessing area 106, alocker system 108, anaccess control interface 109,robotic apparatuses 110, acontrol server 112, and acommunication network 114. Thestorage area 104 includes a plurality of storage systems 116 a-116 n. Theprocessing area 106 includes a plurality of processing stations (for example, afirst processing station 118 a and asecond processing station 118 b). Therobotic apparatuses 110 may include multiple robotic apparatuses of different architecture, operating principles, or the like. For example, therobotic apparatuses 110 may include a plurality of first robotic apparatuses 120 a-120 n, a plurality of secondrobotic apparatuses 122 a-122 n, a plurality of third robotic apparatuses 124 a-124 n, and a plurality of fourth robotic apparatuses 126 a-126 n. The plurality of first robotic apparatuses 120 a-120 n may be configured to transport the plurality of storage systems 116 a-116 n within thestorage facility 102. The plurality of secondrobotic apparatuses 122 a-122 n may have multiple level conveyors and may be configured to transport one or more inventory items or consolidated orders within thestorage facility 102. The plurality of third robotic apparatuses 124 a-124 n may include storage shelves and movable trays, and may be configured to transport the inventory items or consolidated orders within thestorage facility 102. The plurality of fourth robotic apparatuses 126 a-126 n may have one or more robotic arms and may be configured to pick the inventory items or consolidated orders from a first location and may put the inventory items or consolidated orders at a second location within thestorage facility 102. Therobotic apparatuses 110 may receive one or more instructions from thecontrol server 112 for their operation. Thecontrol server 112 may communicate with therobotic apparatuses 110 by way of thecommunication network 114. Thelocker system 108, theaccess control interface 109, therobotic apparatuses 110, thecontrol server 112, thecommunication network 114, and the plurality of storage systems 116 a-116 n may collectively form an automated locker management system for thestorage facility 102. - The
storage facility 102 is a facility where inventory items or packages of inventory items are stored for order fulfillment and/or selling. Examples of thestorage facility 102 may include, but are not limited to, a forward warehouse, a backward warehouse, a fulfillment center, or a retail store (e.g., a supermarket, an apparel store, a departmental store, a grocery store, or the like). Examples of the inventory items may include, but are not limited to, groceries, apparel, electronic goods, mechanical goods, or the like. Thestorage facility 102 has thestorage area 104 where the plurality of storage systems 116 a-116 n (hereinafter, collectively referred to and designated as “the storage systems 116”) are placed for storing the inventory items or the packages. In an embodiment, thestorage area 104 may further serve as a resting place for therobotic apparatuses 110. The storage systems 116 may be arranged in thestorage area 104 in any arrangement that may be optimal for storage and retrieval of the storage systems 116 as well as the inventory items stored in the storage systems 116. Various plans for arrangement of the storage systems 116 within thestorage area 104 may be known in the art. Arrangement of the storage systems 116 in thestorage area 104 may be automatic, semi-automatic, or manual. Storage of the inventory items in the storage systems 116 may be automatic, semi-automatic, or manual. - The storage systems 116 may be movable storage systems that store various inventory items and/or various packages, e.g., totes of different dimensions, types, shapes, materials, and capacity. In an embodiment, the storage systems 116 may further store therein various packages of consolidated orders. Each of the storage systems 116 may include multiple shelves, which enable the storage systems 116 to store multiple inventory items or packages. Each of the storage systems 116 may further include a reference marker associated therewith for uniquely identifying a corresponding storage system. Examples of the reference marker may include, but are not limited to, a barcode, a quick response (QR) code, a radio frequency identification device (RFID) tag, or the like. It will be apparent to those of skill in the art that the storage systems 116 may further include additional structural features that aid in transporting the storage systems 116, without deviating from the scope of the disclosure.
- The
storage facility 102 may further include theprocessing area 106. Theprocessing area 106 may refer to a portion of thestorage facility 102 where one or more pick/put operations are performed for handling the inventory items. Theprocessing area 106 may have a plurality of processing stations (hereinafter, collectively referred to and designated as “the processing stations 118”) for executing one or more pick/put operations on the inventory items. The processing stations 118 may be associated with corresponding operators assigned to perform the pick/put operations on the inventory items. In an embodiment, the processing stations 118 may also utilize the plurality of fourth robotic apparatuses 126 a-126 n for performing the pick/put operations on the inventory items along with the human operators. The pick/put operations may be performed at the processing stations 118 for various processes such as, item replenishment in the storage systems 116, item retrieval from the storage systems 116 for order fulfillment, order consolidation, performing one or more value-added services on the inventory items, performing quality check on the inventory items, or the like. Each of the processing stations 118 may have a user interface for presenting one or more instructions to assigned operators for handling the inventory items. The processing stations 118 may further include one or more optical sensors that may be configured to capture one or more images or videos to monitor the pick/put operations, alignment and positioning of the inventory items being handled, state of the inventory items, or the like. In an embodiment, theprocessing area 106 or the processing stations 118 may serve as resting locations for therobotic apparatuses 110. - The
storage facility 102 may further include various locker systems and access control interfaces, such as thelocker system 108 and theaccess control interface 109. In an embodiment, thelocker system 108 and theaccess control interface 109 may be utilized for order collection and delivery. For example, thelocker system 108 may serve as a curbside locker where consolidated orders are stored for delivery and collection by delivery personnel or customers. Theaccess control interface 109 may serve as a curbside kiosk including an interactive interface. Theaccess control interface 109 may be used by the delivery personnel or the customers for collecting their order from thelocker system 108. In other words, theaccess control interface 109 may enable the delivery personnel or the customers to access thelocker system 108 for collecting their consolidated orders. In another embodiment, thelocker system 108 and theaccess control interface 109 may be utilized in thestorage facility 102 for providing controlled access to inventory items. For example, thelocker system 108 may serve as a locker where inventory items are stored for collection by operators. In such a scenario, theaccess control interface 109 may be used by the operator for collecting the requisite inventory items from thelocker system 108. - The
locker system 108 includes a plurality of compartments and a plurality of lockable doors that control access to the plurality of compartments, respectively. Each compartment of the plurality of compartments is accessible from a front side and a rear side of thelocker system 108. An access to each compartment from the front side is controlled by a corresponding lockable door positioned at the front side of the corresponding compartment whereas each compartment is open from the rear side. The rear side of thelocker system 108 serves as an access point for storing inventory items in the plurality of compartments and the front side of thelocker system 108 serves as an access point for collecting the stored inventory items from the plurality of compartments. Since the plurality of compartments are open from the rear side, inventory items may be stored in thelocker system 108 without the need of opening any compartment door. In other words, the plurality of lockable doors are only opened for collecting inventory items from thelocker system 108, thereby improving the throughput of various processes in thestorage facility 102. - The inventory items may be stored in the plurality of compartments by the
robotic apparatuses 110 under the control of thecontrol server 112. For example, therobotic apparatuses 110 may access thelocker system 108 from the rear side and store the inventory items in the plurality of compartments. Various embodiments where therobotic apparatuses 110 are used to store the inventory items in thelocker system 108 from the rear side of thelocker system 108 are described later in conjunction withFIGS. 5A-5C and 6-9 . - In some embodiments, two or more lockable doors of the plurality of lockable doors may be opened concurrently (for example, at the same time) to provide simultaneous access to respective compartments. In an embodiment, each of the plurality of lockable doors may be associated with a unique security parameter that controls the opening of the respective lockable door. For example, a first lockable door may be associated with a first security parameter and a second lockable door may be associated with a second security parameter. In such a scenario, when the first security parameter is inputted to the
access control interface 109, the first lockable door is automatically opened and when the second security parameter is inputted to theaccess control interface 109, the second lockable door is automatically opened. In a scenario, if an incorrect security parameter is inputted to theaccess control interface 109, no lockable door is opened. In other words, opening of the plurality of lockable doors may be controlled based on corresponding security parameters. - In some embodiments, two or more lockable doors of the
locker system 108 may be associated with the same security parameter. For example, the first and second lockable doors may be associated with the same security parameter. In such a scenario, when the security parameter is inputted to theaccess control interface 109, the first and second lockable doors are automatically opened concurrently or at the same time. - In some embodiments, the security parameters of the plurality of lockable doors may be dynamic parameters that are updated periodically by the
control server 112. Examples of the dynamic parameters may include, but are not limited to, a one-time password (OTP), barcodes, and quick response (QR) codes. In another embodiment, the security parameters of the plurality of lockable doors may be static parameters that do not change with time. Examples of the static parameters may include, but are not limited to, personal identification numbers (PINs), machine-readable optical codes such as barcodes or QR codes, or biometric information of a user. - The
locker system 108 may further include a plurality of security lock mechanisms for the respective plurality of lockable doors. The plurality of security lock mechanisms may be configured to open or close the respective plurality of lockable doors. In other words, a security lock mechanism is configured to secure a corresponding lockable door in a closed position until a correct security parameter is inputted at theaccess control interface 109 for opening the lockable door. In some embodiments, the plurality of security lock mechanisms may receive instructions to lock or unlock the respective plurality of lockable doors from thecontrol server 112 and/or theaccess control interface 109. The security lock mechanisms may be implemented by way of electromagnetic locks such as solenoid and/or actuators. - In some embodiments, the plurality of compartments and the plurality of lockable doors of the
locker system 108 may have same size, shape, dimensions, and weight bearing capacity. In some embodiments, the plurality of compartments and the plurality of lockable doors of thelocker system 108 may have different sizes, shapes, dimensions, and weight bearing capacities. - The
locker system 108 may further include a plurality of sensors such as weight sensors, infrared sensors, ultrasonic sensors, or the like for each of the plurality of compartments. The weight sensors in a compartment may be configured to generate sensor data that indicates weight of items placed in the compartment. Hereinafter, the terms “inventory items” and “items” are used interchangeably. For example, when no inventory item is placed in the first compartment of the plurality of compartments, the sensor data generated by the weight sensors of the first compartment indicate that the weight is zero. The infrared sensors or the ultrasonic sensors may be coupled to the rear side and the front side of each of the plurality of compartments and may be configured to generate sensor data that indicates whether the plurality of compartments are being accessed from the front side or whether any of therobotic apparatuses 110 is aligned with the compartments from the rear side. For example, when a user attempts to access the first compartment from the front side, the infrared sensors or the ultrasonic sensors coupled to the front side of the first compartment generate sensor data that indicates that a hand of the user is inside the first compartment. Similarly, when one of therobotic apparatuses 110 is aligned with the first compartment from the rear side, the infrared sensors or the ultrasonic sensors coupled to the rear side of the first compartment generate sensor data that indicates that one of therobotic apparatuses 110 is aligned with the first compartment from the rear side. In some embodiments, the sensor data generated by the infrared sensors or the ultrasonic sensors coupled to the rear side of the first compartment may further indicate whether the robotic apparatus is incorrectly or correctly aligned with the first compartment. - The
locker system 108 may have a fixed or a dynamic location within thestorage facility 102. For the sake of brevity, thestorage facility 102 is shown to include asingle locker system 108 and a singleaccess control interface 109. In other embodiments, thestorage facility 102 may include any number of locker systems having a similar or different architecture. Thelocker system 108 is described in detail in conjunction withFIGS. 2A and 2B . - Examples of the
access control interface 109 may be an electronic kiosk or any user interaction entity (e.g., a human machine interface, HMI). The electronic kiosk refers to a computer-based information delivery system generally accessible to some segment of the public for retrieving information or initiating some processes. Theaccess control interface 109 may include a display screen for presenting information to the customer and some form of computer input device for the customer such as a touch screen or keypad, although a full keyboard or mouse may also be provided. The type of kiosk system of interest here may be an interactive system that may have multiple kiosk sites (for example, the access control interface 109) accessible by customers. Theaccess control interface 109 may present multiple selectable options to a user (e.g., a customer or an operator), for example, a first option for placing a new order, a second option to search information regarding a previously placed order, a third option for viewing an inventory item catalog of thestorage facility 102, a fourth option for collecting the inventory items for a previously placed order or for executing a process in thestorage facility 102, or the like. Upon selection of the fourth option by the user, theaccess control interface 109 may be configured to prompt the customer to enter the security parameter associated with the previously placed order. If the security parameter provided by the customer is correct, lockable doors corresponding to the inputted security parameter are opened for item or order collection. - Although the
access control interface 109 and thelocker system 108 are shown as separate entities, in some embodiments, theaccess control interface 109 may be integrated with thelocker system 108 without deviating from the scope of the disclosure. - Transportation of the inventory items or consolidated orders within the
storage facility 102 may be performed by therobotic apparatuses 110. Therobotic apparatuses 110 may be configured to receive one or more instructions from thecontrol server 112. Based on the received one or more instructions, therobotic apparatuses 110 may be configured to transport the inventory items or the consolidated orders within thestorage facility 102, for example, from theprocessing area 106 to thelocker system 108. - The
control server 112 may include suitable logic, circuitry, interfaces, and/or code, executable by the circuitry, to facilitate various inventory management operations in thestorage facility 102. Examples of thecontrol server 112 may include, but are not limited to, personal computers, laptops, mini-computers, mainframe computers, any non-transient and tangible machine that can execute a machine-readable code, cloud-based servers, distributed server networks, or a network of computer systems. Thecontrol server 112 may be realized through various web-based technologies such as, but not limited to, a Java web-framework, a .NET framework, a personal home page (PHP) framework, or any other web-application framework. Thecontrol server 112 may be maintained by a storage facility management authority or a third-party entity that facilitates inventory management and handling operations for thestorage facility 102. It will be understood by a person having ordinary skill in the art that thecontrol server 112 may execute other storage facility management operations as well along with the inventory management operations. - The
control server 112 may be configured to communicate with thelocker system 108, theaccess control interface 109, and therobotic apparatuses 110 by way of thecommunication network 114. Thecontrol server 112 may be further configured to remotely control therobotic apparatuses 110 and thelocker system 108. Thecontrol server 112 may be further configured to store, in a memory of thecontrol server 112, a virtual map of thestorage facility 102 and inventory storage data of inventory stock. The virtual map is indicative of current locations of therobotic apparatuses 110, entry and exit points of thestorage facility 102, various reference markers in thestorage facility 102, a current location of each inventory item, a current location of each storage system 116, locations of the first and 118 a and 118 b, location of thesecond processing stations locker system 108, or the like. The inventory storage data is indicative of associations between the inventory items stored in thestorage facility 102 and the storage systems 116 in thestorage facility 102. The inventory storage data may further include historic storage locations of each inventory item. The inventory storage data may further include parameters (for example, weight, shape, size, color, dimensions, or the like) associated with each inventory item. Thecontrol server 112 may be further configured to manage allocation of the plurality of compartments to various processes in the storage facility and allocation of therobotic apparatuses 110 for transporting the inventory items associated with the processes. Thecontrol server 112 may be further configured to generate and store therein the security parameters of the plurality of lockable doors of thelocker system 108 so as to control the opening of the plurality of lockable doors. Thecontrol server 112 may be configured to receive security parameters inputted by a user (e.g., a customer, delivery personnel, or an operator of the storage facility 102) from theaccess control interface 109 and match the received security parameters with stored security parameters. When the inputted security parameters match any of the stored security parameters, thecontrol server 112 may be configured to control unlocking of one or more lockable doors of one or more compartments corresponding to the matched security parameters. - The
communication network 114 is a medium through which instructions and messages are transmitted between thecontrol server 112, therobotic apparatuses 110, thelocker system 108, and theaccess control interface 109. Examples of thecommunication network 114 may include, but are not limited to, a wireless fidelity (Wi-Fi) network, a light fidelity (Li-Fi) network, a local area network (LAN), a wide area network (WAN), a metropolitan area network (MAN), a satellite network, the Internet, a fiber optic network, a coaxial cable network, an infrared (IR) network, a radio frequency (RF) network, and a combination thereof. Various entities (such as therobotic apparatuses 110, thelocker system 108, theaccess control interface 109, and the control server 112) in thestorage facility 102 may be coupled to thecommunication network 114 in accordance with various wired and wireless communication protocols, such as Transmission Control Protocol and Internet Protocol (TCP/IP), User Datagram Protocol (UDP), Long Term Evolution (LTE) communication protocols, or any combination thereof. - In operation, the
control server 112 may be configured to receive a process request for executing a first process. The first process may be associated with one or more first inventory items of the plurality of inventory items stored in thestorage facility 102 and may require the first inventory items to be made accessible to a delivery personnel, a customer, or an operator in thestorage facility 102. In one example, the first process may correspond to providing an access to a consolidated order via thelocker system 108 so that the delivery personnel or the customer may be able to collect the consolidated order. In another example, the first process may correspond to an internal process of thestorage facility 102 where the first inventory items are to be made accessible to a specific operator via thelocker system 108. Here, the internal process may refer to any process (for example, quality check process, item replenishment process, order fulfilment process, or the like) that is executed within thestorage facility 102 for carrying out one or more operations in thestorage facility 102. - Based on the received process request, the
control server 112 may be configured to allocate one or more first compartments of the plurality of compartments of thelocker system 108 to the first process. Thecontrol server 112 may further communicate instructions to a robotic apparatus of therobotic apparatuses 110 to transport the first inventory items from a current storage location to thelocker system 108. The robotic apparatus may be any of the plurality of first robotic apparatuses 120 a-120 n, the plurality of secondrobotic apparatuses 122 a-122 n, the plurality of third robotic apparatuses 124 a-124 n, and the plurality of fourth robotic apparatuses 126 a-126 n. Thecontrol server 112 may be configured to select the robotic apparatus from therobotic apparatuses 110 based on an availability of the robotic apparatus, a type of the first process, compatibility of the robotic apparatus with the first process, or the like. Based on the instructions from thecontrol server 112, the robotic apparatus may be configured to transport the first inventory items associated with the first process to thelocker system 108. Thecontrol server 112 may be further configured to communicate a set of instructions to the robotic apparatus to cause the robotic apparatus to align with thelocker system 108 from the rear side. In an embodiment, the set of instructions may include path information of a first path that the robotic apparatus is to travel in thestorage facility 102 to reach the location of thelocker system 108 to align with the one or more first compartments. The first set of instructions may further include unique identifiers of the one or more first compartments that enable the robotic apparatus to identify the one or more first compartments from the plurality of compartments. - Based on the received set of instructions, the robotic apparatus may travel along the first path and align with the one or more first compartments from the rear side of the
locker system 108. The first inventory items transported by the robotic apparatus are accessible from the front side of the one or more first compartments upon opening of corresponding lockable doors of the one or more first compartments. - In some embodiments, the robotic apparatus may transfer the first inventory items to the one or more first compartments after successfully aligning with the one or more first compartments and once the transfer is complete, the robotic apparatus may become available for executing one or more other operations in the
storage facility 102. - In other embodiments, the robotic apparatus may not transfer the first inventory items to the one or more first compartments and may remain aligned with the one or more first compartments until the first inventory items are collected from the robotic apparatus by a designated entity by opening the corresponding lockable doors of the one or more first compartments from the front side of the
locker system 108. In such an embodiment, the robotic apparatus may become available for executing one or more other operations in thestorage facility 102 after the first inventory items are successfully collected by the designated entity. - The
control server 112 may be further configured to store therein security parameters of the plurality of lockable doors. In a first exemplary scenario where the first inventory items correspond to a consolidated order of a customer, thecontrol server 112 may be configured to communicate security parameters of the one or more first compartments, that provide access to the first inventory items, to a customer device (for example, a smartphone, a laptop, a wearable device, a mobile phone, or the like) of the customer or a delivery personnel. The customer or the delivery personnel may then input the security parameters into theaccess control interface 109 at thestorage facility 102. Theaccess control interface 109 may communicate the inputted security parameters to thecontrol server 112. Thecontrol server 112 may compare the received security parameters with the stored security parameters and when the received security parameters match any of the stored security parameters, thecontrol server 112 may communicate an unlock signal to thelocker system 108 or theaccess control interface 109. - In some embodiments, the
control server 112 may communicate the unlock signal to thelocker system 108 or theaccess control interface 109 when the sensor data generated by the infrared sensors or the ultrasonic sensors coupled to the rear side of the one or more first compartments indicate that the robotic apparatus is correctly aligned with the one or more first compartments from the rear side. However, if the sensor data generated by the infrared sensors or the ultrasonic sensors coupled to the rear side of the one or more first compartments indicates that the robotic apparatus is incorrectly aligned with the one or more first compartments, thecontrol server 112 may communicate an instruction to the robotic apparatus to correct the alignment with the one or more first compartments. Here, the instruction communicated to the robotic apparatus may include distance, rotation, or height adjustment information. The robotic apparatus may move as per the instruction and may get correctly aligned with the one or more first compartments. Since the infrared sensors or the ultrasonic sensors generate sensor data periodically, new sensor data generated by the infrared sensors or the ultrasonic sensors may indicate that the robotic apparatus is now correctly aligned with the one or more first compartments from the rear side. - In some embodiments, the
control server 112 may communicate the unlock signal to theaccess control interface 109 and theaccess control interface 109 may actuate the security lock mechanism of the one or more first compartments to open the lockable doors of the one or more first compartments. In other embodiments, thecontrol server 112 may communicate the unlock signal directly to thelocker system 108 to actuate the security lock mechanism of the one or more first compartments for opening the lockable doors of the one or more first compartments. In other words, thecontrol server 112 may control the opening of the lockable doors of the one or more first compartments based on the comparison of the received security parameters with the stored security parameters. Upon opening of the lockable doors of the one or more first compartments, the customer or the delivery personnel may collect the consolidated order from the one or more first compartments and the security lock mechanism may then close the opened lockable doors. - In some embodiments, the security lock mechanism may close the opened lockable doors when sensor data generated by the weight sensors of the one or more first compartments indicate that the weight of items placed in the one or more first compartments has changed to zero due to retrieval of the first inventory items by the customer or the delivery personnel.
- In some embodiments, the security lock mechanism may not close the opened lockable doors until the sensor data generated by the infrared sensors or the ultrasonic sensors at the front side of the one or more first compartments indicate that a human hand is present inside the one or more first compartments.
- In some embodiments, the
control server 112 may change or update the security parameters associated with the one or more first compartments once the order is collected, to enhance the security of thelocker system 108. - In a second exemplary scenario where the first inventory items correspond to an internal process of the
storage facility 102, thecontrol server 112 may be configured to communicate security parameters of the one or more first compartments from where the first inventory items could be collected, to an operator device of the operator executing the internal process. The first inventory items are collected by the operator from the one or more first compartments in the same manner as described above in the first exemplary scenario. -
FIG. 2A is a diagram that illustrates afront side 200A of thelocker system 108, in accordance with an exemplary embodiment of the disclosure. InFIG. 2A , two of the 202 a and 202 b of thecompartments locker system 108 are labelled and three of the 204 a, 204 b, and 204 c of thelockable doors locker system 108 are labelled. Labelling of other compartments and lockable doors is omitted for the sake of brevity. In an embodiment, thelocker system 108 includes a plurality of shelves that are spaced in a vertical direction and a plurality of walls that are disposed on each of the plurality of shelves to define the plurality of compartments on each shelf. The walls and the shelves, in combination, define the plurality of compartments of thelocker system 108. - As shown in
FIG. 2A , the 204 a and 204 b are open at the same time. Thelockable doors 202 a and 202 b and items stored in thecompartments 202 a and 202 b are accessible tocompartments 206 a and 206 b from theusers front side 200A. Here, the 206 a and 206 b may be operators, delivery personnel, or customers. Further, theusers lockable door 204 c is closed, and hence acompartment 202 c (shown inFIG. 2B ) of thelockable door 204 c is not accessible from thefront side 200A. The 206 a and 206 b may have provided the security parameters to the access control interface 109 (shown inusers FIG. 1 ) for requesting access to the 202 a and 202 b, respectively.compartments -
FIG. 2B is a diagram that illustrates arear side 200B of thelocker system 108, in accordance with an exemplary embodiment of the present disclosure. As shown inFIG. 2B , the plurality of compartments (e.g., the 202 a, 202 b, and 202 c) remain open at thecompartments rear side 200B. - It will be apparent to a person skilled in the art that the exemplary usage of
locker system 108 is for illustration purposes and does not limit the scope of the disclosure. As shown inFIGS. 2A and 2B , the plurality of compartments of thelocker system 108 have dedicated shelves; however, the scope of the disclosure is not limited to it. In other embodiments, the plurality of compartments of thelocker system 108 may not have dedicated shelves (as described inFIGS. 7A-9 ), and therefore may only serve as access points instead of access and storage points. -
FIG. 3 is a block diagram that illustrates thecontrol server 112, in accordance with an exemplary embodiment of the present disclosure. Thecontrol server 112 may include processingcircuitry 302, amemory 304, and atransceiver 306. Theprocessing circuitry 302 may include asecurity parameter generator 308, anallocation manager 310, acomparator 312, and anaccess controller 313. It will be apparent to a person having ordinary skill in the art that thecontrol server 112 is for illustrative purposes and not limited to any specific combination of hardware circuitry and/or software. - The
processing circuitry 302 may execute and manage various operations (such as allotting compartments to processes, generating and updating security parameters, remotely controlling opening and closing of the plurality of lockable doors, inventory management, or the like) in thestorage facility 102. Theprocessing circuitry 302 may execute the operations using thesecurity parameter generator 308, theallocation manager 310, thecomparator 312, and theaccess controller 313. - The
security parameter generator 308 may include suitable logic, instructions, circuitry, interfaces, and/or code for generating unique security parameters for the plurality of lockable doors (e.g., the 204 a, 204 b, and 204 c) of thelockable doors locker system 108. In an embodiment, the generated security parameters for the plurality of lockable doors may be static. In another embodiment, the generated security parameters for the plurality of lockable doors may be dynamic. In an example, the dynamic security parameters may be time-limited parameters which thesecurity parameter generator 308 updates after a specific time period. In another example, the dynamic security parameters may be process-based which thesecurity parameter generator 308 updates after completion of the process. The opening of the plurality of lockable doors is controlled based on the unique security parameters. In some embodiments, thesecurity parameter generator 308 may generate a single security parameter for multiple lockable doors. For example, when two or more compartments of the plurality of compartments are allocated to a single process, thesecurity parameter generator 308 may generate a single security parameter for the two or more compartments. Thus, thesecurity parameter generator 308 may be configured to generate the security parameters for the plurality of lockable doors based on allotment of the plurality of compartments to various processes. Thesecurity parameter generator 308 may be configured to store the generated security parameters in thememory 304. - The
allocation manager 310 may include suitable logic, instructions, circuitry, interfaces, and/or code for dynamically and continuously allocating and re-allocating therobotic apparatuses 110 for inventory item transportation. Theallocation manager 310 may be further configured to manage the allocation of the plurality of compartments to various processes. Theallocation manager 310 may allocate one or more compartments of thelocker system 108 to a process based on the availability of the one or more compartments and compatibility between the one or more compartments and one or more inventory items associated with the process. For example, different compartments of thelocker system 108 may have different sizes. In such a scenario, theallocation manager 310 may allocate those compartments to a process that have sufficient size to accommodate the inventory items of the process. For example, for a large size order, theallocation manager 310 may either allocate a single compartment of thelocker system 108 that matches a size of the order or may split the consolidated order into two or more sub-orders and allocate two or more compartments that match the size of the two or more sub-orders, respectively. Theallocation manager 310 may manage allocation of therobotic apparatuses 110 to transport inventory items based on a compatibility between therobotic apparatuses 110 and the inventory items. In one example, theallocation manager 310 may allocate the firstrobotic apparatus 120 a to transport a batch of inventory items when a weight handling capacity, a size, dimensions, or the like of the firstrobotic apparatus 120 a are sufficient to transport the batch of inventory items. However, if the weight handling capacity, the size, the dimensions, or the like of the firstrobotic apparatus 120 a are not sufficient to transport the batch of inventory items, theallocation manager 310 may select another robotic apparatus for the task. - The
comparator 312 may include suitable logic, instructions, circuitry, interfaces, and/or code for comparing security parameters received from theaccess control interface 109 with the security parameters stored in thememory 304. Opening of the plurality of lockable doors of thelocker system 108 is controlled based on comparison results generated by thecomparator 312. Thecomparator 312 may be further configured to provide the comparison results to theaccess controller 313. - The
access controller 313 may include suitable logic, instructions, circuitry, interfaces, and/or code for controlling opening of the plurality of lockable doors of thelocker system 108. Theaccess controller 313 may be configured to receive the comparison results generated by thecomparator 312. In an example, when a comparison result generated by thecomparator 312 indicates that a received security parameter does not match any of the stored security parameters, theaccess controller 313 generates an error notification and communicates the error notification to theaccess control interface 109. In another example, when a comparison result generated by thecomparator 312 indicates that a received security parameter matches any of the stored security parameters, theaccess controller 313 generates an unlock signal and communicates the unlock signal to theaccess control interface 109 or the security lock mechanism of thelocker system 108. The unlock signal may indicate which lockable doors of the plurality of lockable doors are to be opened. For example, if the received security parameter matches the stored security parameter of thelockable door 204 a, theaccess controller 313 generates an unlock signal that indicates that thelockable door 204 a is to be opened. In another example, if the received security parameter matches the stored security parameter of the two or more lockable doors, theaccess controller 313 generates an unlock signal that indicates that the two or more lockable doors are to be opened concurrently. - Examples of the
security parameter generator 308, theallocation manager 310, thecomparator 312, and theaccess controller 313 may include, but are not limited to, an application-specific integrated circuit (ASIC) processor, a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a field-programmable gate array (FPGA), a microcontroller, a combination of a central processing unit (CPU) and a graphics processing unit (GPU), or the like. - The
memory 304 may include suitable logic, instructions, circuitry, interfaces to store one or more instructions that are executed by entities such as thesecurity parameter generator 308, theallocation manager 310, thecomparator 312, and theaccess controller 313 for performing one or more operations. Additionally, thememory 304 may be configured to store therein aninventory list 314,inventory storage data 316,layout information 318,robotic apparatus data 320, andsecurity parameters 322. Examples of thememory 304 may include a random access memory (RAM), a read only memory (ROM), a removable storage drive, a hard disk drive (HDD), a flash memory, a solid-state memory, and the like. - The
inventory list 314 may include a list of inventory items and packages stored in thestorage facility 102 and a number of units of each inventory item stored in thestorage facility 102. Thelayout information 318 may include information regarding the layout of thestorage facility 102, such as location data of the storage systems 116, the first and 118 a and 118 b, thesecond processing stations locker system 108, or the like. Thelayout information 318 may further include real-time path availability information of various paths in thestorage facility 102. For example, a first path in thestorage facility 102 may be under maintenance, and hence may be unavailable for traversing. - The
inventory storage data 316 is indicative of storage locations of the inventory items stored in the storage systems 116. Theinventory storage data 316 may further include the reference markers of the storage systems 116. The reference identifiers are unique codes assigned to each of the storage systems 116. In one example, the reference markers are radio frequency identification (RFID) tags that are readable by therobotic apparatuses 110. Thus, based on theinventory storage data 316, thecontrol server 112 is aware of the locations of all inventory items stored in thestorage facility 102. - The
security parameters 322 may act as a repository of security parameters associated with the plurality of lockable doors of thelocker system 108. Thecomparator 312 may refer to thesecurity parameters 322 for generating comparison results. Thesecurity parameters 322 may be dynamically updated by thesecurity parameter generator 308. In one example, thesecurity parameters 322 may be a look-up table that stores security parameters generated by thesecurity parameter generator 308 in association with identifiers of the plurality of compartments and/or the plurality of lockable doors of thelocker system 108. The unlock signal generated by theaccess controller 313 may include identifiers of those compartments and/or lockable doors whose security parameters matched the security parameters provided by a user. - The
transceiver 306 may include suitable logic, instructions, circuitry, interfaces to transmit and receive data over thecommunication network 114 using one or more communication network protocols. Thetransceiver 306 may transmit various messages and commands to therobotic apparatuses 110, thelocker system 108, and theaccess control interface 109 and receive data from the one or more optical sensors deployed in thestorage facility 102, therobotic apparatuses 110, thelocker system 108, and theaccess control interface 109. Examples of thetransceiver 306 may include, but are not limited to, an antenna, a radio frequency transceiver, a wireless transceiver, a Bluetooth transceiver, an ethernet-based transceiver, a universal serial bus (USB) transceiver, or any other device configured to transmit and receive data. - Though the
processing circuitry 302 is depicted as a hardware component inFIG. 3 , a person skilled in the art will appreciate that the scope of the disclosure is not limited to realizing theprocessing circuitry 302 as the hardware component. In another embodiment, the functionality of theprocessing circuitry 302 may be implemented by way of a computer-executable code or a set of computer-readable instructions stored in thememory 304, without deviating from the scope of the disclosure. -
FIG. 4 is a diagram 400 that illustrates an implementation of thefirst processing station 118 a in thestorage facility 102, in accordance with an exemplary embodiment of the disclosure. Thecontrol server 112 may receive a first process request for executing a first process. In a non-limiting example, it is assumed that the first process corresponds to an order collection process and is associated with one or more first inventory items (e.g., items I1 and I2). The first inventory items I1 and I2 may be stored in thestorage system 116 a in thestorage area 104 and may need to be transported to thefirst processing station 118 a in theprocessing area 106 for order consolidation. Thecontrol server 112 may be configured to select one of the plurality of first robotic apparatuses 120 a-120 n (for example, the firstrobotic apparatus 120 a) that is available and compatible for transporting thestorage system 116 a from thestorage area 104 to thefirst processing station 118 a. Thecontrol server 112 may be further configured to communicate a first instruction to the firstrobotic apparatus 120 a. The first instruction may be indicative of thestorage system 116 a that stores the first inventory items I1 and I2, a path to reach a location of thestorage system 116 a in thestorage area 104, and a path to be followed by the firstrobotic apparatus 120 a to reach thefirst processing station 118 a where the first inventory items I1 and I2—are to be handled. Based on the first instruction, the firstrobotic apparatus 120 a may transport thestorage system 116 a from thestorage area 104 to thefirst processing station 118 a. As shown inFIG. 4 , the firstrobotic apparatus 120 a has successfully transported thestorage system 116 a to thefirst processing station 118 a. - The
control server 112 may be further configured to allocate one or more first compartments of the plurality of compartments of thelocker system 108 to the first process based on the first process request. The allocation of the one or more first compartments to the first process may be based on compatibility of the first inventory items I1 and I2 with the plurality of compartments, for example, size, weight, and dimension compatibility, and availability of the one or more first compartments. - In an exemplary scenario, each of the plurality of compartments may have a weight-bearing capacity of 20 kilograms and the first inventory items I1 and I2 may have a collective weight of 15 kilograms. In such a scenario, the
control server 112 may allocate any of the plurality of compartments that is currently unoccupied or is available, to the first process. In another exemplary scenario, the plurality of compartments may have different weight-bearing capacities and only two compartments may have a weight-bearing capacity greater than 15 kilograms. In such a scenario, thecontrol server 112 may allocate one of the two compartments that is available and has a weight-bearing capacity greater than 15 kilograms, to the first process. In another exemplary scenario, none of the plurality of compartments may have a weight-bearing capacity greater than or equal to 15 kilograms. In such a scenario, thecontrol server 112 may allocate two different compartments that are available to the first inventory items I1 and I2 such that each compartment has a weight bearing capacity greater than or equal to a weight of the corresponding item. In another exemplary scenario, none of the plurality of compartments may have a size that is sufficient to collectively hold the first inventory items I1 and I2. In such a scenario, thecontrol server 112 may allocate two different compartments that are available to the first inventory items I1 and I2 such that each compartment has a size that is compatible with a size of the corresponding item. - The
control server 112 may be further configured to select one of therobotic apparatuses 110 that is available and compatible for collecting the first inventory items I1 and I2 from thefirst processing station 118 a and transporting the collected first inventory items I1 and I2 to thelocker system 108. In an exemplary scenario, thecontrol server 112 may select one of the plurality of secondrobotic apparatuses 122 a-122 n (e.g., the secondrobotic apparatus 122 a) to collect and transport the first inventory items I1 and I2 to thelocker system 108. - The second
robotic apparatus 122 a may have a plurality of levels L1, L2, and L3. Each level of the plurality of levels L1, L2, and L3 may have one or more conveyors for receiving inventory items. In an exemplary illustration, each level L1, L2, and L3 is shown to include two conveyors that are rotatable in clockwise or anti-clockwise directions. Further, each level of the plurality of levels L1, L2, and L3 may have same or different physical attributes. The physical attributes of each level of the plurality of levels L1, L2, and L3 may include a weight-bearing capacity, a size, one or more dimensions, a height, and a count of conveyors. The conveyors of each level may be actuated independent of each other. - The
control server 112 may then communicate a second set of instructions to the secondrobotic apparatus 122 a. The second set of instructions may be indicative of a path to be followed by the secondrobotic apparatus 122 a to reach a location of thefirst processing station 118 a for the collection of the first inventory items I1 and I2 and a subsequent path to be followed by the secondrobotic apparatus 122 a to reach thelocker system 108 from thefirst processing station 118 a. Based on the second set of instructions, the secondrobotic apparatus 122 a may reach thefirst processing station 118 a for collection of the first inventory items I1 and I2. As shown inFIG. 4 , the secondrobotic apparatus 122 a has successfully reached thefirst processing station 118 a and is waiting to receive the first inventory items I1 and I2. - The
control server 112 may be further configured to render, via auser interface 402, information (for example, a position, a shape, a size, a weight, or the like) of the first inventory items I1 and I2 that are to be handled at thefirst processing station 118 a. The rendered information may further indicate a shelf of thestorage system 116 a on which the first inventory items I1 and I2 are stored. Based on the rendered information, a first set of pick/put operations may be performed by anoperator 404 present at thefirst processing station 118 a for handling the first inventory items I1 and I2. The first set of pick/put operations may include picking of the first inventory items I1 and I2 from thestorage system 116 a and putting the first inventory items I1 and I2 on a target level (for example, the level L1) of the secondrobotic apparatus 122 a. In an embodiment, the target level may be indicated to theoperator 404 via theuser interface 402. In an embodiment, thefirst processing station 118 a may further include a pick/put to light (PPTL) device or a projector for providing visual cues to indicate the target level and/or the shelf of thestorage system 116 a storing the first inventory items I1 and I2 to theoperator 404. - The first inventory items I1 and I2 and the target level of the second
robotic apparatus 122 a may be identified by theoperator 404 based on the information rendered via theuser interface 402 and/or the visual cues. Subsequently, the first inventory items I1 and I2 may be placed on the target level (for example, the level L1) of the secondrobotic apparatus 122 a by theoperator 404. - In some embodiments, the second
robotic apparatus 122 a and/or thecontrol server 112 may be configured to determine a correct placement of the first inventory items I1 and I2 on the target level. The secondrobotic apparatus 122 a and/or thecontrol server 112 may determine the correct placement based on one of one or more images or videos captured by one or more optical sensors deployed at thefirst processing station 118 a, a weight of the first inventory items I1 and I2, or the like. - In an exemplary scenario, the one or more images or videos captured by the optical sensors deployed at the
first processing station 118 a may indicate that the first inventory items I1 and I2 are only partially placed on the target level of the secondrobotic apparatus 122 a. In such a scenario, thecontrol server 112 may instruct theoperator 404 via theuser interface 402 to adjust the placement of the first inventory items I1 and I2 so as to ensure that the first inventory items I1 and I2 are completely placed on the target level. In another exemplary scenario, one or more weight sensors placed on or beneath the conveyors of the target level may detect that the weight of the first inventory items I1 and I2 is not evenly distributed on the target level. In such a scenario, the secondrobotic apparatus 122 a may either generate an audio/visual or haptic signal to alert theoperator 404 regarding the incorrect placement of the first inventory items I1 and I2 or communicate an error signal to thecontrol server 112 to indicate the incorrect placement of the first inventory items I1 and I2 on the target level. The secondrobotic apparatus 122 a may not follow the subsequent path indicated in the second set of instructions until the first inventory items I1 and I2 are correctly placed on the target level by theoperator 404. - Based on the determination that the first inventory items I1 and I2 are placed correctly on the target level, the second
robotic apparatus 122 a may start following the subsequent path indicated in the second set of instructions to reach thelocker system 108. As shown inFIG. 4 , the second 122 c and 122 d are also present at therobotic apparatuses first processing station 118 a for other operations. - Although
FIG. 4 is described in conjunction with thecontrol server 112 selecting one of the plurality of first robotic apparatuses 120 a-120 n to transport thestorage system 116 a storing the first inventory items I1 and I2, the scope of the disclosure is not limited to it. In another embodiment, thecontrol server 112 may select any of the plurality of third robotic apparatuses 124 a-124 n or any of the plurality of fourth robotic apparatuses 126 a-126 n to transport the first inventory items I1 and I2 from thestorage area 104 to thefirst processing station 118 a. - Although
FIG. 4 is described in conjunction with thecontrol server 112 selecting one of the plurality of secondrobotic apparatuses 122 a-122 n to transport the first inventory items I1 and I2, the scope of the disclosure is not limited to it. In another embodiment, thecontrol server 112 may select any of the plurality of third robotic apparatuses 124 a-124 n or any of the plurality of fourth robotic apparatuses 126 a-126 n to transport the first inventory items I1 and I2 from thefirst processing station 118 a to thelocker system 108. The transfer of the first inventory items I1 and I2 to thelocker system 108 by the secondrobotic apparatus 122 a is described in conjunction withFIGS. 5A-5C . - In some embodiments, the
control server 112 may instruct theoperator 404 to put the first inventory items I1 and I2 picked from thestorage system 116 a onto a shelf of another storage system carried by one of the plurality of first robotic apparatuses 120 b-120 n. In some embodiments, thecontrol server 112 may instruct the firstrobotic apparatus 120 a to directly transport thestorage system 116 a from thestorage area 104 to the location of thelocker system 108. -
FIGS. 5A-5C are diagrams that illustrateexemplary scenarios 500A-500C for operating thelocker system 108, in accordance with an exemplary embodiment of the disclosure. Referring now toFIG. 5A , the secondrobotic apparatus 122 a is shown to have reached the location of thelocker system 108. Further, based on the second set of instructions, the secondrobotic apparatus 122 a may be configured to identify the one or more first compartments (for example, acompartment 502 a) that are allocated to the first process. Upon identification of thecompartment 502 a, the secondrobotic apparatus 122 a may align with thecompartment 502 a. - Alignment of the second
robotic apparatus 122 a with thecompartment 502 a may include alignment of aconveyor 504 a of the level L1 on which the first inventory items I1 and I2 are placed with a shelf of thecompartment 502 a from therear side 200B of thelocker system 108. In other words, when the secondrobotic apparatus 122 a aligns with thelocker system 108 based on the second set of instructions, the level L1 of the secondrobotic apparatus 122 a is also aligned with thecompartment 502 a. - The infrared sensors or the ultrasonic sensors coupled to the
rear side 200B of thecompartment 502 a may generate sensor data indicating the alignment of the secondrobotic apparatus 122 a with thecompartment 502 a and may communicate the sensor data to thecontrol server 112. - The
control server 112 may receive the sensor data from the infrared sensors or the ultrasonic sensors coupled to therear side 200B of thecompartment 502 a and/or one or more images or videos captured by one or more image sensors deployed on at least one of thelocker system 108 and the secondrobotic apparatus 122 a. Based on the received sensor data and/or the one or more images, thecontrol server 112 may be configured to determine whether the secondrobotic apparatus 122 a is correctly aligned with thecompartment 502 a. - In an exemplary scenario, based on the received sensor data, the
control server 112 may determine that the secondrobotic apparatus 122 a is incorrectly aligned with thecompartment 502 a. The incorrect alignment may be due to an incorrect height of the level L1 (for example, the level L1 may not be at the same height as the shelf of thecompartment 502 a), a gap between the level L1 and the shelf of thecompartment 502 a, or a left or right offset between theconveyor 504 a of the level L1 and the shelf of thecompartment 502 a. In such a scenario, thecontrol server 112 may be configured to instruct the secondrobotic apparatus 122 a to adjust the alignment with thecompartment 502 a by lowering or raising the level L1, eliminating the gap between the level L1 and the shelf of thecompartment 502 a, or eliminating the left or right offset between theconveyor 504 a of the level L1 and the shelf of thecompartment 502 a. In another exemplary scenario, based on the received sensor data, thecontrol server 112 may determine that the secondrobotic apparatus 122 a is correctly aligned with thecompartment 502 a. In such a scenario, thecontrol server 112 may be configured to instruct the secondrobotic apparatus 122 a to transfer the first inventory items I1 and I2 to thecompartment 502 a. - For transferring the first inventory items I1 and I2 to the
compartment 502 a, the secondrobotic apparatus 122 a may be configured to actuate (for example, rotate) theconveyor 504 a at the level L1 in a clockwise direction (as shown by arrow 506) so that the first inventory items I1 and I2 are transferred onto the shelf of thecompartment 502 a. In an embodiment, while the first inventory items I1 and I2 are being transferred from theconveyor 504 a to thecompartment 502 a, another item I3 placed at aconveyor 504 b of the level L2 may also be transferred to anothercompartment 502 b that is allocated to another process associated with the item I3. In other words, same robotic apparatus may be utilized by thecontrol server 112 to transfer inventory items of different processes to different compartments of thelocker system 108 concurrently. - In some embodiments, the
control server 112 may be further configured to determine whether a correct item has been transferred into thecompartment 502 a. In an example, the weight sensor placed on or beneath the shelf of thecompartment 502 a may be able to sense the weight of the first inventory items I1 and I2. The sensor data of the weight sensor may be communicated to thecontrol server 112, which compares the sensed weight with the actual weight of the first inventory items I1 and I2. Further, a code scanner (for example, a barcode scanner, a QR code scanner, or a radio frequency identifier (RFID) reader) present at thecompartment 502 a may be configured to scan identifiers of the first inventory items I1 and I2 and communicate the scanned identifiers to thecontrol server 112. Based on the weight data and/or the scanned identifiers, thecontrol server 112 may determine whether the items transferred to thecompartment 502 a are correct. In other words, thecontrol server 112 may determine whether the transfer of the first inventory items I1 and I2 is a success or a failure. In an event of a failure of transfer, thecontrol server 112 may determine a cause of the operational failure and generate correction-based instructions to correct the operational failure. In an example, the failure may have occurred due to a placement of an incorrect item in thecompartment 502 a. In such a scenario, thecontrol server 112 may generate correction-based instructions for the secondrobotic apparatus 122 a to transfer the correct first inventory items I1 and I2 to thecompartment 502 a and may instruct an operator to remove the incorrect item from thecompartment 502 a. In an event of success, thecontrol server 112 may communicate a transfer success signal to the secondrobotic apparatus 122 a to indicate the successful transfer of the first inventory items I1 and I2. - Upon successful transfer of the first inventory items I1 and I2 and other inventory items carried by the second
robotic apparatus 122 a into thelocker system 108, thecontrol server 112 may further provide instructions to the secondrobotic apparatus 122 a to pick-up other inventory items from the first or 118 a or 118 b for transfer.second processing stations - The first inventory items I1 and I2 transported by the second
robotic apparatus 122 a are accessible from thefront side 200A of thecompartment 502 a upon opening of a corresponding lockable door of thecompartment 502 a. - In
FIG. 5A , another secondrobotic apparatus 122 b is shown to be transporting one or more second inventory items I4 associated with a second process that is different from the first process. In an embodiment, thecontrol server 112 may have allocated thecompartment 502 a to the second process and may have communicated a third set of instructions to the secondrobotic apparatus 122 b to facilitate collection and transport of the second inventory items I4 by the secondrobotic apparatus 122 b. In a scenario where thesame compartment 502 a is allocated to both the first and second processes, the secondrobotic apparatus 122 b may only align with thelocker system 108 from therear side 200B based on the third set of instructions, when the first inventory items I1 and I2 are successfully collected from thecompartment 502 a and the secondrobotic apparatus 122 a has moved away from thelocker system 108. The secondrobotic apparatus 122 b may align with thecompartment 502 a from therear side 200B of thelocker system 108 in a similar manner as the secondrobotic apparatus 122 a had aligned with thecompartment 502 a. Based on the alignment of the secondrobotic apparatus 122 b with thelocker system 108 at therear side 200B, the second inventory items I4 transported by the secondrobotic apparatus 122 b are accessible from thefront side 200A of thecompartment 502 a based on opening of the corresponding lockable door of thecompartment 502 a. - In another embodiment, the
control server 112 may allocate anothercompartment 502 c that is different from thecompartment 502 a to the second process. In such a scenario, where 502 a and 502 c are allocated to the first and second processes, the seconddifferent compartments robotic apparatus 122 b may align with thelocker system 108 from therear side 200B concurrently with the secondrobotic apparatus 122 a. Based on the alignment of the secondrobotic apparatus 122 b with thelocker system 108 at therear side 200B, the second inventory items I4 transported by the secondrobotic apparatus 122 b are accessible from thefront side 200A of thecompartment 502 c based on opening of a corresponding lockable door of thecompartment 502 c. - Collection of an inventory item from a compartment of the
locker system 108 is described in conjunction withFIG. 5B . - Referring now to
FIG. 5B , a schematic diagram for collection of an item from thefront side 200A of thelocker system 108, in accordance with an exemplary embodiment of the present disclosure, is shown. A user (for example, an operator, a delivery personnel, or a customer) is able to collect inventory items associated with a process from thefront side 200A of thelocker system 108. - For the sake of brevity, the ongoing exemplary scenario is described for a
user 508 a who has placed an order (for example, a process request) and now wants to collect orderedinventory items 510. To collect the orderedinventory items 510, theuser 508 a may input a security parameter at the access control interface 109 (shown inFIG. 1 ). The security parameter may have been communicated to a user device of theuser 508 a by thecontrol server 112 when theuser 508 a had placed the order. The security parameter communicated to the user device is associated with a compartment (for example, thecompartment 202 a) in which theinventory items 510 ordered by theuser 508 a are transferred for collection by theuser 508 a. In other words, thecontrol server 112 may communicate the security parameter of thecompartment 202 a that is allocated to the order of theuser 508 a to the user device. In an embodiment, the security parameter may be a barcode and theuser 508 a may scan the barcode using a barcode scanner of theaccess control interface 109. In another embodiment, the security parameter may be a QR code and theuser 508 a may scan the QR code using a QR code scanner of theaccess control interface 109. In another embodiment, the security parameter may be an OTP and theuser 508 a may input the OTP using a keypad of theaccess control interface 109. - The
access control interface 109 may communicate the inputted security parameter to thecontrol server 112 over thecommunication network 114. Thecontrol server 112 may determine whether the received security parameter matches any of the security parameters stored in thememory 304. Based on a match of the received security parameter with at least one of the stored security parameters, thecontrol server 112 may be configured to provide an unlock signal to thelocker system 108 or theaccess control interface 109. The unlock signal may include an identifier of a compartment (for example, thecompartment 202 a) whose stored security parameter matched the received security parameter. The unlock signal is then communicated to the security lock mechanism of thecompartment 202 a. Upon receiving the unlock signal, the security lock mechanism of thecompartment 202 a opens thelockable door 204 a of thecompartment 202 a such that theinventory items 510 placed in thecompartment 202 a become accessible to theuser 508 a from thefront side 200A of thelocker system 108. Theuser 508 a is thus able to collect theinventory items 510 from thecompartment 202 a. Upon successful collection of theinventory items 510 from thecompartment 202 a, the security lock mechanism of thecompartment 202 a locks or closes thelockable door 204 a. After thelockable door 204 a is closed, new inventory items may be stored in thecompartment 202 a by therobotic apparatuses 110. - In an embodiment, the security parameter provided by the
user 508 a may be associated with multiple compartments due to the ordered inventory items being stored in multiple compartments. In such a scenario, the unlock signal generated by thecontrol server 112 is capable of concurrently (e.g., at the same time) unlocking lockable doors of all the compartments that are allocated to the order of theuser 508 a. In an embodiment, when the security parameter is inputted to theaccess control interface 109 by theuser 508 a, theaccess control interface 109 may present an identifier of thecompartment 202 a to theuser 508 a. The identifier of thecompartment 202 a may be included in the unlock signal communicated by thecontrol server 112 to theaccess control interface 109. - Further, as shown in
FIG. 5B , multiple robotic apparatuses (for example, the second 122 a and 122 b) may be configured to store inventory items in different compartments of therobotic apparatuses locker system 108 concurrently. - Further, as shown in
FIG. 5B , multiple users (for example, theuser 508 a and anotheruser 508 b) may concurrently collect corresponding inventory items from thelocker system 108. For example, as shown, the 204 a and 204 b are open at the same time so that thelockable doors 508 a and 508 b may concurrently collect their orderedusers 510 and 512 from theinventory items locker system 108. - Referring to
FIG. 5C , a schematic diagram that illustrates a side view of thelocker system 108, in accordance with an embodiment of the present disclosure, is shown. InFIG. 5C , the plurality of compartments of thelocker system 108 are shown to have slanting shelves. For example, as shown, acompartment 502 d of thelocker system 108 has a slanting shelf 514 such that an elevated side of the slanting shelf 514 is positioned towards therear side 200B of thelocker system 108, whereas a slanting side of the slanting shelf 514 is positioned towards thefront side 200A of thelocker system 108. Once aninventory item 516 is transferred to thecompartment 502 d by the secondrobotic apparatus 122 c, the slanting shelf 514 may cause theinventory item 516 to slide towards thefront side 200A of thecompartment 502 d from therear side 200B. Further, thecompartment 502 d may have a mechanical stopper and/or a plate coupled to thefront side 200A of thecompartment 502 d that prevents theinventory item 516 from falling off thecompartment 502 d when alockable door 518 of thecompartment 502 d is opened. It will be apparent to a person skilled in art that the scope of the disclosure is not limited to the slanting shelf 514, but any other form of mechanism that may assist in the movement of the inventory items from therear side 200B to thefront side 200A may be implemented, without deviating from the scope of the disclosure. -
FIG. 6 is a diagram 600 that illustrates transfer of inventory items to thelocker system 108 using a robotic apparatus, in accordance with an embodiment of the present disclosure. As shown inFIG. 6 , the fourthrobotic apparatus 126 a has arobotic arm 602 with multiple degrees of freedom and a spatula-shapedend effector 604 coupled to therobotic arm 602. The spatula-shapedend effector 604 may include aconveyor 606 that could be rotated (e.g., actuated) in clockwise or anti-clockwise direction. In an example, the fourthrobotic apparatus 126 a may be selected by thecontrol server 112 to transferinventory items 608 associated with a process to an allocated compartment (e.g., thecompartment 502 a) of thelocker system 108. Thecontrol server 112 may communicate instructions to the fourthrobotic apparatus 126 a to place theinventory item 608 in thecompartment 502 a. Based on the instructions, the fourthrobotic apparatus 126 a carrying theinventory items 608 may align with thecompartment 502 a at therear side 200B after identifying thecompartment 502 a. The instructions may further include position and identifier of thecompartment 502 a and a degree of movement required for therobotic arm 602 to move the spatula-shapedend effector 604 from an original position to a desired height to place theinventory item 608 in thecompartment 502 a. Once the spatula-shapedend effector 604 has attained the desired position, the fourthrobotic apparatus 126 a actuates theconveyor 606 to transfer theinventory item 608 into thecompartment 502 a. - As shown in
FIG. 6 , while the fourthrobotic apparatus 126 a is transferring theinventory item 608 into thecompartment 502 a, another fourth robotic apparatus 126 b may concurrently transfer another inventory item into adifferent compartment 610 of thelocker system 108. - Although
FIG. 6 shows two fourthrobotic apparatuses 126 a and 126 b concurrently transferring the inventory items to 502 a and 610 of thedifferent compartments locker system 108, the scope of the disclosure is not limited to it. In other embodiments, different types ofrobotic apparatuses 110 may concurrently transfer inventory items into different compartments of thelocker system 108, without deviating from the scope of the disclosure. -
FIGS. 7A and 7B are diagrams 700A and 700B that illustrate alocker system 702 to be used in thestorage facility 102 for delivery and collection of inventory items, in accordance with another embodiment of the present disclosure. - Referring now to
FIG. 7A , thelocker system 702 is operationally similar to thelocker system 108 shown inFIGS. 2A and 2B but differs in structure, for example, thelocker system 702 includes a plurality of compartments that do not have any shelves and a plurality of lockable doors that control access to the plurality of compartments, respectively. Each compartment of the plurality of compartments is accessible from afront side 704 a and a rear side (shown inFIG. 7B ) of thelocker system 702. An access to each compartment from thefront side 704 a is controlled by a corresponding lockable door positioned at thefront side 704 a, and each compartment is open from the rear side. In other words, thelocker system 702 is a frame-like structure that has a plurality of openings that are formed in longitudinal axis and vertical axis where each opening defines a compartment without shelf and the compartment is secured at thefront side 704 a with a lockable door. For the sake of brevity, three of the 706 a, 706 b, and 706 c of the plurality of compartments and four of thecompartments 708 a, 708 b, 708 c, and 708 d of the plurality of lockable doors, are labelled.lockable doors - As shown in
FIG. 7A , access to the 706 a, 706 b, and 706 c is controlled by thecompartments 708 a, 708 b, and 708 c, respectively. Since thelockable doors 708 a, 708 b, and 708 c are open, thelockable doors 706 a, 706 b, and 706 c are accessible from therespective compartments front side 704 a; however, thelockable door 708 d is closed and as a result, a corresponding compartment is not accessible from thefront side 704 a. - In an embodiment, the plurality of compartments may have same size and dimensions. In another embodiment, the plurality of compartments may have different sizes and dimensions. For example, as shown in
FIG. 7A , the 706 a, 706 b, and 706 c are of the same size; however, the compartment of thecompartments lockable door 708 d is larger in size and dimensions as compared to the 706 a, 706 b, and 706 c.compartments - Referring now to
FIG. 7B , therear side 704 b of thelocker system 702, in accordance with an embodiment of the present disclosure, is shown. Therear side 704 b of thelocker system 702 serves as an access point for therobotic apparatuses 110 whereas thefront side 704 a serves as an access point for collecting the inventory items from the plurality of compartments. - The
robotic apparatuses 110 may collect the inventory items associated with different processes from the first and 118 a and 118 b and transport the collected inventory items to thesecond processing stations locker system 702 under the control of the control server 112 (as described in the foregoing description ofFIGS. 1-6 ). Upon reaching a location of thelocker system 702, therobotic apparatuses 110 may align with those compartments that are allocated to the respective processes by thecontrol server 112. As the plurality of compartments of thelocker system 702 do not have any storage shelves, therobotic apparatuses 110 remain aligned with the respective compartments until the inventory items are collected by corresponding users from thefront side 704 a upon opening of the lockable doors of the respective compartments. - For example, as shown in
FIG. 7B , the secondrobotic apparatus 122 a is aligned with the 706 b and 706 c so thatcompartments 710 a and 710 b placed on the level L1 of the secondinventory items robotic apparatus 122 a could be accessed from thefront side 704 a of thelocker system 702 when the 708 b and 708 c are opened. Inlockable doors FIG. 7B , the 708 b and 708 c are shown to be open and alockable doors user 712 is collecting the 710 a and 710 b from the level L1 of the secondinventory items robotic apparatus 122 a via the 706 a and 706 b, respectively. Opening and closing of the plurality of lockable doors of thecompartments locker system 702 are controlled by thecontrol server 112 in a similar manner as the plurality of lockable doors of the locker system 108 (as described in the foregoing description of theFIGS. 1-6 ). In the exemplary scenario ofFIG. 7B , the 710 a and 710 b of theinventory items user 712 are made accessible concurrently by concurrent opening of the 708 b and 708 c. Thus, thelockable doors user 712 may collect both the 710 a and 710 b from the secondinventory items robotic apparatus 122 a at the same time. Similarly,FIG. 7B shows another secondrobotic apparatus 122 b, carrying 710 c and 710 d, aligned with theinventory items 706 a and 706 d. Thecompartments inventory item 710 c may be collected from thefront side 704 a of thecompartment 706 a and theinventory item 710 d may be collected from thefront side 704 a of thecompartment 706 d. At a current time-instance, thelockable door 708 a of thecompartment 706 a is open, and hence theinventory item 710 c may be collected from the secondrobotic apparatus 122 b by a corresponding user (not shown) via thecompartment 706 a. However, the lockable door of thecompartment 706 d is closed, and hence theinventory item 710 d is inaccessible from thefront side 704 a. Such controlled opening and closing of the plurality of lockable doors of thelocker system 702 prevents unauthorized access to the inventory items. - In an embodiment, based on a size of a compartment, multiple conveyors on a level of a second robotic apparatus (e.g., any of the plurality of second
robotic apparatuses 122 a-122 n) could be aligned with a single compartment of thelocker system 702. For example, two conveyors at the level L2 of the secondrobotic apparatus 122 a may concurrently align with a compartment corresponding to thelockable door 708 d (shown inFIG. 7A ). Therefore, any inventory items placed on the two conveyors of the level L2 of the secondrobotic apparatus 122 a may be accessed concurrently from the same compartment upon opening of thelockable door 708 d (shown inFIG. 7A ). -
FIG. 8 is a diagram 800 that illustrates collection of inventory items from thelocker system 702, in accordance with another embodiment of the present disclosure. As shown inFIG. 8 , the fourthrobotic apparatus 126 a may be selected by thecontrol server 112 to make aninventory item 802 a associated with a process accessible from an allocated compartment (e.g., thecompartment 706 b) of thelocker system 702. Thecontrol server 112 may communicate instructions to the fourthrobotic apparatus 126 a to align with thecompartment 706 b at therear side 704 b of thelocker system 702. The instructions may further include a position and an identifier of thecompartment 706 b and a degree of movement required for therobotic arm 602 to move the spatula-shapedend effector 604 from an original position to a desired height of thecompartment 706 b. Once the spatula-shapedend effector 604 has attained the desired position, the fourthrobotic apparatus 126 a remains aligned with thecompartment 706 b until theinventory item 802 a is collected by acorresponding user 804. As shown inFIG. 8 , thelockable door 708 b of thecompartment 706 b is open and theuser 804 is stretching their hand to collect theinventory item 802 a. Upon successful collection of theinventory item 802 a by theuser 804, thelockable door 708 b closes and the fourthrobotic apparatus 126 a becomes available for executing a next operation. -
FIGS. 9A and 9B are diagrams that illustrate anexemplary scenario 900 for collection of inventory items from thelocker system 702, in accordance with another embodiment of the present disclosure. - Referring now to
FIG. 9A , the firstrobotic apparatus 120 a is shown to have transported astorage system 901 to a location of thelocker system 702. Thestorage system 901 is structurally and functionally similar to the storage systems 116 shown inFIG. 1 . Thestorage system 901 may have a plurality of shelves 902 a-902 d each storing inventory items corresponding to a unique process. For example, theshelf 902 a may store thereoninventory items 904 associated with an order of acustomer 906. Thecontrol server 112 may have instructed the firstrobotic apparatus 120 a to transport theinventory items 904 to the location of thelocker system 702 by lifting and transporting thestorage system 901, and aligning with thelocker system 702 from therear side 704 b. When the firstrobotic apparatus 120 a aligns with thelocker system 702 from therear side 704 b, theshelf 902 a storing theinventory items 904 is aligned with thecompartment 706 b which is allocated to the process associated with theinventory items 904. The firstrobotic apparatus 120 a may be configured to adjust a height of thestorage system 901 such that theshelf 902 a is aligned with thecompartment 706 b from therear side 704 b of thelocker system 702. The firstrobotic apparatus 120 a may remain aligned with thelocker system 702 until theinventory items 904 are collected by thecustomer 906 via thecompartment 706 b. - Referring now to
FIG. 9B , thefront side 704 a of thelocker system 702 is shown while the firstrobotic apparatus 120 a carrying thestorage system 901 is aligned with thelocker system 702 from therear side 704 b. InFIG. 9B , thelockable door 708 b is shown to be open and thecustomer 906 is attempting to collect theinventory items 904 from theshelf 902 a via thecompartment 706 b. Upon successful collection of theinventory items 904 by thecustomer 906, thelockable door 708 b is closed and the firstrobotic apparatus 120 a transports thestorage system 901 to another location for executing a next operation. Opening and closing of the plurality of lockable doors of thelocker system 702 are controlled by thecontrol server 112 in a similar manner as the plurality of lockable doors of the locker system 108 (as described in the foregoing description of theFIGS. 1-6 ). -
FIG. 10 is a block diagram that illustrates a system architecture of acomputer system 1000 for inventory management in thestorage facility 102, in accordance with an exemplary embodiment of the disclosure. An embodiment of the disclosure, or portions thereof, may be implemented as computer readable code on thecomputer system 1000. In one example, thecontrol server 112 ofFIG. 1 may be implemented in thecomputer system 1000 using hardware, software, firmware, non-transitory computer-readable media having instructions stored thereon, or a combination thereof and may be implemented in one or more computer systems or other processing systems. Hardware, software, or any combination thereof may embody modules and components used to implement the methods ofFIGS. 11 and 12 . Thecomputer system 1000 may include amain memory 1002, asecondary memory 1004, aprocessor 1006, a communication interface 1008, an input/output (I/O)port 1010, and acommunication infrastructure 1012. - Examples of the
main memory 1002 may include random access memory (RAM), read-only memory (ROM), and the like. Thesecondary memory 1004 may include a hard disk drive or a removable storage drive (not shown), such as a floppy disk drive, a magnetic tape drive, a compact disc, an optical disk drive, a flash memory, or the like. Further, the removable storage drive may read from and/or write to a removable storage device in a manner known in the art. In an embodiment, the removable storage system may be a non-transitory computer-readable recording media. - The
processor 1006 may be a special purpose or a general-purpose processing device. Theprocessor 1006 may be a single processor or multiple processors. Theprocessor 1006 may have one or more processor “cores.” Further, theprocessor 1006 may be coupled to the communication interface 1008 such as a bus, a bridge, a message queue, thecommunication network 114, multi-core message-passing scheme, or the like. - The I/
O port 1010 may include various input and output devices that are configured to communicate with theprocessor 1006. Examples of the input devices may include a keyboard, a mouse, a joystick, a touchscreen, a microphone, and the like. Examples of the output devices may include a display screen, a speaker, headphones, and the like. Thecommunication infrastructure 1012 may be configured to allow data to be transferred between thecomputer system 1000 and various devices that are communicatively coupled to thecomputer system 1000. Examples of thecommunication infrastructure 1012 may include a modem, a network interface, i.e., an Ethernet card, a communication port, and the like. Data transferred via thecommunication infrastructure 1012 may be signals, such as electronic, electromagnetic, optical, or other signals as will be apparent to a person skilled in the art. The signals may travel via a communications channel, such as thecommunication network 114, which may be configured to transmit the signals to the various devices that are communicatively coupled to thecomputer system 1000. Examples of the communication channel may include a wired, wireless, and/or optical medium such as cable, fiber optics, a phone line, a cellular phone link, a radio frequency link, and the like. Themain memory 1002 and thesecondary memory 1004 may refer to non-transitory computer-readable mediums that may provide data that enables thecomputer system 1000 to implement the method illustrated inFIGS. 11 and 12 . -
FIG. 11 is aflow chart 1100 that illustrates an automated locker management method for delivery and collection of inventory items using thelocker system 108 or thelocker system 702 in thestorage facility 102, in accordance with an exemplary embodiment of the disclosure. At 1102, one or more first compartments of a plurality of compartments in thelocker system 108 or thelocker system 702 are allocated to a first process in thestorage facility 102. Thecontrol server 112 may be configured to allocate the one or more first compartments of the plurality of compartments in thelocker system 108 or thelocker system 702 to the first process in thestorage facility 102. Allocation of the one or more first compartments of thelocker system 108 or thelocker system 702 to the first process by thecontrol server 112 is described in the foregoing description ofFIGS. 1-9 . Each compartment of the plurality of compartments may be accessible from a front side and a rear side of thelocker system 108 or thelocker system 702. An access to each compartment of the plurality of compartments from the front side is controlled by a corresponding lockable door of a plurality of lockable doors of thelocker system 108 or thelocker system 702. Each compartment of the plurality of compartments is open from the rear side. - At 1104, a first set of instructions is communicated to a robotic apparatus (e.g., any of the robotic apparatuses 110) to cause the robotic apparatus to align with the
locker system 108 or thelocker system 702 from the rear side. Thecontrol server 112 may be configured to communicate the first set of instructions to the robotic apparatus (e.g., any of the robotic apparatuses 110) to cause the robotic apparatus to align with thelocker system 108 or thelocker system 702 from the rear side. Based on the alignment of the robotic apparatus with thelocker system 108 or thelocker system 702 from the rear side, one or more first items transported by the robotic apparatus are accessible from the front side of the one or more first compartments based on opening of corresponding lockable doors of the one or more first compartments. The one or more first items are associated with the first process allocated to the one or more first compartments. - At 1106, opening of corresponding lockable doors of the one or more first compartments of the
locker system 108 or thelocker system 702 is controlled, so that the one or more first items of the first process are accessible from the front side of thelocker system 108 or thelocker system 702. Thecontrol server 112 may be configured to control opening of the corresponding lockable doors of the one or more first compartments, so that the one or more first items of the first process are accessible from the front side of thelocker system 108 or thelocker system 702. A method for controlling the opening of the corresponding lockable doors by thecontrol server 112 is described later in conjunction withFIG. 12 . - At 1108, the one or more first compartments or one or more second compartments are allocated to a second process. The
control server 112 may be further configured to allocate the one or more first compartments or the one or more second compartments to the second process. - At 1110, a second set of instructions are communicated to another robotic apparatus (any of the remaining robotic apparatuses 110) to cause the other robotic apparatus to align with the
locker system 108 or thelocker system 702 from the rear side. Thecontrol server 112 may be configured to communicate the second set of instructions to the other robotic apparatus (e.g., any of the robotic apparatuses 110) to cause the other robotic apparatus to align with thelocker system 108 or thelocker system 702 from the rear side. Based on the second set of instructions, the other robotic apparatus aligns with thelocker system 108 or thelocker system 702 from the rear side. Based on the alignment of the other robotic apparatus with thelocker system 108 or thelocker system 702 from the rear side, one or more second items transported by the other robotic apparatus are accessible from the front side of the one or more first compartments or the one or more second compartments based on opening of corresponding lockable doors of the one or more first compartments or the one or more second compartments, respectively. -
FIG. 12 is aflow chart 1200 that illustrates a method for controlling opening of lockable doors of one or more compartments of the 108 or 702, in accordance with an exemplary embodiment of the disclosure. At 1202, one or more security parameters provided by a user is received by theautomated locker system control server 112. Thecontrol server 112 may be configured to receive the security parameters provided by the user from theaccess control interface 109 over thecommunication network 114. - At 1204, the one or more security parameters provided by the user are compared with one or more stored security parameters of the plurality of lockable doors of the
108 or 702. Thelocker system control server 112 may be configured to compare the one or more security parameters provided by the user with the one or more security parameters stored in the memory 304 (as shown inFIG. 3 ). - At 1206, corresponding lockable doors of the one or more first compartments are controlled to open based on the comparison of the one or more security parameters provided by the user with the one or more stored security parameters of the corresponding lockable doors. The
control server 112 may be further configured to control opening of the corresponding lockable doors of the one or more first compartments based on the comparison of the one or more security parameters provided by the user with the one or more stored security parameters of the corresponding lockable doors. - The disclosed embodiments encompass numerous advantages. Exemplary advantages of the disclosed methods include, but are not limited to, an automated locker system management for delivery and collection of inventory items. The disclosed methods and systems significantly reduce manual labor requirement (e.g., conventionally a compartment needs to be opened twice, one for transporting item into the compartment and then to retrieve the item) during handling of the inventory items in the storage facilities. For example, the disclosed methods and systems offer a no-walk solution for the
storage facility 102 where operators are not required to move from one location to another for any operation. Therefore, the disclosed methods and systems significantly reduce a time required for processing an order. Consequently, the disclosed methods and systems increase the throughput of thestorage facility 102. Further, the disclosed methods and systems significantly reduce inconvenience caused to operators and users in thestorage facility 102 during collection of inventory items associated with a process. Thelocker system 108 or thelocker system 702 enables a physical partition between a non-man zone (e.g., an area in a storage facility where therobotic apparatuses 110 are deployed) and a manned zone (e.g., an area where human presence is allowed) for delivery and collection of inventory items. The disclosed methods and systems significantly reduce chances of human errors during transportation and delivery of orders. Since the delivery and collection of inventory items is automated by thecontrol server 112, a likelihood of an incorrect order or items being presented to a user is eliminated. The disclosed methods and systems enable automated handling of inventory items without having to make any significant change to existing infrastructure of thestorage facility 102. Hence, the disclosed methods and systems are cost-efficient and provide an optimal solution for hassle-free handling of the inventory items. - Further, the
locker system 108 or thelocker system 702 is portable and can be moved from one location to another location by any of the plurality of first robotic apparatuses 120 a-120 n. The portability feature of thelocker system 108 or thelocker system 702 enables easy and convenient set up of a delivery and collection area in thestorage facility 102. - A person of ordinary skill in the art will appreciate that embodiments and exemplary scenarios of the disclosed subject matter may be practiced with various computer system configurations, including multi-core multiprocessor systems, minicomputers, mainframe computers, computers linked or clustered with distributed functions, as well as pervasive or miniature computers that may be embedded into virtually any device. Further, the operations may be described as a sequential process, however some of the operations may in fact be performed in parallel, concurrently, and/or in a distributed environment, and with program code stored locally or remotely for access by single or multiprocessor machines. In addition, in some embodiments, the order of operations may be rearranged without departing from the scope of the disclosed subject matter.
- Techniques consistent with the disclosure provide, among other features, systems and methods for automated delivery and collection of inventory items in a storage facility. While various exemplary embodiments of the disclosed systems and methods have been described above, it should be understood that they have been presented for purposes of example only, and not limitations. It is not exhaustive and does not limit the disclosure to the precise form disclosed. Modifications and variations are possible in light of the above teachings or may be acquired from practicing the disclosure, without departing from the breadth or scope.
- While various embodiments of the disclosure have been illustrated and described, it will be clear that the disclosure is not limited to these embodiments only. Numerous modifications, changes, variations, substitutions, and equivalents will be apparent to those skilled in the art, without departing from the scope of the disclosure, as described in the claims.
Claims (20)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IN202111015301 | 2021-03-31 | ||
| IN202111015301 | 2021-03-31 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20220315341A1 true US20220315341A1 (en) | 2022-10-06 |
Family
ID=83448761
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/668,938 Abandoned US20220315341A1 (en) | 2021-03-31 | 2022-02-10 | Automated locker system for delivery and collection of inventory items |
| US17/710,219 Pending US20220315338A1 (en) | 2021-03-31 | 2022-03-31 | Hybrid storage facility |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/710,219 Pending US20220315338A1 (en) | 2021-03-31 | 2022-03-31 | Hybrid storage facility |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US20220315341A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4375901A1 (en) * | 2022-11-23 | 2024-05-29 | Shoalter Automation Limited | A modular automated retail store and system |
| WO2024194481A1 (en) * | 2023-03-22 | 2024-09-26 | Autostore Technology AS | Container transfer system |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116199155A (en) * | 2021-12-01 | 2023-06-02 | 泰科电子(上海)有限公司 | Pallet lifting goods shelf and pallet carrying system |
| CN118647557A (en) * | 2022-01-11 | 2024-09-13 | 利尼芝物流有限责任公司 | Multi-level transport systems for storage facilities |
| US11485577B1 (en) | 2022-04-11 | 2022-11-01 | CreateMe Technologies LLC | Garment personalization kiosk with orthogonal robotic retrieval system |
| US11623823B1 (en) | 2022-04-11 | 2023-04-11 | CreateMe Technologies LLC | Garment personalization kiosk with articular robotic retrieval system |
| US11833809B1 (en) | 2022-04-11 | 2023-12-05 | CreateMe Technologies LLC | Garment personalization kiosk with rotatable robotic retrieval system |
| US11542097B1 (en) * | 2022-04-11 | 2023-01-03 | CreateMe Technologies LLC | Garment personalization kiosk with pneumatic retrieval system |
| TWI827056B (en) * | 2022-05-17 | 2023-12-21 | 中光電智能機器人股份有限公司 | Automated moving vehicle and control method thereof |
| US20240043212A1 (en) * | 2022-08-04 | 2024-02-08 | Staples, Inc. | Automated Robotic Replenishment System |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106379834A (en) * | 2016-11-24 | 2017-02-08 | 华南理工大学 | Liftable moving robot |
| KR102099622B1 (en) * | 2018-12-26 | 2020-04-10 | 주식회사 에스에프에이 | Unmanned store system |
| US20200387857A1 (en) * | 2019-06-04 | 2020-12-10 | Swyft, Inc. | Automated delivery system for brick and mortar retail locations |
| US20200401995A1 (en) * | 2019-06-18 | 2020-12-24 | Sidewalk Labs LLC | Container device and delivery systems for using the same |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU543579A1 (en) * | 1974-11-21 | 1977-01-25 | Казахский Государственный Научно-Исследовательский И Проектный Институт Фосфорной Промышленности | Step conveyor |
| WO1998056663A1 (en) * | 1997-06-11 | 1998-12-17 | Ranpak Corp. | Cushioning conversion system and method |
| US7263501B2 (en) * | 2003-03-11 | 2007-08-28 | I-Stat Corporation | Point-of-care inventory management system and method |
| US8805573B2 (en) * | 2012-01-04 | 2014-08-12 | Amazon Technologies, Inc. | System and method for order fulfillment |
| US9792577B2 (en) * | 2012-10-04 | 2017-10-17 | Amazon Technologies, Inc. | Filling an order at an inventory pier |
| US10438276B2 (en) * | 2014-04-16 | 2019-10-08 | Ebay Inc. | Smart recurrent orders |
| KR20250093423A (en) * | 2016-01-14 | 2025-06-24 | 크라운 이큅먼트 코포레이션 | Goods-to-man warehousing comprising multilevel racking, mobile storage units, storage unit transporters, and pick-place vehicle |
| US20170357940A1 (en) * | 2016-06-08 | 2017-12-14 | Customer Analytics, LLC | Method and system for dynamic inventory control |
| US20200104898A1 (en) * | 2018-09-27 | 2020-04-02 | Home Depot Product Authority, Llc | Accessory recommendation |
| JP7161957B2 (en) * | 2019-02-22 | 2022-10-27 | 株式会社日立インダストリアルプロダクツ | GOODS CONVEYING SYSTEM AND GOODS CONVEYING METHOD |
-
2022
- 2022-02-10 US US17/668,938 patent/US20220315341A1/en not_active Abandoned
- 2022-03-31 US US17/710,219 patent/US20220315338A1/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106379834A (en) * | 2016-11-24 | 2017-02-08 | 华南理工大学 | Liftable moving robot |
| KR102099622B1 (en) * | 2018-12-26 | 2020-04-10 | 주식회사 에스에프에이 | Unmanned store system |
| US20200387857A1 (en) * | 2019-06-04 | 2020-12-10 | Swyft, Inc. | Automated delivery system for brick and mortar retail locations |
| US20200401995A1 (en) * | 2019-06-18 | 2020-12-24 | Sidewalk Labs LLC | Container device and delivery systems for using the same |
Non-Patent Citations (2)
| Title |
|---|
| CN-106379834-A (Year: 2017) * |
| KR-102099622-B1 (Year: 2020) * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4375901A1 (en) * | 2022-11-23 | 2024-05-29 | Shoalter Automation Limited | A modular automated retail store and system |
| EP4379688A1 (en) * | 2022-11-23 | 2024-06-05 | Shoalter Automation Limited | A modular automated retail store and system |
| WO2024194481A1 (en) * | 2023-03-22 | 2024-09-26 | Autostore Technology AS | Container transfer system |
Also Published As
| Publication number | Publication date |
|---|---|
| US20220315338A1 (en) | 2022-10-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20220315341A1 (en) | Automated locker system for delivery and collection of inventory items | |
| US12282895B2 (en) | Image-based item detection and allocation | |
| US12111889B1 (en) | Automated and periodic updating of item images data store | |
| WO2020038144A1 (en) | Self-service operating system and method, and operation door | |
| US9452884B2 (en) | Secure repair kiosk system and method | |
| US10949804B2 (en) | Tote based item tracking | |
| US12351392B2 (en) | Article management system, logistics system, server device, and article management method | |
| US12033113B2 (en) | System and method for order processing | |
| US10089808B2 (en) | Mobile locker bank systems and methods | |
| US12187539B1 (en) | Group shopping | |
| CN114291482B (en) | LiDAR-based monitoring in a materials handling environment | |
| CN113894048B (en) | Stereoscopic sorting control method, stereoscopic sorting robot and related equipment | |
| WO2022222801A1 (en) | Warehousing management method and apparatus, warehousing robot, warehousing system, and medium | |
| WO2022107000A1 (en) | Automated tracking of inventory items for order fulfilment and replenishment | |
| US20230096624A1 (en) | Automated inventory management system | |
| CN113095750A (en) | Unmanned express receiving and dispatching system, express dispatching method and express receiving method | |
| US12026635B1 (en) | Event image information retention | |
| CN113298472B (en) | Method and device for recycling articles, electronic equipment and storage medium | |
| EP4497709A1 (en) | Information processing device, information processing method, program, system, and computer-readable storage medium | |
| US12437261B2 (en) | Automated order consolidation and packaging mechanism | |
| JP5745142B1 (en) | Automatic library system | |
| EP4588833A1 (en) | A storage system | |
| US20240112126A1 (en) | System and method for parcel delivery | |
| JP2024099326A (en) | Information processing method, information processing device, and program |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: GREY ORANGE INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEGFAE, TIHUT;MALHOTRA, SIDDHARTH;THAKKAR, JAI;AND OTHERS;SIGNING DATES FROM 20220202 TO 20220207;REEL/FRAME:058975/0208 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| AS | Assignment |
Owner name: ACQUIOM AGENCY SERVICES LLC, MINNESOTA Free format text: SECURITY INTEREST;ASSIGNORS:GREY ORANGE INCORPORATED;GREY ORANGE PTE. LTD.;REEL/FRAME:059842/0292 Effective date: 20220506 |
|
| AS | Assignment |
Owner name: CSI GP I LLC, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:GREY ORANGE INCORPORATED;GREY ORANGE PTE. LTD.;REEL/FRAME:065535/0861 Effective date: 20231108 |
|
| AS | Assignment |
Owner name: GREY ORANGE PTE. LTD., DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ACQUIOM AGENCY SERVICES LLC;REEL/FRAME:065603/0442 Effective date: 20231108 Owner name: GREY ORANGE INCORPORATED, DELAWARE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ACQUIOM AGENCY SERVICES LLC;REEL/FRAME:065603/0442 Effective date: 20231108 |
|
| AS | Assignment |
Owner name: ANTHELION FUND I GP LLC, AS SUCCESSOR AGENT, NEW YORK Free format text: ACKNOWLEDGEMENT OF SUCCESSOR ADMINISTRATIVE AGENT UNDER INTELLECTUAL PROPERTY SECURITY AGREEMENTS;ASSIGNOR:TD SLP, LLC (FORMERLY KNOWN AS CSI GP I LLC), AS RETIRING AGENT;REEL/FRAME:067370/0677 Effective date: 20240508 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |