US20080178588A1 - Method and system for generation of power using stirling engine principles - Google Patents
Method and system for generation of power using stirling engine principles Download PDFInfo
- Publication number
- US20080178588A1 US20080178588A1 US11/943,902 US94390207A US2008178588A1 US 20080178588 A1 US20080178588 A1 US 20080178588A1 US 94390207 A US94390207 A US 94390207A US 2008178588 A1 US2008178588 A1 US 2008178588A1
- Authority
- US
- United States
- Prior art keywords
- zone
- fluid
- housing
- rotary engine
- providing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 22
- 239000012530 fluid Substances 0.000 claims abstract description 127
- 238000005338 heat storage Methods 0.000 claims abstract description 11
- 239000012212 insulator Substances 0.000 claims description 16
- 238000009413 insulation Methods 0.000 claims description 3
- 239000012809 cooling fluid Substances 0.000 abstract description 50
- 230000006835 compression Effects 0.000 abstract description 2
- 238000007906 compression Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 30
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C1/00—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
- F02C1/04—Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
- F02C1/10—Closed cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/068—Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/121—Controlling or monitoring
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the present invention relates to applying Stirling engine principles to power conversion equipment design and use.
- the present invention relates to applying Stirling engine principles for power generation, such as generating mechanical power.
- the Stirling engine is a heat engine that operates by converting the heat energy which flows between zones of different temperatures into useful work.
- a typical Stirling engine uses the heat energy to drive a coordinated and reciprocating motion of a set of pistons.
- the motion of the pistons drives machinery or a generator.
- heat engines having rotary motion are also known. Numerous designs of Stirling engines having rotary motion can be found in the prior art, including: U.S. Pat. Nos. 6,195,992, 3,984,981, and 5,325,671.
- the present invention provides a method and a rotary engine based on Stirling engine principles.
- the housing of the rotary engine rotates as a result of fluid flow between two zones of different temperatures within a chamber in the housing.
- the torque in the rotary motion of the housing therefore, may be used to drive machinery (e.g., a generator) through an axle coupled externally to the housing.
- machinery e.g., a generator
- a rotary engine of the present invention is not susceptible to failure due to a leak in the sealing of the housing.
- the hot zone of the chamber is heated by energy from a heat source, and a cooling system maintains the cold zone at a lower temperature than the hot zone.
- the cooling fluid may be drawn from a stationary external reservoir of cooling fluid.
- the rotary motion of the housing may be used to draw the cooling fluid.
- the volume of cooling fluid drawn into the rotary engine depends on the angular speed of the rotary motion which, in turn, may be determined by power output of the rotary engine.
- a self-regulating cooling system may therefore be achieved.
- a structure used to reinforce the housing at the point where the external axle is to be attached may include a threaded passage.
- the rotating threaded passage forces the cooling fluid into the housing, through passages distributed around the cold zone (e.g., the insulation layer abutting the cold zone or the area between the cold zone and the housing) so as to maintain the cold zone to within a desired temperature range.
- the cold zone e.g., the insulation layer abutting the cold zone or the area between the cold zone and the housing
- a turbine in a rotary engine according to the present invention may be located in any suitable location on the interior surface of the housing hot zone or the cold zone, but is coupled to the housing to provide the housing rotary motion and is not required to directly drive an axle to provide the output power of the rotary engine.
- the chamber of the rotary engine may be filled with a compressible working fluid (e.g., air).
- Fluid guides may be provided within the chamber for guiding the flow of the compressible working fluid in preferred directions and flow speeds to provide higher efficiency.
- the fluid guides may also provide structural or mechanical support for the chamber.
- a one-way valve may be provided between the hot zone and the cold zone prevents a working fluid in the hot zone to backflow into the cold zone.
- a metal mesh is provided in the hot zone to increase efficiency of heat transfer from the heat source to the hot zone.
- a heat storage structure can also be provided to minimize the impact of a fluctuating heat source on the power output of the rotary engine.
- a high specific heat capacity fluid can be used in the heat storage structure.
- a conductive plate is urged by springs loaded to contact the hot zone after predetermined operation conditions (e.g., a predetermined temperature) are reached.
- FIG. 1 shows a cross section view of heat engine 100 with cooling reservoir 107 , in accordance with one embodiment of the present invention.
- FIG. 2 shows heat engine 100 with cooling reservoir 107 in an isometric exploded side view.
- FIG. 3 shows heat engine 100 in a “blown-up” perspective view.
- FIG. 4 is a top view of hot zone 110 a underneath top plate 101 a.
- FIG. 5 shows rotary structure 111 of FIGS. 1 and 2 in greater detail.
- FIG. 6 is a top view showing spiral passages 601 and 602 in the portion of insulator layer 104 abutting cold zone 110 b.
- FIG. 7 shows a cross section view of heat reservoir 701 , in accordance with one embodiment of the present invention.
- FIG. 8 is a cross section view showing the working fluid circulation paths in the interior of housing 101 .
- the present invention provides a heat engine that operates under Stirling engine principles to convert heat energy into mechanical energy.
- the mechanical energy can be coupled to drive machinery and generators to perform useful work.
- FIG. 1 shows a cross section view of heat engine 100 , including cooling fluid reservoir 107 , according to one embodiment of the present invention.
- heat engine 100 includes a chamber 110 enclosed in an enclosure or housing 101 .
- a temperature difference exists between a “hot zone” 110 a and a “cold zone” 110 b within chamber 110 .
- the present invention exploits this temperature difference to cause housing 101 to rotate about the axis indicated by “Y” in a manner described below.
- the rotary motion turns axle 109 , which may be used to drive the motion of an external mechanical device.
- axle 109 is partly ensheathed in rotary structure 111 and extends beyond cooling reservoir 107 .
- Axle 109 is coupled with rotary structure 111 in rotational motion.
- axle 109 may also be connected to top plate 101 a of housing 101 .
- a cooling mechanism is provided to maintain the temperature difference between hot zone 110 a and cold zone 110 b.
- This temperature difference drives the rotary motion of housing 101 , thus providing output power.
- the cooling mechanism includes cooling reservoir 107 of a cooling fluid, which is circulated between cooling reservoir 107 , cold zone 110 b and insulator layer 104 to maintain the temperature of cold zone 110 b.
- a covering 115 is provided between housing 101 and cooling reservoir 107 to prevent spilling and excessive evaporation of the cooling fluid.
- the terms “hot” and “cold” are relative. Heat engine 100 will operate as long as there is a sufficient temperature difference between the hot zone 110 a and the cold zone 110 b.
- FIGS. 2 and 3 show, respectively, heat engine 100 in a “isometric exploded” side view and an “isometric exploded” perspective view.
- the outer side wall of housing 101 is omitted in FIGS. 2 and 3 , so as to allow the internal construction of heat engine 100 within chamber 110 to be shown.
- top plate 101 a and bottom plate 101 b are, respectively, the top outer wall and the bottom outer wall of housing 101 .
- a heat source e.g., solar energy
- the cooling fluid of cooling reservoir 107 maintains the region between insulator layer 104 and bottom plate 101 b to a lower temperature.
- the combined action of the heat source and the cooling fluid creates hot zone 110 a and cold zone 110 b, as indicated in FIGS. 1 , 2 and 3 .
- the cold zone 110 b is separated from bottom plate 101 b by a disk 108 , to create a space 508 between disk 108 and bottom plate 101 b in which the cooling fluid may flow, so as to achieve temperature regulation.
- the upper and lower portions of FIG. 2 are labeled “top” and “bottom”, respectively, merely to facilitate reference in this detailed description.
- the operation of a heat engine of the present invention is not limited by its physical orientation.
- heat engine 100 is shown in “exploded” views in the sense that the separations between elements of heat engine 100 are exaggerated in the vertical direction for illustration purpose.
- Hot zone 110 a and cold zone 110 b are insulated from each other by insulator layer 104 , which is described in further detail below.
- Suitably placed support structures may be provided throughout hot zone 110 a and cold zone 110 b for mechanical support inside housing 101 .
- Such support structures may include, for example, posts, stakes, beams and poles.
- Thermionic and thermocouple devices may be provided within insulator layer as well. Such devices may be used to provide power output, as discussed in the Co-pending Patent Application incorporated by reference above.
- a separator structure 105 is further interposed between hot zone 110 a and insulator layer 104 . Fluid flows between hot zone 110 a and cold zone 110 b through central open shaft 110 and space 121 .
- Space 121 includes all space between fluid guide structure 106 , separator structure 105 , insulator layer 104 , rotary structure 111 , and outer wall of housing 101 .
- Separator structure 105 is an optional storage structure, which is described in further detail below.
- Chamber 110 is filled with a compressible working fluid, which may be air, another fluid or a mixture of fluids to achieve desired fluid densities, and mechanical and thermal properties.
- the working fluid may be pressurized.
- Heat engine 100 harvests the heat energy received by a turbine structure which may be located on the surface of the interior wall of housing 101 .
- the turbine structure may be located at any suitable location where a torque can be generated for the rotary motion of housing 101 . Such a location may include, for example, within space 121 , hot zone 110 a and cold zone 110 b.
- the turbine structure may also be built into the interior wall of housing 101 .
- the turbine structure may include one or more sets of fluid guides or blades, which are designed to channel the working fluid where the maximum surging power can be extracted from the expansion and the compression of working fluid. Each fluid guide preferably maintains a predetermined angle relative to the working fluid during rotation of housing 101 .
- the turbine structure may be any suitable size or materials, depending on the application of the heat engine 100 .
- heat engine 100 includes a turbine structure, referred herein as fluid guide structure 106 , in hot zone 110 a.
- FIG. 4 is a top view of hot zone 110 a underneath top plate 101 a.
- heat engine 100 includes fluid guide structure 106 , which includes plate 401 , a first set of fluid guides 114 numbering from 114 - 1 to 114 -n and a second set of guides 112 numbering from 112 - 1 to 112 -m, where n and m are integers.
- Fluid guides 112 and 114 are designed to work cooperatively and function as extra thermal transfer surfaces as a heat source or heat sink.
- Fluid guides 112 and 114 may be any suitable size or materials, depending on the application of the heat engine 100 .
- Fluid guides 112 - 1 to 112 -n are attached to housing 101 and are generally arranged around the periphery of plate 401 .
- Fluid guides 112 may also be attached to plate 401 .
- each fluid guide is provided a rounded contour, such that one side of the fluid guide may have a larger cross-section than the other, thereby creating a torque that provides the rotary motion of housing 101 .
- fluid guides 112 - 1 to 112 -n are designed to maintain a predetermined angle relative to the working fluid flow direction in the immediate vicinity of each of fluid guides 112 .
- each of fluid guides 112 is not necessary, but may provide some advantage in some application, such as ease in starting up with motion in a predetermined direction.
- Fluid guides 112 provides a large surface area for heat transfer.
- heat engine 100 has a high surface to volume ratio to enhance efficiency.
- Fluid guides 112 - 1 to 112 -n can also be used as fluid guides to control the working fluid flow at a preferred angle, so as to maximize torque generation.
- Fluid guides 114 - 1 to 114 -m guide the working fluid in a preferred angle towards the fluid guides 112 to achieve a preferred rotational force.
- Fluid guides 114 - 1 to 114 -m may be formed as support structure to provide support between top plate 101 a and separator 105 .
- Fluid guides 114 - 1 and 114 -m are designed to accommodate the design of fluid guides 112 .
- a similar fluid guide structure with corresponding sets of fluid guides may also be provided in cold zone 110 b to shape the return path of the working fluid.
- the fluid guide structure in cold zone 110 b may be provided in a different configuration (e.g., a different material, differently shaped fluid guides, performing different functions) to achieve different design objectives.
- Fluid guide 114 - 1 to 114 -m may be shaped and used as blades to help the turbine structure creating torque for housing 101 to rotate in a predetermined direction.
- Fluid guide structure 106 may be considered as part of the turbine structure.
- a circulation of the working fluid is established.
- the working fluid flows radially outwards in hot zone 110 a, enters cold zone 110 b through space 121 , flows radially inwards into cold zone 110 b and returns to hot zone through open shaft 113 .
- a heating mesh may be provided in hot zone 110 b above the vicinity of open shaft 113 , so as to increase the surface area over which the working fluid may be heated, thereby improving heating of working fluid efficiency. Heat may be concentrated and directed in hot zone 101 a to the heating mesh.
- This heating mesh can also function as the contact point between external heat source and the heat reservoir in separate structure 105 .
- the relatively hot working fluid in hot zone 110 a expands and flows into the cold zone 110 b, where it is cooled and compressed.
- a one-way valve may be provided in open shaft 113 between hot zone 110 a and cold zone 110 b to prevent back flow of the working fluid from hot zone 110 a into cold zone 110 b.
- FIG. 8 which is a cross section view of heat engine 100 , shows the working fluid circulation paths through fluid guide structure 106 .
- each fluid guide may be structurally attached to one or more walls of fluid guide structure 106 , rotary structure 111 , insulator layer 104 and separator structure 105 .
- Multiple channels, passages or conduits for the working fluid flow within housing 101 is formed thereby.
- the structures of the fluid guides be used to affect the mechanical parameters 1 of heat engine 100 , such as the working fluid pressure, the directions and angles the working fluid flow and the magnitude of the torque causing the rotary motion.
- the design of the fluid guides therefore improve the power output of heat engine 100 .
- the fluid guides need not attach to any rotary structure 111 , insulator layer 104 and separator structure 105 . In this instance, multiple channels, passages or conduits for the working fluid flow are not formed.
- the resulting design is simpler, has a more even heat distribution and a lighter housing.
- a mechanical parameter can be angular velocity of rotation.
- Rotary structure 111 is located in the lower portion of open shaft 113 and supports the weight of housing 101 , including the various elements of heat engine 100 housed within housing 101 .
- Rotary structure 111 rotates with axle 109 by receiving the combined torque transmitted from all turbine structures or fluid guide structures within housing 101 .
- the operating temperature difference between hot zone 110 a and cold zone 110 b may be maintained by a cooling fluid.
- the cooling fluid is provided from stationary cooling reservoir 107 .
- rotary structure 111 facilitates the cooling fluid uptake.
- FIG. 5 shows rotary structure 111 of FIGS. 1 and 2 in greater detail. As shown in FIG.
- rotary structure 111 has cylindrical outer wall 501 , a portion of which is inserted into cooling reservoir 107 through a center opening of reservoir cover 115 and surrounds cylindrical inner wall 502 of cooling reservoir 107 .
- Cylindrical inner wall 502 of cooling reservoir 107 may extend up to top wall 504 of rotary structure 111 .
- Axle 109 may be attached to top wall 504 of rotary structure 111 .
- Rotary structure 111 also serves to reinforce bottom plate 101 b of housing 101 to allow it to bear the load of housing 101 and its included elements of heat engine 100 .
- Axle 109 is designed to support rotary structure 111 and to transmit the rotary motion of housing 101 to the load being driven.
- Rotary structure 111 includes threaded passage 505 a which opens into cooling reservoir 107 .
- rotary structure 111 As rotary structure 111 rotates, it draws the cooling fluid up threaded passage 505 a into a chamber 506 , where the cooling fluid flows into conduits 507 , which distribute the cooling fluid into spiral passages 601 and 602 ( FIG. 3 ) provided in the bottom portion of insulator layer 104 .
- the cooling fluid may also overflow into space 507 , where it is guided into passages within space 508 which is located between bottom plate 101 b of housing 101 and disk 108 at the bottom side of cold zone 110 b. Both the spiral passages in insulator layer 104 and the passages space 508 under disk 108 returns the cooling fluid to cooling reservoir 107 at cooling fluid capture 510 .
- Capture area 510 may include an enclosed conduit for channeling the cooling fluid through reservoir cover 115 As housing 101 rotates, the cooling fluid is circulated to maintain the temperature of cold zone 110 b without an external pump.
- the structure of the cooling system therefore includes rotary structure 111 , cooling reservoir 107 , reservoir covering 115 , cooling fluid capture 510 , and heat sinks (not shown) which may be provided to dissipate heat from cooling reservoir 107 .
- Cooling reservoir 107 , reservoir covering 115 and cooling fluid capture 510 are stationary and can be supported by an external structure (not shown). Bearings may be provided where contact is made between housing 101 and the walls of cooling reservoir 107 .
- bearings maybe provided between bottom plate 101 b of housing 101 and the side walls of cooling fluid capture 510 , between cylindrical outer wall 501 and cylindrical wall 511 of reservoir cover 115 , between top wall 504 of rotary structure 111 and cylindrical inner wall of 502 of cooling reservoir 107 , and between cylindrical inner wall 502 of cooling reservoir 107 and the walls of recess 503 of rotary structure 111 .
- the bearings may also be used mechanically support the weight of heat engine 100 and to provide stability during rotation.
- the bearings and the reservoir cover 115 prevent cooling fluid spill.
- an external structure, other than reservoir 107 may be provided to mechanically support housing 101 .
- cooling fluid capture 510 may be enclosed by bearings. Other configurations for cooling fluid capture 510 are possible.
- FIG. 6 is a top view showing spiral passages 601 and 602 for cooling fluid in the portion of insulator layer 104 abutting cold zone 110 b, according to one embodiment of the present invention. (Although only two passages are shown in FIG. 6 , a practical implementation may have additional passages, depending on the cooling fluid flow rate desired, as discussed below).
- FIG. 6 shows the cooling fluid entering passages 601 and 602 at opening 601 a and 602 a, respectively, and passing into conduits at outlets 601 b and 602 b to return to fluid capture area 510 through passages within fluid guide structure 106 or through support structures in cold zone 110 b.
- passages for cooling fluid may be provided between disk 108 and a fluid guide structure, dedicated conduits, passages along or embedded in the support structure, or a combination of structures in cold zone 110 b.
- the cooling fluid may flow radially towards the periphery and pass into cooling fluid capture area 510 .
- support structures may be provided throughout insulator layer 104 for mechanical support to insulator layer 104 .
- the cooling fluid is preferably a fluid having a specific heat capacity much greater than the specific heat capacity of the working fluid.
- heat in the working fluid flowing into cold zone 110 b must be dissipated by the cooling fluid and by housing 101 . Efficiency of heat dissipation within housing 101 depends, for example, by the ability of fluid guides and blades of fluid guide structure 106 in cold zone 110 b to conduct heat away from the working fluid they are in contact to housing 101 . The heat in the working fluid in excess of the heat dissipated by housing 101 is dissipated by the cooling fluid.
- the angular speed at which the cylindrical enclosure rotates determines the pressure at which the cooling fluid is drawn into threaded passage 505 a of rotary structure 111 and, thus the volume of the cooling fluid flowing into cold zone 110 b.
- the cylindrical enclosure rotates at a higher angular speed, thereby drawing a greater volume of cooling fluid per unit time, thus resulting in a greater cooling effect to maintain heat engine 100 within the desired operating temperature range.
- the lengths and the distribution of passages surrounding cold zone 110 b depend on the volume of the cooling fluid required per unit time and the ability of cooling reservoir 107 to transfer the heat in the cooling fluid to the environment.
- the temperature difference between the cooling fluid in cooling reservoir 107 and the returning cooling fluid will be higher. Conversely, if the lengths of the passages are short, or if the volume of the cooling fluid flowing through the passages per unit time is high, the temperature difference between the cooling fluid in cooling reservoir 107 and the returning cooling fluid will be lesser. The lesser temperature difference is preferred. Conventional heat sinks may be provided on the outer wall of cooling reservoir 107 to dissipate the excess heat.
- FIG. 7 shows a cross section view of heat reservoir 701 , in accordance with one embodiment of the present invention.
- heat reservoir 701 includes a cavity filled with a fluid of high specific heat capacity, and metallic plate 702 supported by springs 703 a and 703 b.
- the fluid in reservoir 701 may be pressurized, and should preferably have a melting point below the temperature of cold zone 110 b and a boiling point higher than the expected highest temperature in hot zone 110 a. (Although only two springs are shown in FIG. 7 , any number of springs may be used to support metallic plate 702 .) Metal support structures (not shown) may be provided throughout reservoir 701 to both support the top and bottom walls of heat reservoir 701 and to conduct heat from hot zone 110 a. Initially, the fluid in heat reservoir 701 is cold, and metallic plate 702 is not in contact with the bottom portion of hot zone 110 a. As heat engine 100 operates, the temperature of the fluid in reservoir 701 rises.
- springs 703 a and 703 b expand to allow metallic plate 702 to contact the floor of hot zone 110 a for greater surface area for heat transfer between hot zone 110 a and the fluid in reservoir 701 .
- solid state materials or mixture of different types of materials can be used in reservoir 701 .
- a heating mesh may also be used to facilitate heat transfer.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
A heat engine enclosing a chamber in a housing has two zones maintained at different temperatures. The first zone receives heat energy from an external power source. The second zone is connected to the hot zone by two conduits, such that a fluid (e.g., air, water, or any other gas or liquid) filling the chamber can circulate between the two zones. The expansion of the fluid in the hot zone and the compression of the fluid in the cold zone drive the rotation of the housing to provide a power output. The fluid may be pressurized to enhance efficiency. A cooling fluid provided in a stationary reservoir maintains a preferred operating temperature difference between the hot zone and the cold zone. A heat storage structure containing a fluid with a high heat capacity may be provided as a heat reservoir.
Description
- The present application is a continuation of, and claims priority to U.S. patent application Ser. No. 11/054,057, entitled “Method and System for Generation of Power Using Stirling Engine Principles,” filed on Feb. 9, 2005, which is a continuation-in-part application of U.S. patent application Ser. No. 10/963,274, entitled “Method and System for Generation of Electrical and Mechanical Power using Sterling Engine Principles,” filed on Oct. 12, 2004. These patent applications are hereby incorporated by reference in their entirety.
- 1. Field of the Invention
- The present invention relates to applying Stirling engine principles to power conversion equipment design and use. In particular, the present invention relates to applying Stirling engine principles for power generation, such as generating mechanical power.
- 2. Discussion of the Related Art
- The Stirling engine is a heat engine that operates by converting the heat energy which flows between zones of different temperatures into useful work. A typical Stirling engine uses the heat energy to drive a coordinated and reciprocating motion of a set of pistons. The motion of the pistons drives machinery or a generator. Alternatively, heat engines having rotary motion are also known. Numerous designs of Stirling engines having rotary motion can be found in the prior art, including: U.S. Pat. Nos. 6,195,992, 3,984,981, and 5,325,671.
- In the prior art, moving parts for the Sterling engine operation are enclosed in a housing and coupled mechanically (e.g., by an axle) to external parts to drive external machinery. High efficiency in such an arrangement requires that the housing be sealed in an airtight fashion. A seal failure leads to the failure of the engine.
- The present invention provides a method and a rotary engine based on Stirling engine principles. According to one embodiment of the present invention, the housing of the rotary engine rotates as a result of fluid flow between two zones of different temperatures within a chamber in the housing. The torque in the rotary motion of the housing, therefore, may be used to drive machinery (e.g., a generator) through an axle coupled externally to the housing. Under this arrangement, unlike the prior art, a rotary engine of the present invention is not susceptible to failure due to a leak in the sealing of the housing.
- According to one embodiment of the present invention, the hot zone of the chamber is heated by energy from a heat source, and a cooling system maintains the cold zone at a lower temperature than the hot zone. The cooling fluid may be drawn from a stationary external reservoir of cooling fluid. In one embodiment, the rotary motion of the housing may be used to draw the cooling fluid. In that embodiment, the volume of cooling fluid drawn into the rotary engine depends on the angular speed of the rotary motion which, in turn, may be determined by power output of the rotary engine. A self-regulating cooling system may therefore be achieved. A structure used to reinforce the housing at the point where the external axle is to be attached may include a threaded passage. In that embodiment, the rotating threaded passage forces the cooling fluid into the housing, through passages distributed around the cold zone (e.g., the insulation layer abutting the cold zone or the area between the cold zone and the housing) so as to maintain the cold zone to within a desired temperature range.
- A turbine in a rotary engine according to the present invention may be located in any suitable location on the interior surface of the housing hot zone or the cold zone, but is coupled to the housing to provide the housing rotary motion and is not required to directly drive an axle to provide the output power of the rotary engine. The chamber of the rotary engine may be filled with a compressible working fluid (e.g., air). Fluid guides may be provided within the chamber for guiding the flow of the compressible working fluid in preferred directions and flow speeds to provide higher efficiency. The fluid guides may also provide structural or mechanical support for the chamber.
- In one embodiment, a one-way valve may be provided between the hot zone and the cold zone prevents a working fluid in the hot zone to backflow into the cold zone.
- In another embodiment, a metal mesh is provided in the hot zone to increase efficiency of heat transfer from the heat source to the hot zone. A heat storage structure can also be provided to minimize the impact of a fluctuating heat source on the power output of the rotary engine. A high specific heat capacity fluid can be used in the heat storage structure. In one embodiment, a conductive plate is urged by springs loaded to contact the hot zone after predetermined operation conditions (e.g., a predetermined temperature) are reached.
- The present invention is better understood upon consideration of the detailed description below and the accompanying drawings.
-
FIG. 1 shows a cross section view ofheat engine 100 withcooling reservoir 107, in accordance with one embodiment of the present invention. -
FIG. 2 showsheat engine 100 withcooling reservoir 107 in an isometric exploded side view. -
FIG. 3 showsheat engine 100 in a “blown-up” perspective view. -
FIG. 4 is a top view ofhot zone 110 a underneathtop plate 101 a. -
FIG. 5 showsrotary structure 111 ofFIGS. 1 and 2 in greater detail. -
FIG. 6 is a top view showing 601 and 602 in the portion ofspiral passages insulator layer 104 abuttingcold zone 110 b. -
FIG. 7 shows a cross section view ofheat reservoir 701, in accordance with one embodiment of the present invention. -
FIG. 8 is a cross section view showing the working fluid circulation paths in the interior ofhousing 101. - To facilitate cross-reference among the figures and to simplify the detailed description below, like elements in the figures are assigned like reference numerals.
- The present invention provides a heat engine that operates under Stirling engine principles to convert heat energy into mechanical energy. The mechanical energy can be coupled to drive machinery and generators to perform useful work.
-
FIG. 1 shows a cross section view ofheat engine 100, includingcooling fluid reservoir 107, according to one embodiment of the present invention. As shown inFIG. 1 ,heat engine 100 includes achamber 110 enclosed in an enclosure orhousing 101. During operation, when a heat source is provided incident ontop surface 101 a ofhousing 101, a temperature difference exists between a “hot zone” 110 a and a “cold zone” 110 b withinchamber 110. The present invention exploits this temperature difference to causehousing 101 to rotate about the axis indicated by “Y” in a manner described below. The rotary motion turnsaxle 109, which may be used to drive the motion of an external mechanical device. According to one embodiment of the present invention,axle 109 is partly ensheathed inrotary structure 111 and extends beyondcooling reservoir 107.Axle 109 is coupled withrotary structure 111 in rotational motion. Alternatively, axle 109 may also be connected totop plate 101 a ofhousing 101. - In the embodiment shown in
FIG. 1 , a cooling mechanism is provided to maintain the temperature difference betweenhot zone 110 a andcold zone 110 b. This temperature difference drives the rotary motion ofhousing 101, thus providing output power. The cooling mechanism includes coolingreservoir 107 of a cooling fluid, which is circulated betweencooling reservoir 107,cold zone 110 b andinsulator layer 104 to maintain the temperature ofcold zone 110 b. A covering 115 is provided betweenhousing 101 and coolingreservoir 107 to prevent spilling and excessive evaporation of the cooling fluid. In this detailed description, the terms “hot” and “cold” are relative.Heat engine 100 will operate as long as there is a sufficient temperature difference between thehot zone 110 a and thecold zone 110 b. - The elements enclosed within
housing 101 is better illustrated in conjunction withFIGS. 2 and 3 which show, respectively,heat engine 100 in a “isometric exploded” side view and an “isometric exploded” perspective view. The outer side wall ofhousing 101 is omitted inFIGS. 2 and 3 , so as to allow the internal construction ofheat engine 100 withinchamber 110 to be shown. As shown inFIGS. 1 , 2 and 3,top plate 101 a andbottom plate 101 b are, respectively, the top outer wall and the bottom outer wall ofhousing 101. In this embodiment, a heat source (e.g., solar energy) is incident ontop plate 101 a. As described below, the cooling fluid of coolingreservoir 107 maintains the region betweeninsulator layer 104 andbottom plate 101 b to a lower temperature. The combined action of the heat source and the cooling fluid createshot zone 110 a andcold zone 110 b, as indicated inFIGS. 1 , 2 and 3. In this embodiment, thecold zone 110 b is separated frombottom plate 101 b by adisk 108, to create aspace 508 betweendisk 108 andbottom plate 101 b in which the cooling fluid may flow, so as to achieve temperature regulation. (In this description, the upper and lower portions ofFIG. 2 are labeled “top” and “bottom”, respectively, merely to facilitate reference in this detailed description. The operation of a heat engine of the present invention is not limited by its physical orientation.) InFIGS. 2 and 3 ,heat engine 100 is shown in “exploded” views in the sense that the separations between elements ofheat engine 100 are exaggerated in the vertical direction for illustration purpose. -
Hot zone 110 a andcold zone 110 b are insulated from each other byinsulator layer 104, which is described in further detail below. Suitably placed support structures may be provided throughouthot zone 110 a andcold zone 110 b for mechanical support insidehousing 101. Such support structures may include, for example, posts, stakes, beams and poles. Thermionic and thermocouple devices may be provided within insulator layer as well. Such devices may be used to provide power output, as discussed in the Co-pending Patent Application incorporated by reference above. In this embodiment, aseparator structure 105 is further interposed betweenhot zone 110 a andinsulator layer 104. Fluid flows betweenhot zone 110 a andcold zone 110 b through centralopen shaft 110 andspace 121.Space 121 includes all space betweenfluid guide structure 106,separator structure 105,insulator layer 104,rotary structure 111, and outer wall ofhousing 101.Separator structure 105 is an optional storage structure, which is described in further detail below.Chamber 110 is filled with a compressible working fluid, which may be air, another fluid or a mixture of fluids to achieve desired fluid densities, and mechanical and thermal properties. The working fluid may be pressurized. -
Heat engine 100 harvests the heat energy received by a turbine structure which may be located on the surface of the interior wall ofhousing 101. The turbine structure may be located at any suitable location where a torque can be generated for the rotary motion ofhousing 101. Such a location may include, for example, withinspace 121,hot zone 110 a andcold zone 110 b. The turbine structure may also be built into the interior wall ofhousing 101. The turbine structure may include one or more sets of fluid guides or blades, which are designed to channel the working fluid where the maximum surging power can be extracted from the expansion and the compression of working fluid. Each fluid guide preferably maintains a predetermined angle relative to the working fluid during rotation ofhousing 101. The turbine structure may be any suitable size or materials, depending on the application of theheat engine 100. - According to one embodiment of the present invention,
heat engine 100 includes a turbine structure, referred herein asfluid guide structure 106, inhot zone 110 a.FIG. 4 is a top view ofhot zone 110 a underneathtop plate 101 a. As shown inFIG. 4 ,heat engine 100 includesfluid guide structure 106, which includesplate 401, a first set of fluid guides 114 numbering from 114-1 to 114-n and a second set ofguides 112 numbering from 112-1 to 112-m, where n and m are integers. Fluid guides 112 and 114 are designed to work cooperatively and function as extra thermal transfer surfaces as a heat source or heat sink. Fluid guides 112 and 114 may be any suitable size or materials, depending on the application of theheat engine 100. Fluid guides 112-1 to 112-n are attached tohousing 101 and are generally arranged around the periphery ofplate 401. Fluid guides 112 may also be attached toplate 401. In one embodiment, each fluid guide is provided a rounded contour, such that one side of the fluid guide may have a larger cross-section than the other, thereby creating a torque that provides the rotary motion ofhousing 101. As discussed above, fluid guides 112-1 to 112-n are designed to maintain a predetermined angle relative to the working fluid flow direction in the immediate vicinity of each of fluid guides 112. During operation, as heat builds up inhot zone 110 a, the expanding working fluid inhot zone 110 a pushes against fluid guide set 112 to create a torque to causehousing 101 to rotate. The working fluid inhot zone 110 a flows radially outwards from space aboveopen shaft 113, and intocold zone 110 b throughannular space 121. One example of using fluid guides 112 offluid guide structure 106 with an axle to form a turbine is disclosed in the Co-pending Patent Application incorporated by reference above. The torque created by the rotatingfluid guide structure 106 is transmitted to the rotary structure 111 (and thus axle 109) through the outer wall ofhousing 101, such thathousing 101 rotates integrally withfluid guide structure 106. The asymmetrical surface areas on each of fluid guides 112 are not necessary, but may provide some advantage in some application, such as ease in starting up with motion in a predetermined direction. Fluid guides 112 provides a large surface area for heat transfer. Thus,heat engine 100 has a high surface to volume ratio to enhance efficiency. Fluid guides 112-1 to 112-n can also be used as fluid guides to control the working fluid flow at a preferred angle, so as to maximize torque generation. - Fluid guides 114-1 to 114-m guide the working fluid in a preferred angle towards the fluid guides 112 to achieve a preferred rotational force. Fluid guides 114-1 to 114-m may be formed as support structure to provide support between
top plate 101 a andseparator 105. Fluid guides 114-1 and 114-m are designed to accommodate the design of fluid guides 112. Although not shown in this embodiment, a similar fluid guide structure with corresponding sets of fluid guides may also be provided incold zone 110 b to shape the return path of the working fluid. Alternatively, the fluid guide structure incold zone 110 b may be provided in a different configuration (e.g., a different material, differently shaped fluid guides, performing different functions) to achieve different design objectives. Fluid guide 114-1 to 114-m may be shaped and used as blades to help the turbine structure creating torque forhousing 101 to rotate in a predetermined direction.Fluid guide structure 106 may be considered as part of the turbine structure. - When a substantial temperature difference in temperature exists between
hot zone 110 a andcold zone 110 b, a circulation of the working fluid, indicated byflow lines 122 inFIG. 1 , is established. In this circulation, the working fluid flows radially outwards inhot zone 110 a, enterscold zone 110 b throughspace 121, flows radially inwards intocold zone 110 b and returns to hot zone throughopen shaft 113. A heating mesh may be provided inhot zone 110 b above the vicinity ofopen shaft 113, so as to increase the surface area over which the working fluid may be heated, thereby improving heating of working fluid efficiency. Heat may be concentrated and directed inhot zone 101 a to the heating mesh. This heating mesh can also function as the contact point between external heat source and the heat reservoir inseparate structure 105. In this process, the relatively hot working fluid inhot zone 110 a expands and flows into thecold zone 110 b, where it is cooled and compressed. A one-way valve may be provided inopen shaft 113 betweenhot zone 110 a andcold zone 110 b to prevent back flow of the working fluid fromhot zone 110 a intocold zone 110 b.FIG. 8 , which is a cross section view ofheat engine 100, shows the working fluid circulation paths throughfluid guide structure 106. - As can be seen from the above, the system of fluid guides in the embodiments described above perform multiple tasks. For example, each fluid guide may be structurally attached to one or more walls of
fluid guide structure 106,rotary structure 111,insulator layer 104 andseparator structure 105. Multiple channels, passages or conduits for the working fluid flow withinhousing 101 is formed thereby. The structures of the fluid guides be used to affect the mechanical parameters1 ofheat engine 100, such as the working fluid pressure, the directions and angles the working fluid flow and the magnitude of the torque causing the rotary motion. The design of the fluid guides therefore improve the power output ofheat engine 100. Alternately, the fluid guides need not attach to anyrotary structure 111,insulator layer 104 andseparator structure 105. In this instance, multiple channels, passages or conduits for the working fluid flow are not formed. The resulting design is simpler, has a more even heat distribution and a lighter housing. 1One example of a mechanical parameter can be angular velocity of rotation. -
Rotary structure 111 is located in the lower portion ofopen shaft 113 and supports the weight ofhousing 101, including the various elements ofheat engine 100 housed withinhousing 101.Rotary structure 111 rotates withaxle 109 by receiving the combined torque transmitted from all turbine structures or fluid guide structures withinhousing 101. As mentioned above, the operating temperature difference betweenhot zone 110 a andcold zone 110 b may be maintained by a cooling fluid. In the embodiment shown inFIGS. 1 , 2 and 3, the cooling fluid is provided fromstationary cooling reservoir 107. In this embodiment,rotary structure 111 facilitates the cooling fluid uptake.FIG. 5 showsrotary structure 111 ofFIGS. 1 and 2 in greater detail. As shown inFIG. 5 ,rotary structure 111 has cylindricalouter wall 501, a portion of which is inserted into coolingreservoir 107 through a center opening ofreservoir cover 115 and surrounds cylindricalinner wall 502 of coolingreservoir 107. Cylindricalinner wall 502 of coolingreservoir 107 may extend up totop wall 504 ofrotary structure 111.Axle 109 may be attached totop wall 504 ofrotary structure 111.Rotary structure 111 also serves to reinforcebottom plate 101 b ofhousing 101 to allow it to bear the load ofhousing 101 and its included elements ofheat engine 100.Axle 109 is designed to supportrotary structure 111 and to transmit the rotary motion ofhousing 101 to the load being driven.Rotary structure 111 includes threadedpassage 505 a which opens into coolingreservoir 107. Asrotary structure 111 rotates, it draws the cooling fluid up threadedpassage 505 a into achamber 506, where the cooling fluid flows intoconduits 507, which distribute the cooling fluid intospiral passages 601 and 602 (FIG. 3 ) provided in the bottom portion ofinsulator layer 104. The cooling fluid may also overflow intospace 507, where it is guided into passages withinspace 508 which is located betweenbottom plate 101 b ofhousing 101 anddisk 108 at the bottom side ofcold zone 110 b. Both the spiral passages ininsulator layer 104 and thepassages space 508 underdisk 108 returns the cooling fluid to coolingreservoir 107 at coolingfluid capture 510. Support elements, such as post, walls or beams may be provided withinspace 508 to provide support and to channel fluid flow in any desired manner.Capture area 510 may include an enclosed conduit for channeling the cooling fluid throughreservoir cover 115 Ashousing 101 rotates, the cooling fluid is circulated to maintain the temperature ofcold zone 110 b without an external pump. - The structure of the cooling system, according to the embodiment shown in
FIG. 5 , therefore includesrotary structure 111, coolingreservoir 107, reservoir covering 115, coolingfluid capture 510, and heat sinks (not shown) which may be provided to dissipate heat from coolingreservoir 107. Coolingreservoir 107, reservoir covering 115 and coolingfluid capture 510 are stationary and can be supported by an external structure (not shown). Bearings may be provided where contact is made betweenhousing 101 and the walls of coolingreservoir 107. For example, bearings maybe provided betweenbottom plate 101 b ofhousing 101 and the side walls of coolingfluid capture 510, between cylindricalouter wall 501 andcylindrical wall 511 ofreservoir cover 115, betweentop wall 504 ofrotary structure 111 and cylindrical inner wall of 502 of coolingreservoir 107, and between cylindricalinner wall 502 of coolingreservoir 107 and the walls ofrecess 503 ofrotary structure 111. The bearings may also be used mechanically support the weight ofheat engine 100 and to provide stability during rotation. The bearings and thereservoir cover 115 prevent cooling fluid spill. Of course, an external structure, other thanreservoir 107, may be provided to mechanically supporthousing 101. In this embodiment of present invention, coolingfluid capture 510 may be enclosed by bearings. Other configurations for coolingfluid capture 510 are possible. -
Insulator layer 104 may be filled with a thermally insulating material.FIG. 6 is a top view showing 601 and 602 for cooling fluid in the portion ofspiral passages insulator layer 104 abuttingcold zone 110 b, according to one embodiment of the present invention. (Although only two passages are shown inFIG. 6 , a practical implementation may have additional passages, depending on the cooling fluid flow rate desired, as discussed below).FIG. 6 shows the cooling 601 and 602 at opening 601 a and 602 a, respectively, and passing into conduits atfluid entering passages 601 b and 602 b to return tooutlets fluid capture area 510 through passages withinfluid guide structure 106 or through support structures incold zone 110 b. To achieve effective cooling incold zone 110 b, passages for cooling fluid may be provided betweendisk 108 and a fluid guide structure, dedicated conduits, passages along or embedded in the support structure, or a combination of structures incold zone 110 b. Generally, from threadedpassage 501, the cooling fluid may flow radially towards the periphery and pass into coolingfluid capture area 510. Many other schemes of distributing the cooling fluid throughoutcold zone 110 b as are possible. According to one embodiment, support structures may be provided throughoutinsulator layer 104 for mechanical support toinsulator layer 104. - The cooling fluid is preferably a fluid having a specific heat capacity much greater than the specific heat capacity of the working fluid. To maintain
cold zone 110 b at the preferred temperature, heat in the working fluid flowing intocold zone 110 b must be dissipated by the cooling fluid and byhousing 101. Efficiency of heat dissipation withinhousing 101 depends, for example, by the ability of fluid guides and blades offluid guide structure 106 incold zone 110 b to conduct heat away from the working fluid they are in contact tohousing 101. The heat in the working fluid in excess of the heat dissipated byhousing 101 is dissipated by the cooling fluid. The angular speed at which the cylindrical enclosure rotates determines the pressure at which the cooling fluid is drawn into threadedpassage 505 a ofrotary structure 111 and, thus the volume of the cooling fluid flowing intocold zone 110 b. At higher energy input, the cylindrical enclosure rotates at a higher angular speed, thereby drawing a greater volume of cooling fluid per unit time, thus resulting in a greater cooling effect to maintainheat engine 100 within the desired operating temperature range. The lengths and the distribution of passages surroundingcold zone 110 b depend on the volume of the cooling fluid required per unit time and the ability of coolingreservoir 107 to transfer the heat in the cooling fluid to the environment. If the passages are long, or if the volume of the cooling fluid flowing through the passages per unit time is low, the temperature difference between the cooling fluid in coolingreservoir 107 and the returning cooling fluid will be higher. Conversely, if the lengths of the passages are short, or if the volume of the cooling fluid flowing through the passages per unit time is high, the temperature difference between the cooling fluid in coolingreservoir 107 and the returning cooling fluid will be lesser. The lesser temperature difference is preferred. Conventional heat sinks may be provided on the outer wall of coolingreservoir 107 to dissipate the excess heat. - As described above, an
optional heat reservoir 701 may be provided atseparator structure 105. Such a heat reservoir minimizes the fluctuation of power output even though the amount of heat provided by the heat source may fluctuate.Heat reservoir 701 also can retain heat and act as another heat source for heating up the working fluid after a primary heat source is no longer available.FIG. 7 shows a cross section view ofheat reservoir 701, in accordance with one embodiment of the present invention. As shown inFIG. 7 ,heat reservoir 701 includes a cavity filled with a fluid of high specific heat capacity, andmetallic plate 702 supported by 703 a and 703 b. The fluid insprings reservoir 701 may be pressurized, and should preferably have a melting point below the temperature ofcold zone 110 b and a boiling point higher than the expected highest temperature inhot zone 110 a. (Although only two springs are shown inFIG. 7 , any number of springs may be used to supportmetallic plate 702.) Metal support structures (not shown) may be provided throughoutreservoir 701 to both support the top and bottom walls ofheat reservoir 701 and to conduct heat fromhot zone 110 a. Initially, the fluid inheat reservoir 701 is cold, andmetallic plate 702 is not in contact with the bottom portion ofhot zone 110 a. Asheat engine 100 operates, the temperature of the fluid inreservoir 701 rises. As a result, springs 703 a and 703 b expand to allowmetallic plate 702 to contact the floor ofhot zone 110 a for greater surface area for heat transfer betweenhot zone 110 a and the fluid inreservoir 701. According to one embodiment of the present invention, solid state materials or mixture of different types of materials can be used inreservoir 701. A heating mesh may also be used to facilitate heat transfer. - The above detailed description is provided to illustrate the specific embodiments of the present invention and is not intended to be limiting. Numerous modifications and variations with in the scope of the present invention are possible. The present invention is set forth in the following claims.
Claims (34)
1. A rotary engine, comprising:
a housing including a chamber having, during operation, a first zone which receives energy from a heat source and a second zone which is maintained at a temperature that is lower than the temperature in the first zone;
an insulator separating the first zone from the second zone;
a first fluid provided within the chamber; and
a turbine coupled to the housing and structurally adapted such that, a torque created by the turbine in response to an expansion of the first fluid in the first zone sets the housing into rotary motion.
2. A rotary engine as in claim 1 , further comprising fluid guides provided within the chamber for guiding a flow of the first fluid between the first zone and the second zone.
3. A rotary engine as in claim 2 , wherein the fluid guides also provide structural support for the chamber.
4. A rotary engine as in claim 1 , wherein the first fluid comprises air.
5. A rotary engine as in claim 1 , further comprising a one-way valve positioned between the first zone and the second zone to prevent back-flow of the first fluid from the first zone to the second zone.
6. A rotary engine as in claim 1 , further comprising an axle which is driven into rotary motion during operation by the rotary motion of the housing.
7. A rotary engine as in claim 1 , wherein a second fluid is circulated during operation between the second zone and a reservoir external to the housing.
8. A rotary engine as in claim 7 , wherein the second fluid has a substantially higher specific heat capacity than the specific heat capacity of the first fluid.
9. A rotary engine as in claim 7 , further comprising a member attached to the housing adapted for rotation about the axis of the rotary motion of the housing.
10. A rotary engine as in claim 9 , wherein the member has a threaded passage for drawing the second fluid from the reservoir into the housing.
11. A rotary engine as in claim 9 , wherein passages coupled to the member are provided throughout the second zone for distributing the second fluid drawn by the member.
12. A rotary engine as in claim 11 , wherein one of the passages is provided as a spiral conduit in a portion of the insulation layer abutting the second zone.
13. A rotary engine as in claim 12 , wherein one of the passages is provided between the housing and a surface of the second zone of the chamber.
14. A rotary engine as in claim 1 , further comprising a heat storage structure located in the vicinity of the first zone.
15. A rotary engine as in claim 14 , wherein the heat storage structure comprises a conductive plate adapted for heat transfer between the heat storage structure and the first zone.
16. A rotary engine as in claim 15 , wherein further comprises one or more springs loaded to urge the conductive plate into contact with the first zone as a result of a rise in temperature in the first zone.
17. A rotary engine as in claim 14 , wherein the heat storage structure comprises a third fluid having a specific heat capacity higher than the specific heat capacity of the first fluid.
18. A method for providing a rotary engine operating from a temperature difference, comprising:
providing a chamber in a housing having, during operation, a first zone which receives energy from a heat source and a second zone which is maintained at a temperature that is lower than the temperature in the first zone;
insulating the first zone from the second zone;
providing a first fluid within the chamber; and
providing a turbine that drives the housing into rotary motion, the turbine being structurally adapted to create a torque in response to an expansion of the first fluid in the first zone.
19. A method as in claim 18 , further comprising providing fluid guides for guiding a flow of the first fluid between the first zone and the second zone.
20. A method as in claim 19 , wherein the fluid guides provide mechanical supporting to the chamber.
21. A method as in claim 18 , wherein the first fluid comprises air.
22. A method as in claim 18 , further comprising providing a one-way valve to prevent back-flow of the first fluid from the first zone to the second zone.
23. A method as in claim 18 , further comprising driving an axle into rotary motion by the rotary motion of the housing.
24. A method as in claim 18 , further comprising circulating a second fluid during operation between the second zone and a reservoir external to the housing.
25. A method as in claim 24 , wherein the second fluid has a substantially higher specific heat capacity than the specific heat capacity of the first fluid.
26. A method as in claim 24 , further comprising attaching to the housing a member which rotates about an axis of the rotary motion of the housing.
27. A method as in claim 26 , further comprising providing a threaded passage in the member for drawing the second fluid into the housing.
28. A method as in claim 26 , further comprising providing passages throughout the second zone to distribute the second fluid drawn by the member.
29. A method as in claim 28 , wherein providing a spiral conduit as a passage for the second fluid in a portion of the insulation layer abutting the second zone.
30. A method as in claim 29 , further comprising providing a passage between the housing and a surface of the second zone of the chamber.
31. A method as in claim 18 , further comprising providing a heat storage structure located in the vicinity of the first zone.
32. A method as in claim 31 , further comprising providing a conductive plate in the heat storage structure, the conductive plate being adapted for heat transfer between the heat storage structure and the first zone.
33. A method as in claim 32 , further comprising providing one or more springs which are loaded to urge the conductive plate into contact with the first zone as a result of a rise in temperature in the first zone.
34. A method as in claim 31 , further comprising providing a second fluid having a specific heat capacity higher than the specific heat capacity of the first fluid in the heat storage structure.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/943,902 US20080178588A1 (en) | 2004-10-12 | 2007-11-21 | Method and system for generation of power using stirling engine principles |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/963,274 US8051655B2 (en) | 2004-10-12 | 2004-10-12 | Method and system for electrical and mechanical power generation using stirling engine principles |
| US11/054,057 US7320218B2 (en) | 2004-10-12 | 2005-02-09 | Method and system for generation of power using stirling engine principles |
| US11/943,902 US20080178588A1 (en) | 2004-10-12 | 2007-11-21 | Method and system for generation of power using stirling engine principles |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/054,057 Continuation US7320218B2 (en) | 2004-10-12 | 2005-02-09 | Method and system for generation of power using stirling engine principles |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080178588A1 true US20080178588A1 (en) | 2008-07-31 |
Family
ID=36143891
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/963,274 Expired - Fee Related US8051655B2 (en) | 2004-10-12 | 2004-10-12 | Method and system for electrical and mechanical power generation using stirling engine principles |
| US11/054,057 Expired - Fee Related US7320218B2 (en) | 2004-10-12 | 2005-02-09 | Method and system for generation of power using stirling engine principles |
| US11/943,902 Abandoned US20080178588A1 (en) | 2004-10-12 | 2007-11-21 | Method and system for generation of power using stirling engine principles |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/963,274 Expired - Fee Related US8051655B2 (en) | 2004-10-12 | 2004-10-12 | Method and system for electrical and mechanical power generation using stirling engine principles |
| US11/054,057 Expired - Fee Related US7320218B2 (en) | 2004-10-12 | 2005-02-09 | Method and system for generation of power using stirling engine principles |
Country Status (9)
| Country | Link |
|---|---|
| US (3) | US8051655B2 (en) |
| EP (1) | EP1799965A2 (en) |
| JP (1) | JP2008516149A (en) |
| CN (2) | CN101044296B (en) |
| AU (1) | AU2005295908A1 (en) |
| BR (2) | BRPI0515988A (en) |
| CA (1) | CA2581722A1 (en) |
| TW (2) | TWI374975B (en) |
| WO (1) | WO2006044323A2 (en) |
Families Citing this family (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090025388A1 (en) * | 2004-10-12 | 2009-01-29 | Guy Silver | Method and system for generation of power using stirling engine principles |
| US8051655B2 (en) * | 2004-10-12 | 2011-11-08 | Guy Silver | Method and system for electrical and mechanical power generation using stirling engine principles |
| US20090019846A1 (en) * | 2004-10-12 | 2009-01-22 | Guy Silver | Method and system for electrical and mechanical power generation using stirling engine principles |
| WO2008036814A2 (en) * | 2006-09-22 | 2008-03-27 | Sumrall Theodore S | Systems and methods for generating electricity using a stirling engine |
| US8695346B1 (en) * | 2006-12-10 | 2014-04-15 | Wayne Pickette | Ceramic based enhancements to fluid connected heat to motion converter (FCHTMC) series engines, caloric energy manager (CEM), porcupine heat exchanger (PHE) ceramic-ferrite components (cerfites) |
| AT505532B1 (en) * | 2007-07-31 | 2010-08-15 | Adler Bernhard | METHOD FOR THE CONVERSION OF THERMAL ENERGY OF LOW TEMPERATURE IN THERMAL ENERGY OF HIGHER TEMPERATURE BY MEANS OF MECHANICAL ENERGY AND VICE VERSA |
| US8087247B2 (en) * | 2008-05-15 | 2012-01-03 | Ronald Edward Graf | Heat engine/ heat pump using centrifugal fans |
| CA2654339C (en) * | 2009-03-09 | 2009-09-15 | Edward James Cargill | Heat engine apparatus and method |
| CN102121419B (en) * | 2010-01-11 | 2013-12-11 | 伍复军 | Rotary type temperature difference power device |
| CN101737270B (en) * | 2010-02-05 | 2011-09-07 | 济南高新开发区中泰环保技术开发中心 | Extra-large-size vertical-shaft wind power generation device |
| CN101860279B (en) * | 2010-04-13 | 2012-07-25 | 任毛丁 | Slight temperature difference heat energy generating set |
| CN103062003A (en) * | 2011-10-18 | 2013-04-24 | 林晖凡 | Compressible fluid heat utilizing and temperature difference power output device |
| CN102637070A (en) * | 2012-03-30 | 2012-08-15 | 常熟南师大发展研究院有限公司 | Computer heat radiation and temperature measurement device based on Stirling engine |
| SE537738C2 (en) * | 2012-04-25 | 2015-10-06 | Nils Karlberg | energy converter |
| BR102012015554A8 (en) * | 2012-06-25 | 2017-09-19 | Associacao Paranaense Cultura Apc | THERMAL MACHINE THAT OPERATES IN COMPLIANCE WITH THE CARNOT THERMODYNAMIC CYCLE AND CONTROL PROCESS |
| US10006363B2 (en) | 2012-12-28 | 2018-06-26 | General Electric Company | System and method for aviation electric power production |
| US9777669B2 (en) * | 2013-04-29 | 2017-10-03 | Xeicle Limited | Thermodynamic machine |
| CN103485931A (en) * | 2013-09-21 | 2014-01-01 | 冯智勇 | Thermoacoustic driven stirling engine |
| CN105940425B (en) | 2014-01-28 | 2020-11-24 | 株式会社派契特科宁斯 | Power control system, method and information communication capability control system and method |
| WO2017134481A1 (en) * | 2016-02-02 | 2017-08-10 | Monarch Power Technology (Hk) Ltd. | A tapering spiral gas turbine for combined cooling, heating, power, pressure, work and water |
| CN109186829A (en) * | 2018-08-27 | 2019-01-11 | 四川大学 | A kind of device for air heat engine experiment precise measurement torque |
| WO2020236868A1 (en) | 2019-05-21 | 2020-11-26 | General Electric Company | Energy conversion apparatus |
| PL443329A1 (en) * | 2022-12-29 | 2024-07-01 | Wawrzyński Paweł Ensavid | Device for generating mechanical energy, in particular mechanical torque |
Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2597249A (en) * | 1945-08-24 | 1952-05-20 | Kollsman Paul | Thermodynamic engine |
| US3744245A (en) * | 1971-06-21 | 1973-07-10 | D Kelly | Closed cycle rotary engine system |
| US3748057A (en) * | 1972-01-11 | 1973-07-24 | M Eskeli | Rotary compressor with cooling |
| US3791167A (en) * | 1972-01-20 | 1974-02-12 | M Eskeli | Heating and cooling wheel with dual rotor |
| US3793848A (en) * | 1972-11-27 | 1974-02-26 | M Eskeli | Gas compressor |
| US3795461A (en) * | 1972-08-10 | 1974-03-05 | M Eskeli | Compressor with cooling |
| US3809017A (en) * | 1972-01-11 | 1974-05-07 | M Eskeli | Heat and steam generator |
| US3815362A (en) * | 1970-06-10 | 1974-06-11 | H Kolbinger | Rotary engine |
| US3834179A (en) * | 1973-10-11 | 1974-09-10 | M Eskeli | Turbine with heating and cooling |
| US3861147A (en) * | 1973-10-09 | 1975-01-21 | Michael Eskeli | Sealed single rotor turbine |
| US3931713A (en) * | 1973-10-11 | 1976-01-13 | Michael Eskeli | Turbine with regeneration |
| US4107944A (en) * | 1973-10-18 | 1978-08-22 | Michael Eskeli | Heat pump with two rotors |
| US4142088A (en) * | 1973-08-17 | 1979-02-27 | The United States Of America As Represented By The United States Department Of Energy | Method of mounting a fuel pellet in a laser-excited fusion reactor |
| US4269031A (en) * | 1979-03-02 | 1981-05-26 | Loskot John E | Heat engine |
| US4488524A (en) * | 1981-08-01 | 1984-12-18 | Nippondenso Co., Ltd. | Idling speed control for engines |
| US4629031A (en) * | 1984-08-24 | 1986-12-16 | Honda Giken Kogyo Kabushiki Kaisha | Soundproof engine-operated machine |
| US5473899A (en) * | 1993-06-10 | 1995-12-12 | Viteri; Fermin | Turbomachinery for Modified Ericsson engines and other power/refrigeration applications |
| US5751069A (en) * | 1996-07-01 | 1998-05-12 | General Motors Corporation | Heat engine generator control system |
| US5813235A (en) * | 1997-02-24 | 1998-09-29 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Resonantly coupled α-stirling cooler |
| US6195992B1 (en) * | 1999-01-21 | 2001-03-06 | Arthur Charles Nommensen | Stirling cycle engine |
| US6196047B1 (en) * | 1997-09-22 | 2001-03-06 | Ugimag, Inc. | Method and system to measure torque per unit current as a function of angle in hard disk drive actuators |
| US6701708B2 (en) * | 2001-05-03 | 2004-03-09 | Pasadena Power | Moveable regenerator for stirling engines |
| US6752595B2 (en) * | 1999-11-11 | 2004-06-22 | Hitachi Zosen Corporation | Propeller type windmill for power generation |
| US7320218B2 (en) * | 2004-10-12 | 2008-01-22 | Guy Silver | Method and system for generation of power using stirling engine principles |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2453375A (en) * | 1944-08-28 | 1948-11-09 | Kollsman Paul | Compressor |
| US2453374A (en) * | 1944-08-28 | 1948-11-09 | Kollsman Paul | Compressor |
| US2453373A (en) * | 1944-08-28 | 1948-11-09 | Kollsman Paul | Compressor |
| US2490064A (en) * | 1945-01-12 | 1949-12-06 | Kollsman Paul | Thermodynamic machine |
| US2569996A (en) * | 1945-08-20 | 1951-10-02 | Kollsman Paul | Self-adjusting reaction nozzle |
| US2514874A (en) * | 1945-08-24 | 1950-07-11 | Kollsman Paul | Rotating combustion products generator with turbulent fuel injection zone |
| US2520729A (en) * | 1945-08-27 | 1950-08-29 | Kollsman Paul | Machine for producing heat energy |
| US2490065A (en) * | 1945-08-27 | 1949-12-06 | Kollsman Paul | Thermodynamic machine |
| US2490067A (en) * | 1945-08-27 | 1949-12-06 | Kollsman Paul | Thermodynamic machine |
| US2490066A (en) * | 1945-08-27 | 1949-12-06 | Kollsman Paul | Diffuser |
| US2514875A (en) * | 1945-08-29 | 1950-07-11 | Kollsman Paul | U-passage gas turbine with turbulent heat transfer zone |
| US2569997A (en) * | 1946-01-04 | 1951-10-02 | Kollsman Paul | Jet device for discharging a mixture of fluids |
| SE307627B (en) * | 1967-02-09 | 1969-01-13 | J Oestberg | |
| US3986359A (en) * | 1973-05-29 | 1976-10-19 | Cryo Power, Inc. | Thermodynamic engine system and method |
| US3949557A (en) * | 1973-10-11 | 1976-04-13 | Michael Eskeli | Turbine |
| US4057965A (en) * | 1975-07-30 | 1977-11-15 | Michael Eskeli | Thermodynamic machine with step type heat addition |
| US3984981A (en) * | 1975-08-07 | 1976-10-12 | Redshaw Charles G | Rotary stirling engine |
| US4055960A (en) * | 1976-07-06 | 1977-11-01 | St Clair John Craig | Stirling cycle engine |
| US4130993A (en) * | 1977-04-11 | 1978-12-26 | Ectrice, Ltd. | Method and apparatus for converting thermal energy to rotational energy |
| DE3023219A1 (en) * | 1980-06-21 | 1982-01-07 | Klein, Schanzlin & Becker Ag, 6710 Frankenthal | TURBO PUMP |
| JPS5752608A (en) | 1980-09-17 | 1982-03-29 | Masayasu Negishi | Heat pipe type heat engine |
| US5224842A (en) * | 1992-01-10 | 1993-07-06 | Dziorny Paul J | Air cycle machine with interstage venting |
| US5325671A (en) * | 1992-09-11 | 1994-07-05 | Boehling Daniel E | Rotary heat engine |
| US5537823A (en) * | 1994-10-21 | 1996-07-23 | Vogel; Richard H. | High efficiency energy conversion system |
| AUPR726801A0 (en) * | 2001-08-27 | 2001-09-20 | Cameron, Michael John Vernon | Engine |
| US7487641B2 (en) * | 2003-11-14 | 2009-02-10 | The Trustees Of Columbia University In The City Of New York | Microfabricated rankine cycle steam turbine for power generation and methods of making the same |
-
2004
- 2004-10-12 US US10/963,274 patent/US8051655B2/en not_active Expired - Fee Related
-
2005
- 2005-02-09 US US11/054,057 patent/US7320218B2/en not_active Expired - Fee Related
- 2005-10-07 BR BRPI0515988-1A patent/BRPI0515988A/en not_active IP Right Cessation
- 2005-10-07 WO PCT/US2005/036391 patent/WO2006044323A2/en active Application Filing
- 2005-10-07 AU AU2005295908A patent/AU2005295908A1/en not_active Abandoned
- 2005-10-07 CA CA002581722A patent/CA2581722A1/en not_active Abandoned
- 2005-10-07 JP JP2007535885A patent/JP2008516149A/en active Pending
- 2005-10-07 CN CN2005800346418A patent/CN101044296B/en not_active Expired - Fee Related
- 2005-10-07 BR BRPI0515980-6A patent/BRPI0515980A/en not_active IP Right Cessation
- 2005-10-07 EP EP05810542A patent/EP1799965A2/en not_active Withdrawn
- 2005-10-07 CN CN2005800348714A patent/CN101044297B/en not_active Expired - Fee Related
- 2005-10-12 TW TW094135503A patent/TWI374975B/en not_active IP Right Cessation
- 2005-10-12 TW TW094135502A patent/TWI374974B/en not_active IP Right Cessation
-
2007
- 2007-11-21 US US11/943,902 patent/US20080178588A1/en not_active Abandoned
Patent Citations (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2597249A (en) * | 1945-08-24 | 1952-05-20 | Kollsman Paul | Thermodynamic engine |
| US3815362A (en) * | 1970-06-10 | 1974-06-11 | H Kolbinger | Rotary engine |
| US3744245A (en) * | 1971-06-21 | 1973-07-10 | D Kelly | Closed cycle rotary engine system |
| US3748057A (en) * | 1972-01-11 | 1973-07-24 | M Eskeli | Rotary compressor with cooling |
| US3809017A (en) * | 1972-01-11 | 1974-05-07 | M Eskeli | Heat and steam generator |
| US3791167A (en) * | 1972-01-20 | 1974-02-12 | M Eskeli | Heating and cooling wheel with dual rotor |
| US3795461A (en) * | 1972-08-10 | 1974-03-05 | M Eskeli | Compressor with cooling |
| US3793848A (en) * | 1972-11-27 | 1974-02-26 | M Eskeli | Gas compressor |
| US4142088A (en) * | 1973-08-17 | 1979-02-27 | The United States Of America As Represented By The United States Department Of Energy | Method of mounting a fuel pellet in a laser-excited fusion reactor |
| US3861147A (en) * | 1973-10-09 | 1975-01-21 | Michael Eskeli | Sealed single rotor turbine |
| US3931713A (en) * | 1973-10-11 | 1976-01-13 | Michael Eskeli | Turbine with regeneration |
| US3834179A (en) * | 1973-10-11 | 1974-09-10 | M Eskeli | Turbine with heating and cooling |
| US4107944A (en) * | 1973-10-18 | 1978-08-22 | Michael Eskeli | Heat pump with two rotors |
| US4269031A (en) * | 1979-03-02 | 1981-05-26 | Loskot John E | Heat engine |
| US4488524A (en) * | 1981-08-01 | 1984-12-18 | Nippondenso Co., Ltd. | Idling speed control for engines |
| US4629031A (en) * | 1984-08-24 | 1986-12-16 | Honda Giken Kogyo Kabushiki Kaisha | Soundproof engine-operated machine |
| US5473899A (en) * | 1993-06-10 | 1995-12-12 | Viteri; Fermin | Turbomachinery for Modified Ericsson engines and other power/refrigeration applications |
| US5751069A (en) * | 1996-07-01 | 1998-05-12 | General Motors Corporation | Heat engine generator control system |
| US5813235A (en) * | 1997-02-24 | 1998-09-29 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Resonantly coupled α-stirling cooler |
| US6196047B1 (en) * | 1997-09-22 | 2001-03-06 | Ugimag, Inc. | Method and system to measure torque per unit current as a function of angle in hard disk drive actuators |
| US6195992B1 (en) * | 1999-01-21 | 2001-03-06 | Arthur Charles Nommensen | Stirling cycle engine |
| US6752595B2 (en) * | 1999-11-11 | 2004-06-22 | Hitachi Zosen Corporation | Propeller type windmill for power generation |
| US6701708B2 (en) * | 2001-05-03 | 2004-03-09 | Pasadena Power | Moveable regenerator for stirling engines |
| US7320218B2 (en) * | 2004-10-12 | 2008-01-22 | Guy Silver | Method and system for generation of power using stirling engine principles |
Also Published As
| Publication number | Publication date |
|---|---|
| TWI374975B (en) | 2012-10-21 |
| TWI374974B (en) | 2012-10-21 |
| CA2581722A1 (en) | 2006-04-27 |
| US20060075752A1 (en) | 2006-04-13 |
| CN101044297A (en) | 2007-09-26 |
| BRPI0515988A (en) | 2008-08-12 |
| US7320218B2 (en) | 2008-01-22 |
| AU2005295908A1 (en) | 2006-04-27 |
| TW200617275A (en) | 2006-06-01 |
| TW200617274A (en) | 2006-06-01 |
| WO2006044323A3 (en) | 2006-06-29 |
| CN101044296A (en) | 2007-09-26 |
| US20060075753A1 (en) | 2006-04-13 |
| JP2008516149A (en) | 2008-05-15 |
| BRPI0515980A (en) | 2008-08-12 |
| CN101044296B (en) | 2010-06-23 |
| CN101044297B (en) | 2011-04-27 |
| US8051655B2 (en) | 2011-11-08 |
| EP1799965A2 (en) | 2007-06-27 |
| WO2006044323A2 (en) | 2006-04-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20080178588A1 (en) | Method and system for generation of power using stirling engine principles | |
| US6408937B1 (en) | Active cold plate/heat sink | |
| US6856037B2 (en) | Method and apparatus for converting dissipated heat to work energy | |
| JP2002147344A (en) | Reciprocating pump for liquid and method for forcibly feeding liquid | |
| US4240257A (en) | Heat pipe turbo generator | |
| KR20030007832A (en) | Heat engines and associated methods of producing mechanical energy and their application to vehicles | |
| CN1485526A (en) | Steam engine | |
| MXPA03003594A (en) | METHOD AND DEVICE FOR GENERATION OF ENERGY BY CONVECTION. | |
| JP2006197785A (en) | Motor cooling device | |
| EP4165309B1 (en) | Multisiphon passive cooling system with liquid bridge | |
| US20130133325A1 (en) | Power generation device and method | |
| JP5572690B2 (en) | A device designed to convert environmental thermal energy into useful energy | |
| US20090025388A1 (en) | Method and system for generation of power using stirling engine principles | |
| WO2006044259A1 (en) | Method and system for generation of power using stirling engine principles | |
| US20180087473A1 (en) | Double-acting free-piston-stirling cycle machine with linear generator | |
| US12098673B2 (en) | Rotary closed-cycle externally-heated engine | |
| CN220586051U (en) | Magnetic suspension flywheel energy storage rotor system | |
| JP2610356B2 (en) | Shaft sealing device for pump | |
| CN219164385U (en) | High-speed motor with self-heat-dissipation function | |
| CN118611323B (en) | Flywheel energy storage device, flywheel energy storage system and heat dissipation method | |
| US4067194A (en) | Closed circuit power system | |
| RU2249126C2 (en) | Method of and device for generation of energy by convection | |
| JPH0279748A (en) | Cooling device for vertical-shaft rotary electric machine | |
| JP2005002985A (en) | External-combustion engine | |
| HK1167270B (en) | Installation designed to convert environmental thermal energy into useful energy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |