US20100301185A1 - Pivot mount assembly - Google Patents
Pivot mount assembly Download PDFInfo
- Publication number
- US20100301185A1 US20100301185A1 US12/473,787 US47378709A US2010301185A1 US 20100301185 A1 US20100301185 A1 US 20100301185A1 US 47378709 A US47378709 A US 47378709A US 2010301185 A1 US2010301185 A1 US 2010301185A1
- Authority
- US
- United States
- Prior art keywords
- mount assembly
- pivot mount
- lower portion
- upper portion
- assembly according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D2045/0075—Adaptations for use of electronic flight bags in aircraft; Supports therefor in the cockpit
Definitions
- the present invention relates to mounting assemblies. More particularly, it relates to a pivotable/rotatable mounting assembly for mounting an electronic device within the cockpit of an aircraft, and more specifically to the steering control (yoke) of an aircraft.
- the EFB is an electronic device that has a memory for storing navigation documents, and a display screen for selectively displaying the stored navigation documents in response to the user's input.
- the EFB device is bulky and very heavy, and cannot be simply secured to the steering controls (i.e., yoke) of an airplane.
- the EFB is generally rectangular in shape and can be used in both a portrait and landscape orientation. Thus there are many instances during the use of the EFB where the display can change from portrait to landscape orientation.
- the aircraft pivot mount assembly for mounting an electronic device to the steering control of the aircraft includes an upper portion having a top surface including a receiving slot configured to receive and secure the electronic device to be mounted thereon, a lower portion connected to the upper portion such that the upper portion is rotatable with respect to the lower portion, the lower portion having positioning flange on an underside thereof and a securing mechanism disposed along a lower edge of the lower portion, and a mounting receiver mounted on the steering control of the aircraft and configured to receive said positioning flange and said securing mechanism of said lower portion.
- a indexing position system is integrated between the upper portion and the lower portion such that the upper portion rotates with respect to the lower portion in an predetermined indexed manner.
- the indexing position system can include at least one set screw having a spring loaded ball bearing tip positioned within the lower portion, and at least one detent on an underside of said upper portion and rotatably aligned with said at ball bearing of said at least one set screw.
- the receiving slot is tapered such that the electronic device to be mounted therein slidably engages the receiving slot from one side thereof only.
- the receiving slot further comprises side walls having an angular configuration such that the electronic device to be mounted cannot be lifted out of the receiving slot once positioned therein.
- the receiving slot further includes at least one hole for receiving a locking mechanism of the electronic device to be mounted.
- the electronic device is a navigation device and is preferably an electronic flight bag (EFB) mounted on the yoke of an aircraft, for example a GULFSTREAM® G4.
- EFB electronic flight bag
- FIG. 1 a is top perspective view of the pivot mount assembly according to an implementation of the invention
- FIG. 1 b is a bottom perspective view of the pivot mount assembly according to an implementation of the invention.
- FIG. 1 c is a top perspective view of the pivot mount assembly of FIG. 1 a shown rotated 90 degrees;
- FIG. 1 d is a top perspective view of the pivot mount assembly of FIG. 1 a shown rotated 180 degrees;
- FIG. 2 a is a top exploded view of the pivot mount assembly according to an implementation of the invention.
- FIG. 2 b is a bottom exploded view of the pivot mount assembly according to an implementation of the invention.
- FIG. 3 is a plan view of the upper portion of the pivot mount assembly according to an implementation of the invention.
- FIG. 4 a is a bottom perspective view of the upper portion of the pivot mount assembly according to an implementation of the invention.
- FIG. 4 b is a cross-sectional view of the upper portion of the pivot mount assembly taken along lines B-B of FIG. 4 a;
- FIG. 4 c is a cross-sectional view of the upper portion of the pivot mount assembly taken along lines C-C of FIG. 4 a;
- FIG. 4 d is an enlarged view of the circled detailed portion shown in FIG. 4 c;
- FIG. 5 a is a bottom perspective view of the lower portion of the pivot mount assembly according to an implementation of the invention.
- FIG. 5 b is a plan view of the lower portion of the pivot mount assembly according to an implementation of the invention.
- FIG. 5 c is a side view of the lower portion of the pivot mount assembly according to an implementation of the invention.
- FIG. 6 a is a cross-sectional view of the lower portion of the pivot mount assembly taken along line VI-VI of FIG. 5 b;
- FIG. 6 b is an enlarged view of the circled detailed portion shown in FIG. 6 a;
- FIG. 7 is a cross-sectional view of the pivot mount assembly taken along lines VII-VII of FIG. 1 a;
- FIGS. 8 a and 8 b show the connection the pivot mount assembly to a receiver according to an implementation of the invention
- FIGS. 9 and 10 show the pivot mount assembly connected to the center of the yoke of an airplane controller
- FIGS. 11 and 12 show an electronic flight bag (EFB) connected to the pivot mount assembly according to an implementation of the invention.
- EFB electronic flight bag
- Pivot mount assembly 10 is preferably made up of an upper portion 12 and a lower portion 20 .
- the upper portion 12 includes and upper surface 14 having a receiver/mounting slot 16 for receiving a device to be pivotally mounted.
- Within the receiver/mounting slot 16 is one or more holes or indents 18 which assist in the securing of the device to be pivotally mounted.
- the device to be mounted would preferably include a locking mechanism that would engage the one or more holes 18 in the slot 16 .
- the device to be mounted can include the holes and the holes 18 in slot 16 would be replaced with a mechanism that engages the holes in the device to secure the same therein.
- the lower portion 20 includes a position flange 24 and a locking flange 22 having a locking groove 26 .
- FIG. 1 c shows the pivot mount assembly 10 with the upper portion 12 rotated 90 degrees with respect to the lower portion 20 .
- FIG. 1 d shows the pivot mount assembly 10 with the upper portion 12 rotated 180 degrees with respect to the lower portion 20 .
- FIGS. 2 a and 2 b show the connection interface between the upper portion 12 and the lower portion 20 according to a preferred implementation of the invention.
- Lower portion 20 includes a central hole or aperture 40 for receiving a shoulder screw 50 wherein the shoulder portion 56 resides within hole 40 and the threaded portion 58 engages the central hole/aperture 30 in the upper portion 12 (See FIG. 7 ). In this manner, the shoulder 56 allows the upper portion 20 to rotate with respect to lower portion 20 , while maintaining a secure connection between the two portions.
- lower portion 20 includes set holes 42 - 42 d that receive set screws 52 . Set screws 52 are unique in that they include a spring loaded ball bearing 54 .
- the upper portion 12 includes one or more detents 32 a - 32 d that are positioned such that the bearings 54 of the corresponding set screw can be received into the detent and thereby provide an indexed rotatable movement of the upper portion 12 with respect to the lower portion 20 .
- FIG. 7 shows a cross section view where the ball bearings 54 of the set screws 52 are shown in the corresponding detents 32 a and 32 c when the pivot mount assembly is fully assembled.
- the number of detents 32 can be changed depending on the desired application. As shown with four detents in the current configuration, the upper portion is indexed to 90 degree rotations. Additional detents can be added to increase the indexed rotation options.
- detents 34 can be removed, and the friction between the ball bearings 52 of the set screws 50 can be used to provide an infinite angular rotation options.
- Detents 32 as used herein, can be replaced with other analogous structures, such as indentations, notches, etc.
- those of skill in the art will recognize that the location of the set screws and detents can be switched (i.e., between the upper and lower portions) without departing from the spirit of the present disclosure.
- FIG. 3 shows a plan view of the upper portion 12 according to a preferred embodiment where the receiving/mounting slot 16 is shown in a tapered configuration from one end to the other, and also as having side walls with an angular configuration, such that the slot walls have an angle ⁇ which, in this example can be 60 degrees.
- the tapered configuration of the slot 16 the device to be mounted in the receiving/mounting slot 16 can be inserted only from one direction A as shown.
- the angular configuration of the side walls operate retain the device to be mounted (by preventing the same from being lifted out of the slot 16 in a transverse manner), and the holes (or detents) 18 can preferably be used as part of a locking or securing mechanism for securing the pivot mount assembly to the device to be mounted.
- FIGS. 4 a - 4 d shows the upper portion 12 and various cross sections according to the preferred implementation of the invention. These views show the configuration of the upper portion 12 and detents 32 that work in conjunction with the set screws 52 .
- FIG. 5 a - 5 c show the lower portion 20 according to the preferred implementation of the invention.
- the lower portion 20 preferably includes the position flange 24 on one side of the underside of thereof and a securing flange 22 on the opposing side.
- the securing flange preferably includes a securing groove 26 that can extend across the width of the corresponding side of the lower portion.
- FIGS. 6 a and 6 b shows a cross section view of the lower portion 20 where the angular configuration of the position flange 24 is more clearly shown.
- the angular outer face 28 of the flange 24 preferably has an angle ⁇ that assists in the positioning of the same into a mounting receiver.
- the angle ⁇ can be, for example, 60 degrees.
- FIGS. 8 a and 8 b show an example of the mounting of the lower portion into a mounting receiver 80 according the preferred embodiment.
- the mounting receiver 80 preferably includes a slot 82 configured to receive the position flange 24 as shown in FIG. 8 a where angular face 26 of the flange 24 corresponds to the angular wall 84 within the slot 82 .
- the locking flange 22 is pivoted downward into the mounting receiver 80 such that groove 26 is aligned with a securing screw bole 86 such that securing screw 88 can be inserted therein.
- FIG. 8 b shows lower portion 20 secured into the mounting receiver 80 .
- mounting receiver 80 is shown here as an example and that such receiver shall have the appropriate accommodations so as to not interfere with the shoulder screw 50 or set screws 52 on the underside of lower portion 20 .
- FIG. 9 and 10 show the preferred application of the pivot mount assembly 10 in an aviation environment.
- the pivot mount assembly 10 is mounted to the center of the yoke 90 of a GULFSTREAM® G4 jet using a mounting receiver 80 as described above (GULFSTREAM is a registered trademark of the Gulfstream Aerospace Corporation).
- GUISTREAM is a registered trademark of the Gulfstream Aerospace Corporation
- FIG. 9 shows the pivot mount assembly 10 in a first position
- FIG. 10 shows the pivot mount assembly in a second position rotated 90 degrees from the first position.
- the receiving/mounting slot 16 of the pivot mount assembly 10 is configured to receive an Electronic Flight Bag (EFB) device.
- FIGS. 11 and 12 show an EFB 100 mounted to the pivot mount assembly of the invention in a first (portrait) position and a second 90 degree rotated (landscape) position, respectively.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Pivots And Pivotal Connections (AREA)
Abstract
A pivot mount assembly for mounting an electronic device (e.g., an Electronic Flight Bag—EFB) in the cockpit of an aircraft, and more specifically on the steering control (i.e., yoke) of the aircraft. The pivot mount assembly preferably includes an upper portion and a lower portion, where the upper portion is rotatable with respect to the lower portion. The upper portion includes a receiving slot for receiving a device to be mounted, and the lower portion includes a securing mechanism and a positioning flange. A receiving mount within the yoke receives the positioning flange to position the pivot mount assembly within the same, and the securing mechanism operates in conjunction with the receiving mount to secure the lower portion to the same, and thereby the entire pivot mount assembly within the receiving mount. Once mounted in the receiving mount, the upper portion of the assembly is rotatable with respect to the lower portion, thereby allowing the EFB to be mounted to be rotated from a portrait to a landscape orientation without removing the same from the mount. In one implementation, an indexing position system is integrated between the lower and upper portions of the mount assembly and provides predetermined rotation increments for the mounted device.
Description
- 1. Technical Field
- The present invention relates to mounting assemblies. More particularly, it relates to a pivotable/rotatable mounting assembly for mounting an electronic device within the cockpit of an aircraft, and more specifically to the steering control (yoke) of an aircraft.
- 2. Description of related art
- To date the use of maps and other navigation documents in an aviation or boating environment results in difficulties to read the same and simultaneously maintain proper operation of vehicles and respective operating systems. Currently there are systems in place that are essentially clip boards mounted to the steering wheels or other operation controls in an effort to hold the navigation documents in front of tic operator of the respective vehicles.
- With the age of technology, attempts have been made to provide the navigation documents in electronic form to the various vehicle operators. One example of such electronic forms in an aviation environment is referred to as an Electronic Plight Bag (EFB). The EFB is an electronic device that has a memory for storing navigation documents, and a display screen for selectively displaying the stored navigation documents in response to the user's input. The EFB device is bulky and very heavy, and cannot be simply secured to the steering controls (i.e., yoke) of an airplane. In addition, the EFB is generally rectangular in shape and can be used in both a portrait and landscape orientation. Thus there are many instances during the use of the EFB where the display can change from portrait to landscape orientation.
- Current mounting capabilities of the EFB do not allow for the rotation of the same without dismounting it first. As such, when the instance occurs where the display changes from a portrait to a landscape orientation during operation, the pilot is forced to remove the EFB from its mount and/or review the same with the incorrect orientation.
- Thus, it becomes apparent that there is need for a device that can enable the mounting of an EFB device to the steering controls (e.g., yoke) of an aircraft so as to enable the operator (pilot) to quickly and easily rotate the same from a portrait orientation to a landscape orientation (i.e., 90 degrees) without interfering with their ability to operate the aircraft and without requiring the removal of the EFB from its mount.
- This and other aspects are achieved in accordance with the present invention, wherein the aircraft pivot mount assembly for mounting an electronic device to the steering control of the aircraft includes an upper portion having a top surface including a receiving slot configured to receive and secure the electronic device to be mounted thereon, a lower portion connected to the upper portion such that the upper portion is rotatable with respect to the lower portion, the lower portion having positioning flange on an underside thereof and a securing mechanism disposed along a lower edge of the lower portion, and a mounting receiver mounted on the steering control of the aircraft and configured to receive said positioning flange and said securing mechanism of said lower portion.
- A indexing position system is integrated between the upper portion and the lower portion such that the upper portion rotates with respect to the lower portion in an predetermined indexed manner. The indexing position system can include at least one set screw having a spring loaded ball bearing tip positioned within the lower portion, and at least one detent on an underside of said upper portion and rotatably aligned with said at ball bearing of said at least one set screw.
- According to a preferred implementation the receiving slot is tapered such that the electronic device to be mounted therein slidably engages the receiving slot from one side thereof only. The receiving slot further comprises side walls having an angular configuration such that the electronic device to be mounted cannot be lifted out of the receiving slot once positioned therein. The receiving slot further includes at least one hole for receiving a locking mechanism of the electronic device to be mounted.
- According to the preferred implementation, the electronic device is a navigation device and is preferably an electronic flight bag (EFB) mounted on the yoke of an aircraft, for example a GULFSTREAM® G4.
- Other aspects and features of the present principles will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the present principles, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
- In the drawings wherein like reference numerals denote similar components throughout the views:
-
FIG. 1 a is top perspective view of the pivot mount assembly according to an implementation of the invention; -
FIG. 1 b is a bottom perspective view of the pivot mount assembly according to an implementation of the invention; -
FIG. 1 c is a top perspective view of the pivot mount assembly ofFIG. 1 a shown rotated 90 degrees; -
FIG. 1 d is a top perspective view of the pivot mount assembly ofFIG. 1 a shown rotated 180 degrees; -
FIG. 2 a is a top exploded view of the pivot mount assembly according to an implementation of the invention; -
FIG. 2 b is a bottom exploded view of the pivot mount assembly according to an implementation of the invention; -
FIG. 3 is a plan view of the upper portion of the pivot mount assembly according to an implementation of the invention; -
FIG. 4 a is a bottom perspective view of the upper portion of the pivot mount assembly according to an implementation of the invention; -
FIG. 4 b is a cross-sectional view of the upper portion of the pivot mount assembly taken along lines B-B ofFIG. 4 a; -
FIG. 4 c is a cross-sectional view of the upper portion of the pivot mount assembly taken along lines C-C ofFIG. 4 a; - 022
FIG. 4 d is an enlarged view of the circled detailed portion shown inFIG. 4 c; -
FIG. 5 a is a bottom perspective view of the lower portion of the pivot mount assembly according to an implementation of the invention; -
FIG. 5 b is a plan view of the lower portion of the pivot mount assembly according to an implementation of the invention; -
FIG. 5 c is a side view of the lower portion of the pivot mount assembly according to an implementation of the invention; -
FIG. 6 a is a cross-sectional view of the lower portion of the pivot mount assembly taken along line VI-VI ofFIG. 5 b; -
FIG. 6 b is an enlarged view of the circled detailed portion shown inFIG. 6 a; -
FIG. 7 is a cross-sectional view of the pivot mount assembly taken along lines VII-VII ofFIG. 1 a; -
FIGS. 8 a and 8 b show the connection the pivot mount assembly to a receiver according to an implementation of the invention; -
FIGS. 9 and 10 show the pivot mount assembly connected to the center of the yoke of an airplane controller; and -
FIGS. 11 and 12 show an electronic flight bag (EFB) connected to the pivot mount assembly according to an implementation of the invention. - Referring to
FIGS. 1 a and 1 b, there is shown thepivot mount assembly 10 according to a preferred implementation of the invention.Pivot mount assembly 10 is preferably made up of anupper portion 12 and alower portion 20. Theupper portion 12 includes andupper surface 14 having a receiver/mounting slot 16 for receiving a device to be pivotally mounted. Within the receiver/mounting slot 16 is one or more holes orindents 18 which assist in the securing of the device to be pivotally mounted. In this respect, the device to be mounted would preferably include a locking mechanism that would engage the one ormore holes 18 in theslot 16. Alternatively, the device to be mounted can include the holes and theholes 18 inslot 16 would be replaced with a mechanism that engages the holes in the device to secure the same therein. - According to the preferred implementation, the
lower portion 20 includes aposition flange 24 and alocking flange 22 having alocking groove 26. -
FIG. 1 c shows thepivot mount assembly 10 with theupper portion 12 rotated 90 degrees with respect to thelower portion 20.FIG. 1 d shows thepivot mount assembly 10 with theupper portion 12 rotated 180 degrees with respect to thelower portion 20. -
FIGS. 2 a and 2 b show the connection interface between theupper portion 12 and thelower portion 20 according to a preferred implementation of the invention.Lower portion 20 includes a central hole oraperture 40 for receiving ashoulder screw 50 wherein theshoulder portion 56 resides withinhole 40 and the threadedportion 58 engages the central hole/aperture 30 in the upper portion 12 (SeeFIG. 7 ). In this manner, theshoulder 56 allows theupper portion 20 to rotate with respect tolower portion 20, while maintaining a secure connection between the two portions. In addition,lower portion 20 includes set holes 42-42 d that receive setscrews 52. Set screws 52 are unique in that they include a spring loadedball bearing 54. - The
upper portion 12 includes one or more detents 32 a-32 d that are positioned such that thebearings 54 of the corresponding set screw can be received into the detent and thereby provide an indexed rotatable movement of theupper portion 12 with respect to thelower portion 20.FIG. 7 shows a cross section view where theball bearings 54 of theset screws 52 are shown in the corresponding 32 a and 32 c when the pivot mount assembly is fully assembled. Those of skill in the art will recognize that the number of detents 32 can be changed depending on the desired application. As shown with four detents in the current configuration, the upper portion is indexed to 90 degree rotations. Additional detents can be added to increase the indexed rotation options. Alternatively, detents 34 can be removed, and the friction between thedetents ball bearings 52 of theset screws 50 can be used to provide an infinite angular rotation options. Detents 32, as used herein, can be replaced with other analogous structures, such as indentations, notches, etc. In addition, those of skill in the art will recognize that the location of the set screws and detents can be switched (i.e., between the upper and lower portions) without departing from the spirit of the present disclosure. -
FIG. 3 shows a plan view of theupper portion 12 according to a preferred embodiment where the receiving/mountingslot 16 is shown in a tapered configuration from one end to the other, and also as having side walls with an angular configuration, such that the slot walls have an angle α which, in this example can be 60 degrees. As a result of the tapered configuration of theslot 16, the device to be mounted in the receiving/mountingslot 16 can be inserted only from one direction A as shown. According to a preferred implementation, the angular configuration of the side walls operate retain the device to be mounted (by preventing the same from being lifted out of theslot 16 in a transverse manner), and the holes (or detents) 18 can preferably be used as part of a locking or securing mechanism for securing the pivot mount assembly to the device to be mounted. -
FIGS. 4 a-4 d shows theupper portion 12 and various cross sections according to the preferred implementation of the invention. These views show the configuration of theupper portion 12 and detents 32 that work in conjunction with the set screws 52. -
FIG. 5 a-5 c show thelower portion 20 according to the preferred implementation of the invention. Thelower portion 20 preferably includes theposition flange 24 on one side of the underside of thereof and a securingflange 22 on the opposing side. The securing flange preferably includes a securinggroove 26 that can extend across the width of the corresponding side of the lower portion. -
FIGS. 6 a and 6 b shows a cross section view of thelower portion 20 where the angular configuration of theposition flange 24 is more clearly shown. The angularouter face 28 of theflange 24 preferably has an angle β that assists in the positioning of the same into a mounting receiver. The angle β can be, for example, 60 degrees. -
FIGS. 8 a and 8 b show an example of the mounting of the lower portion into a mountingreceiver 80 according the preferred embodiment. In this example, the mountingreceiver 80 preferably includes aslot 82 configured to receive theposition flange 24 as shown inFIG. 8 a whereangular face 26 of theflange 24 corresponds to theangular wall 84 within theslot 82. Onceflange 24 is positioned withinslot 82, the lockingflange 22 is pivoted downward into the mountingreceiver 80 such thatgroove 26 is aligned with a securing screw bole 86 such that securingscrew 88 can be inserted therein.FIG. 8 b showslower portion 20 secured into the mountingreceiver 80. Those of skill in the art will recognize that mountingreceiver 80 is shown here as an example and that such receiver shall have the appropriate accommodations so as to not interfere with theshoulder screw 50 or setscrews 52 on the underside oflower portion 20. -
FIG. 9 and 10 show the preferred application of thepivot mount assembly 10 in an aviation environment. As shown, thepivot mount assembly 10 is mounted to the center of theyoke 90 of a GULFSTREAM® G4 jet using a mountingreceiver 80 as described above (GULFSTREAM is a registered trademark of the Gulfstream Aerospace Corporation). Although shown in the preferred implementation for a GULSTREAM jet, those of skill in the art will recognize that the pivot mount assembly of the present invention can be utilized in other aircrafts, such as, for example, commercial and cargo aircrafts and other manufacturer's private jets.FIG. 9 shows thepivot mount assembly 10 in a first position, andFIG. 10 shows the pivot mount assembly in a second position rotated 90 degrees from the first position. - In accordance with the preferred implementation of the invention, the receiving/mounting
slot 16 of thepivot mount assembly 10 is configured to receive an Electronic Flight Bag (EFB) device.FIGS. 11 and 12 show anEFB 100 mounted to the pivot mount assembly of the invention in a first (portrait) position and a second 90 degree rotated (landscape) position, respectively. - While there have been shown, described and pointed out fundamental novel features of the present principles, it will be understood that various omissions, substitutions and changes in the form and details of the methods described and devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the same. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the present principles. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or implementation of the present principles may be incorporated in any other disclosed, described or suggested form or implementation as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Claims (10)
1. An aircraft pivot mount assembly for mounting an electronic device to the steering control of the aircraft, the pivot mount assembly comprising:
an upper portion having a top surface including a receiving slot configured to receive and secure the electronic device to be mounted thereon;
a lower portion connected to the upper portion such that the upper portion is rotatable with respect to the lower portion, the lower portion having positioning flange on an underside thereof and a securing mechanism disposed along a lower edge of the lower portion; and
a mounting receiver mounted on the steering control of the aircraft and configured to receive said positioning flange and said securing mechanism of said lower portion.
2. The pivot mount assembly according to claim 1 , further comprising:
an indexing position system integrated between said upper portion and said lower portion such that said upper portion rotates with respect to said lower portion in an predetermined indexed manner.
3. The pivot mount assembly according to claim 2 , wherein indexing position system comprises:
at least one set screw having a spring loaded ball bearing tip positioned within said lower portion; and
at least one detent on an underside of said upper portion and rotatably aligned with said at ball bearing of said at least one set screw.
4. The pivot mount assembly according to claim 1 , wherein said receiving slot is tapered such that the electronic device to be mounted therein slidably engages said receiving slot from one side thereof only.
5. The pivot mount assembly according to claim 4 , wherein said receiving slot further comprises side walls having an angular configuration such that the electronic device to be mounted cannot be lifted out of the receiving slot once positioned therein.
6. The pivot mount assembly according to claim 4 , wherein said slot further comprises at least one hole for receiving a locking mechanism of the electronic device to be mounted.
7. The pivot mount assembly according to claim 1 , wherein the electronic device comprises a navigation device.
8. The pivot mount assembly according to claim 6 , wherein the navigation device comprises an electronic flight bag (EFB).
9. The pivot mount assembly according to claim 1 , wherein the steering control comprises an aircraft yoke.
10. The pivot mount assembly according to claim 9 , wherein the aircraft is a GULFSTREAM® G4.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/473,787 US20100301185A1 (en) | 2009-05-28 | 2009-05-28 | Pivot mount assembly |
| US12/850,982 US20100301080A1 (en) | 2009-05-28 | 2010-08-05 | Pivot mount assembly |
| US12/961,696 US20110101058A1 (en) | 2009-05-28 | 2010-12-07 | Pivot mount assembly |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/473,787 US20100301185A1 (en) | 2009-05-28 | 2009-05-28 | Pivot mount assembly |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/850,982 Continuation-In-Part US20100301080A1 (en) | 2009-05-28 | 2010-08-05 | Pivot mount assembly |
| US12/961,696 Continuation-In-Part US20110101058A1 (en) | 2009-05-28 | 2010-12-07 | Pivot mount assembly |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100301185A1 true US20100301185A1 (en) | 2010-12-02 |
Family
ID=43219143
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/473,787 Abandoned US20100301185A1 (en) | 2009-05-28 | 2009-05-28 | Pivot mount assembly |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20100301185A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114180106A (en) * | 2021-11-16 | 2022-03-15 | 北京卫星制造厂有限公司 | Ventilation device |
Citations (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3243153A (en) * | 1964-08-28 | 1966-03-29 | John V Kelly | Adjustable clamp |
| US3809338A (en) * | 1973-09-21 | 1974-05-07 | E Gross | Timer and approach plate holder for aircraft |
| US4698838A (en) * | 1984-09-29 | 1987-10-06 | Aisin Seiki Kabushiki Kaisha | Steering wheel having a telephone |
| US4969623A (en) * | 1989-03-01 | 1990-11-13 | Bernier Rene A | Flight documents organizer |
| US5086958A (en) * | 1989-06-27 | 1992-02-11 | Giselle Nagy | Vehicular accessory mounting organization |
| US5222690A (en) * | 1990-10-29 | 1993-06-29 | Jeffords Lloyd M | Vehicular desk or information display |
| US5392350A (en) * | 1992-05-18 | 1995-02-21 | Swanson; Paul J. | Support apparatus for a transportable telephone |
| US5769369A (en) * | 1995-04-28 | 1998-06-23 | Meinel; James | Mobile office stand for supporting a portable computer or electronic organizer in vehicles |
| US5941488A (en) * | 1997-06-20 | 1999-08-24 | Rosen Product Development, Inc. | Monitor support with self-positioning guide track |
| US6522748B1 (en) * | 2000-04-05 | 2003-02-18 | Chin-Yang Wang | Adjustable supporting frame |
| US6588719B1 (en) * | 2002-09-10 | 2003-07-08 | Hollingsead International, Inc. | Mounting and support bracket |
| US7172164B2 (en) * | 2003-07-21 | 2007-02-06 | Fuelling Richard A | Modular accessory holder |
| US7270309B2 (en) * | 2004-01-08 | 2007-09-18 | Vantage Point Products Corp. | Apparatus for mounting a flat panel display |
| US20080035960A1 (en) * | 2006-08-07 | 2008-02-14 | Samsung Electronics Co., Ltd. | Electromechanical memory devices and methods of manufacturing the same |
| US20080179478A1 (en) * | 2006-06-12 | 2008-07-31 | Michael Lee | Adaptor for vehicle mounts |
| US7686250B2 (en) * | 2006-01-20 | 2010-03-30 | Fortes Hugo L | Electronic display mount |
| US20110084106A1 (en) * | 2009-10-09 | 2011-04-14 | Raytheon Company | Electronic Flight Bag Mounting System |
| US20110278415A1 (en) * | 2009-02-25 | 2011-11-17 | Electronic Cable Specialists, Inc. | Electronic flight bag mounting bracket |
| US20120080462A1 (en) * | 2010-09-30 | 2012-04-05 | Hamid Cyrus Hajarian | Wristband/ armband handheld device holder |
| US8231081B2 (en) * | 2006-01-20 | 2012-07-31 | Avionics Support Group, Inc. | Electronic display mount |
| US8256726B2 (en) * | 2009-07-22 | 2012-09-04 | Lino Manfrotto + Co. S.P.A. | Head for video-photographic apparatus |
| US8261954B2 (en) * | 2010-02-24 | 2012-09-11 | High Gear Specialties, Inc. | Mount with anti-rotation feature |
-
2009
- 2009-05-28 US US12/473,787 patent/US20100301185A1/en not_active Abandoned
Patent Citations (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3243153A (en) * | 1964-08-28 | 1966-03-29 | John V Kelly | Adjustable clamp |
| US3809338A (en) * | 1973-09-21 | 1974-05-07 | E Gross | Timer and approach plate holder for aircraft |
| US4698838A (en) * | 1984-09-29 | 1987-10-06 | Aisin Seiki Kabushiki Kaisha | Steering wheel having a telephone |
| US4969623A (en) * | 1989-03-01 | 1990-11-13 | Bernier Rene A | Flight documents organizer |
| US5086958A (en) * | 1989-06-27 | 1992-02-11 | Giselle Nagy | Vehicular accessory mounting organization |
| US5222690A (en) * | 1990-10-29 | 1993-06-29 | Jeffords Lloyd M | Vehicular desk or information display |
| US5392350A (en) * | 1992-05-18 | 1995-02-21 | Swanson; Paul J. | Support apparatus for a transportable telephone |
| US5769369A (en) * | 1995-04-28 | 1998-06-23 | Meinel; James | Mobile office stand for supporting a portable computer or electronic organizer in vehicles |
| US5941488A (en) * | 1997-06-20 | 1999-08-24 | Rosen Product Development, Inc. | Monitor support with self-positioning guide track |
| US6522748B1 (en) * | 2000-04-05 | 2003-02-18 | Chin-Yang Wang | Adjustable supporting frame |
| US6588719B1 (en) * | 2002-09-10 | 2003-07-08 | Hollingsead International, Inc. | Mounting and support bracket |
| US7172164B2 (en) * | 2003-07-21 | 2007-02-06 | Fuelling Richard A | Modular accessory holder |
| US7270309B2 (en) * | 2004-01-08 | 2007-09-18 | Vantage Point Products Corp. | Apparatus for mounting a flat panel display |
| US7686250B2 (en) * | 2006-01-20 | 2010-03-30 | Fortes Hugo L | Electronic display mount |
| US8231081B2 (en) * | 2006-01-20 | 2012-07-31 | Avionics Support Group, Inc. | Electronic display mount |
| US20080179478A1 (en) * | 2006-06-12 | 2008-07-31 | Michael Lee | Adaptor for vehicle mounts |
| US20080035960A1 (en) * | 2006-08-07 | 2008-02-14 | Samsung Electronics Co., Ltd. | Electromechanical memory devices and methods of manufacturing the same |
| US20110278415A1 (en) * | 2009-02-25 | 2011-11-17 | Electronic Cable Specialists, Inc. | Electronic flight bag mounting bracket |
| US8256726B2 (en) * | 2009-07-22 | 2012-09-04 | Lino Manfrotto + Co. S.P.A. | Head for video-photographic apparatus |
| US20110084106A1 (en) * | 2009-10-09 | 2011-04-14 | Raytheon Company | Electronic Flight Bag Mounting System |
| US8261954B2 (en) * | 2010-02-24 | 2012-09-11 | High Gear Specialties, Inc. | Mount with anti-rotation feature |
| US20120080462A1 (en) * | 2010-09-30 | 2012-04-05 | Hamid Cyrus Hajarian | Wristband/ armband handheld device holder |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114180106A (en) * | 2021-11-16 | 2022-03-15 | 北京卫星制造厂有限公司 | Ventilation device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20110101058A1 (en) | Pivot mount assembly | |
| US8701953B2 (en) | Electronic flight bag mounting system | |
| EP2401199B1 (en) | Electronic flight bag mounting bracket | |
| CA2851883C (en) | Rotating electronic display mount | |
| US6549424B1 (en) | Electronic equipment module mounting apparatus and method | |
| US8979048B2 (en) | Rotating electronic display adapter | |
| US20120261520A1 (en) | Articulating yoke mount | |
| US7862112B2 (en) | Support device to mount against the rear of the back of a cockpit seat | |
| US8215583B2 (en) | Articulating yoke mount | |
| US20100301080A1 (en) | Pivot mount assembly | |
| EP2947370B1 (en) | Display mounting apparatus | |
| US20130193290A1 (en) | Low-profile quick-adjust mount for laptop computer | |
| US8078343B2 (en) | Virtual control panel for aeronautics attitude reference units | |
| US6567069B1 (en) | Integrated display and yoke mechanism | |
| US20100301185A1 (en) | Pivot mount assembly | |
| WO2013128574A1 (en) | Terminal holding apparatus | |
| US11530049B2 (en) | Detachable cargo mirror assembly | |
| WO2021178077A1 (en) | Wireless autopilot system | |
| US7770680B2 (en) | Hood mount assembly | |
| CN215043765U (en) | A flip-type airborne navigator fixing device | |
| WO2008154311A2 (en) | Mounting and stowage apparatus for an electronic display device | |
| US20210179288A1 (en) | Airplane Cockpit Tablet Mount | |
| CN218046461U (en) | Fixed wing aeromodelling control cabinet structure | |
| US11661175B2 (en) | Wireless autopilot system | |
| US20070278368A1 (en) | Mounting mechanism |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |