US20080124835A1 - Hermetic seal and reliable bonding structures for 3d applications - Google Patents
Hermetic seal and reliable bonding structures for 3d applications Download PDFInfo
- Publication number
- US20080124835A1 US20080124835A1 US11/534,366 US53436606A US2008124835A1 US 20080124835 A1 US20080124835 A1 US 20080124835A1 US 53436606 A US53436606 A US 53436606A US 2008124835 A1 US2008124835 A1 US 2008124835A1
- Authority
- US
- United States
- Prior art keywords
- chips
- chip
- bonding material
- wafer
- wafers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 claims abstract description 53
- 230000013011 mating Effects 0.000 claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 13
- 238000004377 microelectronic Methods 0.000 claims abstract description 4
- 235000012431 wafers Nutrition 0.000 claims description 110
- 238000000034 method Methods 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 21
- 229910052710 silicon Inorganic materials 0.000 description 21
- 239000010703 silicon Substances 0.000 description 21
- 239000010949 copper Substances 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000000758 substrate Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011109 contamination Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 241000408659 Darpa Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 231100001010 corrosive Toxicity 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000012812 sealant material Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/808—Bonding techniques
- H01L2224/80894—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
- H01L2224/80895—Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06593—Mounting aids permanently on device; arrangements for alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a sealed semiconductor structure using a bonding technique and, more specifically, relates to a bonded sealed semiconductor structure including structural support elements.
- Integrated circuits form the basis for many electronic systems.
- an integrated circuit (IC) or chip includes a vast number of transistors and other circuit elements that are formed on a single semiconductor wafer and are interconnected to implement a desired function.
- the complexity of these integrated circuits (ICs) requires the use of an increasing number of linked transistors and other circuit elements.
- each integrated circuit performs one or more specific functions.
- computer systems include at least one microprocessor and a number of memory chips.
- each of these integrated circuits are formed on a separate chip, packaged independently and interconnected on, for example, a printed circuit board (PCB).
- PCB printed circuit board
- a wafer is a thin slice of semiconducting material, such as a silicon crystal, upon which microcircuits are constructed for example, by doping, etching, or deposition.
- Wafers are used in the fabrication of semiconductor devices such as integrated circuits or chips or dies.
- a single wafer may have a plurality of chips formed on the wafer.
- the wafer may be used having a plurality of chips formed therein, or the wafer may be cut to provide individual dies or chips.
- the wafers and chips or dies can form a stack by positioning the wafers and/or chips on top of one another.
- Copper bonding (Cu bonding) processes can be used to stack dies/chips at a chip-to-chip, chip-to-wafer, or wafer-to-wafer level.
- system modules have been introduced that electrically connect and package integrated circuit (IC) devices which are fabricated on the same or on different semiconductor wafers.
- system modules have been created by simply stacking two chips, e.g., a logic and memory chip, on top of one another in an arrangement commonly referred to as chip-on-chip structure.
- chip-on-chip structure e.g., a logic and memory chip
- MCM multi-chip module
- MCM multi-chip module
- COC chip-on-chip
- Vias and electrically connected pads refer to vias/pads with a plated hole that connects conductive tracks from one layer of a chip to another layer(s).
- Current solutions are not compatible with standard CMOS processes in which a variety of pattern densities and pad/via sizes may be used.
- due to mechanical stability issues most of the bonding fails occur at the edge of the bonded pattern which often, in addition to degraded bonding yield, leads to corrosion issues.
- a method or device is needed to provide additional protection from mechanical damage (such as crack propagation, chipping, dicing, etc.) caused during the semiconductor fabrication process.
- a sealed microelectronic structure providing mechanical stress endurance which comprises at least two chips including and being electrically connected to a semiconductor structure and comprising outer edges.
- Each chip includes a continuous length of bonding material on a planar surface area thereof defining a perimeter in spaced adjacency to the outer edge.
- At least one support column is connected to each of the chips and positioned within the perimeter of each chip. Each support column extends outwardly such that when the at least two chips are positioned in overlapping relation to one another, opposing support columns mate with each other or with an opposing planar surface area on the overlapping chip.
- a seal between the at least two chips results from the at least two chips being positioned in overlapping relation to one another such that the bonding material on each chip is in mating relation to each other whereby the seal is formed when the at least two chips are mated together resulting in a bonded chip structure.
- the bonding material on the at least two chips is compressed and the bonding material is heated to form the seal.
- a plurality of chips are positioned on at least two wafers.
- the wafers each include a continuous bonding material along a perimeter substantially adjacent to an outer edge of the wafer.
- the at least two wafers are sealed together when the bonding material on each of the wafers is compressed on each other in mating relation and heated to form the seal.
- the chips are electrically connected to their respective substrates to form an electrical circuit on the chips and the support columns are non-electrical and thereby are not part of the electrical circuit.
- the chips are electrically connected to their respective substrates and electrical connected to their respective wafers to form an electrical circuit on the chips and the wafers and the support columns are non-electric and thereby not part of the electrical circuit.
- the chips have multiple layers and the support columns are positioned between the layers and adapted to provide support between the layers.
- a method for sealing a microelectronic structure and providing mechanical stress endurance comprises providing at least two chips including and being electrically connected to a semiconductor structure at a plurality of locations.
- a length of continuous bonding material is deposited on each chip on a planar surface thereof defining a perimeter substantially adjacent to the outer edge.
- At least one support column is connected on each of the chips and within the perimeter of each chip, and each support column extends outwardly.
- the chips are positioned in overlapping relation such that the bonding material and the support columns are in mating relation to each other.
- the chips are compressed and thereby the bonding material is also compressed together.
- the bonding material is heated to form a seal about the perimeter of the chips whereby a bonded chip structure is formed.
- a plurality of chips are positioned on at least two wafers, and a bonding material is deposited along a perimeter adjacent to an outer edge of the wafer.
- the bonding material is compressed on each of the wafers together with each other in mating relation.
- the mated bonding material is heated to form a seal, thereby forming a bonded wafers structure.
- FIG. 1A is a block diagram according to an embodiment of the invention depicting a unbonded silicon wafers and Cu plated bond pads;
- FIG. 1B is a block diagram of the silicon wafers and Cu plated bond pads shown in FIG. 1A bonded together;
- FIG. 2 is plan view of a wafer including a plurality of chips with bonding material around the perimeter of the chips and the perimeter of the wafer;
- FIGS. 3A and 3B is a plan view of two wafers depicting a bonding material around their perimeters and having a plurality of bonding pads;
- FIG. 3C is a cross sectional view of the wafers shown in FIGS. 3A and 3B bonded together;
- FIGS. 4A and 4B are a plan view of two wafers including a plurality of chips wherein the wafers and the chips have bonding material on their perimeters;
- FIG. 4C is a perspective view of the wafers shown in FIGS. 4A and 4B bonded together.
- FIG. 4D is a cross sectional view along line X-X of the bonded wafers shown in FIG. 4C .
- the present invention provides the ability to seal chip/structures/wafers which enables mechanical stability of critical joined components and protects from outside environmental damage.
- the sealing procedure of the present invention for sealing stacked wafer or chips enables structures to be hermetically sealed at a chip/die level and also allows wafer-level sealing which will enable downstream full-wafer processing.
- the sealing solution can also be utilized for electrical signal propagation and thermal dissipation or as a thermal conductor (through sealant material itself or using sealant as a thermal structure for dissipation).
- Materials that can be used to seal together chips or wafers include: metals (for example: Cu—Cu, Au—Au, etc.); alloys (such as: Cu—Sn, AuSn, etc.); solders; dielectrics (oxide-oxide); conductive adhesives (Cu-loaded pastes) and any combination thereof (example indium-oxide).
- a first silicon wafer 10 a is positioned over a second silicon wafer 10 b .
- Each silicon wafer may include a plurality of electrical elements fabricated using known semiconductor fabricating techniques on a top surface and/or in an upper layer of the wafer or a chip. Further, the electrical elements can be connected to each other and to electrically conductive vias extending throughout the wafer or chip and/or a substrate portion of the wafer or chip forming multiple circuits to provide, for example, power, connectivity, or circuit logic.
- the first silicon wafer 10 a includes a silicon layer 14 a and an oxide layer 18 a .
- the second silicon wafer 10 b includes a silicon layer 14 b and an oxide layer 10 b , in mirror image relationship to the first silicon wafer 10 a .
- the first silicon wafer 10 a includes a copper (Cu) plated bond pad 22 a
- the second silicon wafer 10 b also includes a copper (Cu) plated bond pad 22 b .
- the bond pads 22 a and 22 b are positioned in mating relationship to each other.
- the first silicon wafer 10 a and second silicon wafer 10 b are bonded together at a bonded area 26 using the copper plated bond pads 22 a , 22 b of silicon layers 14 a , 14 b .
- the bonded area 26 formed by compressing the first and second silicon wafer 10 , 10 b together. Heat is also applied to the bonded area 26 to form the bond and seal the wafers 10 a , 10 b together.
- the first and second silicon wafers 10 a , 10 b are positioned in mating relation, as shown in FIG. 1A , and the Cu plated bonding pads 22 a , 22 b are mated together and sealed by using compression and heat.
- the bonded structure is preferably hermetically sealed, i.e., an airtight seal, which is intended to secure against the entry of unwanted particles and elements to maintain the quality of the electrical components and circuitry in the bonded structure.
- an airtight seal Other material may be used other than cooper to accomplish the sealing bond.
- the seal prevents corrosion from atmosphere (humidity or temperature) or foreign materials (contamination) and wet chemistry reaction and plasma damage from BEOL/Packaging processes.
- a silicon wafer 100 having a plurality of integrated circuits (ICs or chips) 104 positioned on a planar surface area 102 of the wafer 100 .
- Each of the chips 104 includes a bonding material 108 forming a perimeter on a planar surface area 105 of the chip 104 .
- the wafer 102 also has bonding material 112 forming a perimeter on the planar surface area 102 .
- the bonding material is copper, however, other suitable electrically conductive or non-conductive materials may be used.
- the chip and wafer perimeters formed by the bonding materials 108 , 112 may begin from outer edges 106 , 101 , respectively, and extend radially inwardly from the outer edges along the planar surface areas 105 , 102 , respectively, of the chips 104 and the wafer 100 . Further, the chip and wafers perimeters formed by the bonding materials 108 , 112 can also be adjacent, offset, or in spaced adjacency from the outer edges 106 , 101 , respectively.
- the chips 104 also include dummy bonding pads (ads, support columns/pillars) 116 (shown in FIG. 2 ), which may be made of copper or other suitable materials.
- the pads or copper pad (support columns/pillars) 116 are structures without any electrical connection, but have a specified position on the planar surface area 105 of the chip 104 and a specified height to contact mating pads on a chip (not shown) to be fitted over the chip 104 shown in FIG. 2 .
- the mating pads then form a structural column or support column (or pillar) in a sealed bonded structure of wafers or separate chips.
- the mating pads can also be bonded together when the wafer of chip is mated, thus forming a bonded support column.
- the mating pads 116 help support the wafer when stacked with other wafers, as will be discussed herein referring to FIG. 3C .
- a first chip 200 a and second chip 200 b each have planar surface areas 204 a , 204 b , respectively.
- Bonding materials 206 a , 206 b respectively, define perimeters around the surface areas 204 a , 204 b , respectively, on the first and second chips 200 a , 200 b .
- the bonding material may be cooper, as well, as other suitable materials.
- the perimeters defined by the bonding materials 206 a , 206 b extend inwardly along the planar surface areas 204 a , 204 b , respectively, from outer edges 202 a , 202 b , respectively.
- the chips 200 a , 200 b also include dummy bonding pads 208 a , 208 b , respectively (similarly to the chips 104 shown in FIG. 2 ), which may be made of copper or other suitable materials as discussed in regard to pads 116 on chip 104 in FIG. 2 .
- the pads 208 a , 208 b shown in FIG. 3A , 313 are structures without any electrical connection, but have a specified position on the planar surface areas 204 a , 204 b of the chips 200 a , 200 b , respectively.
- the bonding pads 212 A, 212 B may be placed in a geometric pattern, as shown in FIGS. 3A and 3B , but also may be placed in any pattern, or non-pattern desired, or in any quantity desired.
- Each of the pads 208 a on chip 200 a have a specified height to contact mating pads 208 b on chip 200 b when the chips 200 a , 200 b are placed in overlapping relation and bonded as shown in FIG. 3C .
- the bonded chip structure 250 comprises a bonded perimeter 216 consisting of bonding material 206 a and bonding material 206 b mated together. In the bonded chip 250 (shown in FIG.
- the bonding material 206 a , 206 b shown in FIGS. 3A and 3B are affixed together to form a seal 216 around the perimeter of the bonded chip 250 .
- the forming of the seal 216 includes compressing the bonding material together and heating the bonding material. Other methods of forming the seal are also contemplated and within the scope of the present invention.
- the seal 216 stops unwanted entry of, for example, materials, substances, or debris into the bonded chip 250 , i.e., between the chips 300 a and 300 b.
- the wafers 200 a , 200 b are shown bonded together as a bonded chip structure 250 , in cross-section, so that the mated pads or structural columns 220 are shown.
- the mated pads or structural columns 220 are the pads (or dummy pads) 212 a on first wafer 200 a and second wafer 200 b mated together.
- the dummy pads mated together to form structural columns 220 provide strength to the bonded wafer 250 .
- the pads 220 help support the surface areas 204 a and 204 b of the first and second wafers 200 a , 200 b , respectively.
- the surface areas 204 a , 204 b have an inherent weight, and thus there are axial forces 252 across the surface areas 204 a , 204 b perpendicular to the “X” axis 253 a and along the “Y” axis 253 b . More particularly, the axial forces 252 are from, for example, the inherent weight of the surface areas 204 a , 204 b of the first and second wafers 200 a , 200 b due to gravitation forces, or axial force (or pressure) from the weight of other chips (or wafers) stacked on the bonded chip 250 .
- the structural columns 220 provide support along the surface areas 204 a , 204 b of the first and second chips 200 a , 200 b , respectively, to support the axial forces. More specifically, when additional chips are stacked over each other, additional axial forces from the weight of additional chips bear down (along the “Y” axis 253 b ) on the outer top surface 256 of the bonded wafer 250 .
- the mated pads/structural columns 220 help to stabilize the bonded wafer 250 against torsional forces (or stresses), which may occur in the processing or fabricating of the wafer or from disproportionate weight distribution from stacking other chips (or wafers) over one another such that twisting or bending occurs along the surface areas 204 a , 204 b of the chips 200 a , 200 b . If torsional stresses are applied to the bonded chip 250 , the torsion causes twisting of the bonded chip 250 that may result in shearing stress which are perpendicular to surface areas 204 a , 204 b (in the “Y” direction 253 b ).
- the structural columns may be positioned on the surface area of a chip or wafer in an area unpopulated by other components to effectively distribute axial and torsional forces throughout the chip or wafer during processing. Distribution of forces throughout the chip or wafer lessens the force in one particular area and thereby reduces the stress in that area lessening the likelihood of a stress related fracture or break in the chip or wafer structure. Also, the support columns reduce possible stresses from torsion and axial loads on the seal. Further, an uncompromised seal (preferably a hermetic seal) about each chip or wafer prevents, for example, liquid and gas etchants/corrosives and particulate materials from ingressing into areas which will be damaged by such ingress.
- an uncompromised seal preferably a hermetic seal
- a chip or wafer may have multiple electrical reference layers connected by vertical vias (not shown).
- the dummy pads for example, as described in relation to FIGS. 3A-3C , can be positioned between layers in the chip or wafer to provide support between the layers, as well as providing support between the chips or wafers themselves.
- wafers 300 a , 300 b respectively, include a plurality of chips 304 positioned on surface areas 302 a , 302 b .
- the surface areas of the wafers 300 a , 300 b include bonding material 312 forming a perimeter around the wafers 300 a , 300 b with a thickness 320 (shown in FIG. 4D ) starting from the edge of the wafers 301 a , 301 b and extending inwardly on the surface areas 302 a , 302 b of the wafers 300 a , 300 b .
- the chips 304 on the surface areas 302 a , 302 b of the wafers 300 a , 300 b include dummy pads 208 a , 208 b as depicted in more detail in FIGS. 3A and 313 , and described above. Further, the chips 304 on wafers 300 a , 300 b include bonding material 206 a , 206 b , respectively, defining a perimeter around the chip 304 as shown in more detail in FIGS. 3A and 3B , and described above.
- Wafers 300 a and 300 b are combined by positioning one wafer over the other to form bonded wafer 350 , shown in FIG. 4C .
- the bonding material 312 shown in FIGS. 4A and 4B are affixed together to form a seal 312 around the perimeter of the bonded wafer 350 .
- the forming of the seal includes compressing the bonding material 312 between the wafers 300 a , 300 b and heating the bonding material 312 to form the bonded seal 316 .
- the bonded seal 316 stops unwanted entry of for example, materials, substances, or debris into the bonded wafer 350 , i.e., between the wafers 300 a and 300 b.
- FIG. 4D a cross-section of the combined wafers 350 is shown along line X-X to show the bonded seal 316 , resulting from bonding together of bonding material 312 on each wafer 300 a , 300 b , extending inwardly from the edges 301 a and 301 b of the wafers 300 a , 300 b .
- the bonded seal 316 around the perimeter of the wafer 350 is shown in FIG. 4D .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Micromachines (AREA)
- Wire Bonding (AREA)
Abstract
A sealed microelectronic structure which provides mechanical stress endurance and includes at least two chips being electrically connected to a semiconductor structure at a plurality of locations. Each chip includes a continuous bonding material along it's perimeter and at least one support column connected to each of the chips positioned within the perimeter of each chip. Each support column extends outwardly such that when the at least two chips are positioned over one another the support columns are in mating relation to each other. A seal between the at least two chips results from the overlapping relation of the chip to one another such that the bonding material and support columns are in mating relation to each other. Thus, the seal is formed when the at least two chips are mated together, and results in a bonded chip structure.
Description
- This invention was made with Government support under Contract No. N66001-00-C-8003 and N66001-04-C-8032 awarded by Defense. Advanced Research Projects Agency (DARPA). The Government has certain rights in this invention.
- The present invention relates to a sealed semiconductor structure using a bonding technique and, more specifically, relates to a bonded sealed semiconductor structure including structural support elements.
- Integrated circuits (ICs) form the basis for many electronic systems. Essentially, an integrated circuit (IC) or chip includes a vast number of transistors and other circuit elements that are formed on a single semiconductor wafer and are interconnected to implement a desired function. The complexity of these integrated circuits (ICs) requires the use of an increasing number of linked transistors and other circuit elements.
- Many modern electronic systems are created through the use of a variety of different integrated circuits, where each integrated circuit (IC or chip) performs one or more specific functions. For example, computer systems include at least one microprocessor and a number of memory chips. Conventionally, each of these integrated circuits (ICs) are formed on a separate chip, packaged independently and interconnected on, for example, a printed circuit board (PCB).
- In micoelectronics, a wafer is a thin slice of semiconducting material, such as a silicon crystal, upon which microcircuits are constructed for example, by doping, etching, or deposition. Wafers are used in the fabrication of semiconductor devices such as integrated circuits or chips or dies. A single wafer may have a plurality of chips formed on the wafer. The wafer may be used having a plurality of chips formed therein, or the wafer may be cut to provide individual dies or chips. The wafers and chips or dies can form a stack by positioning the wafers and/or chips on top of one another. Copper bonding (Cu bonding) processes can be used to stack dies/chips at a chip-to-chip, chip-to-wafer, or wafer-to-wafer level.
- As integrated circuit (IC) technology progresses, a need for a “system on a chip” in which the functionality of all of the IC devices of the system are packaged together without a conventional printed circuit board (PCB). Ideally, a computing system should be fabricated with all the necessary IC devices on a single chip. In practice, however, it is very difficult to implement a truly high-performance “system on a chip” because of vastly different fabrication processes and different manufacturing yields for the logic and memory circuits.
- As a compromise, various “system modules” have been introduced that electrically connect and package integrated circuit (IC) devices which are fabricated on the same or on different semiconductor wafers. Initially, system modules have been created by simply stacking two chips, e.g., a logic and memory chip, on top of one another in an arrangement commonly referred to as chip-on-chip structure. Subsequently, multi-chip module (MCM) technology has been utilized to stack a number of chips on a common substrate to reduce the overall size and weight of the package which directly translates into reduced system size.
- Existing multi-chip module (MCM) technology provides performance enhancements over single chip or chip-on-chip (COC) packaging approaches. For example, when several semiconductor chips are mounted and interconnected on a common substrate through very high density interconnects, higher silicon packaging density and shorter chip-to-chip interconnections can be achieved. In addition, low dielectric constant materials and higher wiring density can also be obtained which lead to increased system speed and reliability, reduced weight, volume, power consumption, and heat to be dissipated for the same level of performance. However, MCM approaches still suffer from additional problems, such as, bulky packaging, wire length and wire bonding that gives rise to stray inductances which interfere with the operation of the system module.
- Typically, optimization of Cu bonding was achieved by utilizing one pattern density with specific bond pad dimensions and/or via dimensions. Vias and electrically connected pads refer to vias/pads with a plated hole that connects conductive tracks from one layer of a chip to another layer(s). Current solutions are not compatible with standard CMOS processes in which a variety of pattern densities and pad/via sizes may be used. Additionally, due to mechanical stability issues most of the bonding fails occur at the edge of the bonded pattern which often, in addition to degraded bonding yield, leads to corrosion issues. Additionally, for 3D applications, a method or device is needed to provide additional protection from mechanical damage (such as crack propagation, chipping, dicing, etc.) caused during the semiconductor fabrication process.
- In the current state of the art, electrically active bonded pads and/or vias had to be often placed in the central location of the pattern to provide good reliability for these contacts. One major challenge of three dimensional (3-D) wafer-to-wafer vertical stack integration technology is the metal bonding between wafers and between die in a single chip, and the wafer protection from possible corrosion and contamination caused or generated by process steps after the wafers are bonded from reaching active IC devices on the bonded wafers.
- Therefore, a need exists to erect a barrier structure by the edge of bonded wafers and individual die to protect the bonded wafers and die against corrosion and contamination in a three-dimensional (3-D) wafer-to-wafer vertical stack. It would also be desirable to provide an improved metal bonding method having acceptable bonding yield and reliability without being limited to pattern density or pad/via dimensions.
- In an aspect of the invention, a sealed microelectronic structure providing mechanical stress endurance is provided which comprises at least two chips including and being electrically connected to a semiconductor structure and comprising outer edges. Each chip includes a continuous length of bonding material on a planar surface area thereof defining a perimeter in spaced adjacency to the outer edge. At least one support column is connected to each of the chips and positioned within the perimeter of each chip. Each support column extends outwardly such that when the at least two chips are positioned in overlapping relation to one another, opposing support columns mate with each other or with an opposing planar surface area on the overlapping chip. A seal between the at least two chips results from the at least two chips being positioned in overlapping relation to one another such that the bonding material on each chip is in mating relation to each other whereby the seal is formed when the at least two chips are mated together resulting in a bonded chip structure.
- In a related aspect of the invention, the bonding material on the at least two chips is compressed and the bonding material is heated to form the seal.
- In another related aspect of the invention, a plurality of chips are positioned on at least two wafers. The wafers each include a continuous bonding material along a perimeter substantially adjacent to an outer edge of the wafer. The at least two wafers are sealed together when the bonding material on each of the wafers is compressed on each other in mating relation and heated to form the seal.
- In another related aspect of the invention, the chips are electrically connected to their respective substrates to form an electrical circuit on the chips and the support columns are non-electrical and thereby are not part of the electrical circuit.
- In another related aspect of the invention, the chips are electrically connected to their respective substrates and electrical connected to their respective wafers to form an electrical circuit on the chips and the wafers and the support columns are non-electric and thereby not part of the electrical circuit.
- In another related aspect of the invention the chips have multiple layers and the support columns are positioned between the layers and adapted to provide support between the layers.
- In an aspect of the present invention, a method for sealing a microelectronic structure and providing mechanical stress endurance comprises providing at least two chips including and being electrically connected to a semiconductor structure at a plurality of locations. A length of continuous bonding material is deposited on each chip on a planar surface thereof defining a perimeter substantially adjacent to the outer edge. At least one support column is connected on each of the chips and within the perimeter of each chip, and each support column extends outwardly. The chips are positioned in overlapping relation such that the bonding material and the support columns are in mating relation to each other. The chips are compressed and thereby the bonding material is also compressed together. The bonding material is heated to form a seal about the perimeter of the chips whereby a bonded chip structure is formed.
- In a related aspect of the invention, a plurality of chips are positioned on at least two wafers, and a bonding material is deposited along a perimeter adjacent to an outer edge of the wafer. The bonding material is compressed on each of the wafers together with each other in mating relation. The mated bonding material is heated to form a seal, thereby forming a bonded wafers structure.
- These and other objects, features and advantages of the present invention will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings, in which:
-
FIG. 1A is a block diagram according to an embodiment of the invention depicting a unbonded silicon wafers and Cu plated bond pads; -
FIG. 1B is a block diagram of the silicon wafers and Cu plated bond pads shown inFIG. 1A bonded together; -
FIG. 2 is plan view of a wafer including a plurality of chips with bonding material around the perimeter of the chips and the perimeter of the wafer; -
FIGS. 3A and 3B is a plan view of two wafers depicting a bonding material around their perimeters and having a plurality of bonding pads; -
FIG. 3C is a cross sectional view of the wafers shown inFIGS. 3A and 3B bonded together; -
FIGS. 4A and 4B are a plan view of two wafers including a plurality of chips wherein the wafers and the chips have bonding material on their perimeters; -
FIG. 4C is a perspective view of the wafers shown inFIGS. 4A and 4B bonded together; and -
FIG. 4D is a cross sectional view along line X-X of the bonded wafers shown inFIG. 4C . - Generally, the present invention provides the ability to seal chip/structures/wafers which enables mechanical stability of critical joined components and protects from outside environmental damage. The sealing procedure of the present invention for sealing stacked wafer or chips enables structures to be hermetically sealed at a chip/die level and also allows wafer-level sealing which will enable downstream full-wafer processing. Furthermore, the sealing solution can also be utilized for electrical signal propagation and thermal dissipation or as a thermal conductor (through sealant material itself or using sealant as a thermal structure for dissipation). Materials that can be used to seal together chips or wafers include: metals (for example: Cu—Cu, Au—Au, etc.); alloys (such as: Cu—Sn, AuSn, etc.); solders; dielectrics (oxide-oxide); conductive adhesives (Cu-loaded pastes) and any combination thereof (example indium-oxide).
- More specifically, referring to
FIG. 1A , for illustrative purposes, twosilicon wafers 10 are shown. Afirst silicon wafer 10 a is positioned over asecond silicon wafer 10 b. Each silicon wafer may include a plurality of electrical elements fabricated using known semiconductor fabricating techniques on a top surface and/or in an upper layer of the wafer or a chip. Further, the electrical elements can be connected to each other and to electrically conductive vias extending throughout the wafer or chip and/or a substrate portion of the wafer or chip forming multiple circuits to provide, for example, power, connectivity, or circuit logic. Thefirst silicon wafer 10 a includes asilicon layer 14 a and anoxide layer 18 a. Similarly, thesecond silicon wafer 10 b includes asilicon layer 14 b and anoxide layer 10 b, in mirror image relationship to thefirst silicon wafer 10 a. Further, thefirst silicon wafer 10 a includes a copper (Cu) platedbond pad 22 a, and thesecond silicon wafer 10 b also includes a copper (Cu) platedbond pad 22 b. The 22 a and 22 b are positioned in mating relationship to each other.bond pads - Referring to
FIG. 1B , thefirst silicon wafer 10 a andsecond silicon wafer 10 b are bonded together at a bondedarea 26 using the copper plated 22 a, 22 b of silicon layers 14 a, 14 b. The bondedbond pads area 26 formed by compressing the first and 10, 10 b together. Heat is also applied to the bondedsecond silicon wafer area 26 to form the bond and seal the 10 a, 10 b together. Thus, the first andwafers 10 a, 10 b are positioned in mating relation, as shown insecond silicon wafers FIG. 1A , and the Cu plated 22 a, 22 b are mated together and sealed by using compression and heat. The bonded structure is preferably hermetically sealed, i.e., an airtight seal, which is intended to secure against the entry of unwanted particles and elements to maintain the quality of the electrical components and circuitry in the bonded structure. Other material may be used other than cooper to accomplish the sealing bond. Further, the seal prevents corrosion from atmosphere (humidity or temperature) or foreign materials (contamination) and wet chemistry reaction and plasma damage from BEOL/Packaging processes.bonding pads - Referring to
FIG. 2 , asilicon wafer 100 is shown having a plurality of integrated circuits (ICs or chips) 104 positioned on aplanar surface area 102 of thewafer 100. Each of thechips 104 includes abonding material 108 forming a perimeter on aplanar surface area 105 of thechip 104. Thewafer 102 also hasbonding material 112 forming a perimeter on theplanar surface area 102. In the embodiment of the invention shown inFIG. 2 , the bonding material is copper, however, other suitable electrically conductive or non-conductive materials may be used. It is understood, that the chip and wafer perimeters formed by the 108, 112, respectively, may begin frombonding materials 106, 101, respectively, and extend radially inwardly from the outer edges along theouter edges 105, 102, respectively, of theplanar surface areas chips 104 and thewafer 100. Further, the chip and wafers perimeters formed by the 108, 112 can also be adjacent, offset, or in spaced adjacency from thebonding materials 106, 101, respectively.outer edges - The
chips 104 also include dummy bonding pads (ads, support columns/pillars) 116 (shown inFIG. 2 ), which may be made of copper or other suitable materials. The pads or copper pad (support columns/pillars) 116 are structures without any electrical connection, but have a specified position on theplanar surface area 105 of thechip 104 and a specified height to contact mating pads on a chip (not shown) to be fitted over thechip 104 shown inFIG. 2 . The mating pads then form a structural column or support column (or pillar) in a sealed bonded structure of wafers or separate chips. The mating pads can also be bonded together when the wafer of chip is mated, thus forming a bonded support column. Themating pads 116 help support the wafer when stacked with other wafers, as will be discussed herein referring toFIG. 3C . - Referring to
FIGS. 3A and 3B , a pair ofchips 200 are shown in mirror image relation. Afirst chip 200 a andsecond chip 200 b each have 204 a, 204 b, respectively.planar surface areas 206 a, 206 b, respectively, define perimeters around theBonding materials 204 a, 204 b, respectively, on the first andsurface areas 200 a, 200 b. As discussed in relation tosecond chips FIG. 2 , the bonding material may be cooper, as well, as other suitable materials. The perimeters defined by the 206 a, 206 b extend inwardly along thebonding materials 204 a, 204 b, respectively, fromplanar surface areas 202 a, 202 b, respectively.outer edges - The
200 a, 200 b also includechips dummy bonding pads 208 a, 208 b, respectively (similarly to thechips 104 shown inFIG. 2 ), which may be made of copper or other suitable materials as discussed in regard topads 116 onchip 104 inFIG. 2 . Similarly to chip 104 shown inFIG. 2 , thepads 208 a, 208 b shown inFIG. 3A , 313 are structures without any electrical connection, but have a specified position on the 204 a, 204 b of theplanar surface areas 200 a, 200 b, respectively. The bonding pads 212A, 212B may be placed in a geometric pattern, as shown inchips FIGS. 3A and 3B , but also may be placed in any pattern, or non-pattern desired, or in any quantity desired. - Each of the pads 208 a on
chip 200 a have a specified height to contactmating pads 208 b onchip 200 b when the 200 a, 200 b are placed in overlapping relation and bonded as shown inchips FIG. 3C . Thepads 208 a, 208 b coupled (or bonded or fused) together form matedpads 220 or structural columns, show inFIG. 3C , in the bondedchip structure 250, as shown inFIG. 3C . Further, the bondedchip structure 250 comprises a bondedperimeter 216 consisting ofbonding material 206 a andbonding material 206 b mated together. In the bonded chip 250 (shown inFIG. 3C ), the 206 a, 206 b shown inbonding material FIGS. 3A and 3B are affixed together to form aseal 216 around the perimeter of the bondedchip 250. The forming of theseal 216 includes compressing the bonding material together and heating the bonding material. Other methods of forming the seal are also contemplated and within the scope of the present invention. Theseal 216 stops unwanted entry of, for example, materials, substances, or debris into the bondedchip 250, i.e., between thechips 300 a and 300 b. - Referring to
FIG. 3C , the 200 a, 200 b are shown bonded together as a bondedwafers chip structure 250, in cross-section, so that the mated pads orstructural columns 220 are shown. The mated pads orstructural columns 220 are the pads (or dummy pads) 212 a onfirst wafer 200 a andsecond wafer 200 b mated together. The dummy pads mated together to formstructural columns 220 provide strength to the bondedwafer 250. Thepads 220 help support the 204 a and 204 b of the first andsurface areas 200 a, 200 b, respectively. Thesecond wafers 204 a, 204 b have an inherent weight, and thus there aresurface areas axial forces 252 across the 204 a, 204 b perpendicular to the “X”surface areas axis 253 a and along the “Y”axis 253 b. More particularly, theaxial forces 252 are from, for example, the inherent weight of the 204 a, 204 b of the first andsurface areas 200 a, 200 b due to gravitation forces, or axial force (or pressure) from the weight of other chips (or wafers) stacked on the bondedsecond wafers chip 250. Thestructural columns 220 provide support along the 204 a, 204 b of the first andsurface areas 200 a, 200 b, respectively, to support the axial forces. More specifically, when additional chips are stacked over each other, additional axial forces from the weight of additional chips bear down (along the “Y”second chips axis 253 b) on the outertop surface 256 of the bondedwafer 250. Further, the mated pads/structural columns 220 help to stabilize the bondedwafer 250 against torsional forces (or stresses), which may occur in the processing or fabricating of the wafer or from disproportionate weight distribution from stacking other chips (or wafers) over one another such that twisting or bending occurs along the 204 a, 204 b of thesurface areas 200 a, 200 b. If torsional stresses are applied to the bondedchips chip 250, the torsion causes twisting of the bondedchip 250 that may result in shearing stress which are perpendicular to 204 a, 204 b (in the “Y”surface areas direction 253 b). Thus, in one example, the structural columns may be positioned on the surface area of a chip or wafer in an area unpopulated by other components to effectively distribute axial and torsional forces throughout the chip or wafer during processing. Distribution of forces throughout the chip or wafer lessens the force in one particular area and thereby reduces the stress in that area lessening the likelihood of a stress related fracture or break in the chip or wafer structure. Also, the support columns reduce possible stresses from torsion and axial loads on the seal. Further, an uncompromised seal (preferably a hermetic seal) about each chip or wafer prevents, for example, liquid and gas etchants/corrosives and particulate materials from ingressing into areas which will be damaged by such ingress. - It is understood that a chip or wafer may have multiple electrical reference layers connected by vertical vias (not shown). The dummy pads, for example, as described in relation to
FIGS. 3A-3C , can be positioned between layers in the chip or wafer to provide support between the layers, as well as providing support between the chips or wafers themselves. - Referring to
FIGS. 4A and 4B ,wafers 300 a, 300 b, respectively, include a plurality ofchips 304 positioned on 302 a, 302 b. The surface areas of thesurface areas wafers 300 a, 300 b includebonding material 312 forming a perimeter around thewafers 300 a, 300 b with a thickness 320 (shown inFIG. 4D ) starting from the edge of the 301 a, 301 b and extending inwardly on thewafers 302 a, 302 b of thesurface areas wafers 300 a, 300 b. Thechips 304 on the 302 a, 302 b of thesurface areas wafers 300 a, 300 b includedummy pads 208 a, 208 b as depicted in more detail inFIGS. 3A and 313 , and described above. Further, thechips 304 onwafers 300 a, 300 b include 206 a, 206 b, respectively, defining a perimeter around thebonding material chip 304 as shown in more detail inFIGS. 3A and 3B , and described above. -
Wafers 300 a and 300 b are combined by positioning one wafer over the other to form bondedwafer 350, shown inFIG. 4C . In the bondedwafer 350, thebonding material 312 shown inFIGS. 4A and 4B are affixed together to form aseal 312 around the perimeter of the bondedwafer 350. The forming of the seal includes compressing thebonding material 312 between thewafers 300 a, 300 b and heating thebonding material 312 to form the bondedseal 316. The bondedseal 316 stops unwanted entry of for example, materials, substances, or debris into the bondedwafer 350, i.e., between thewafers 300 a and 300 b. - Referring to
FIG. 4D , a cross-section of the combinedwafers 350 is shown along line X-X to show the bondedseal 316, resulting from bonding together ofbonding material 312 on eachwafer 300 a, 300 b, extending inwardly from the 301 a and 301 b of theedges wafers 300 a, 300 b. The bondedseal 316 around the perimeter of thewafer 350 is shown inFIG. 4D . - While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that changes in forms and details may be made without departing from the spirit and scope of the present application. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated herein, but falls within the scope of the appended claims.
Claims (4)
1-6. (canceled)
7. A method for sealing a microelectronic structure and providing mechanical stress endurance, comprising:
providing and positioning a plurality of chips on at least two wafers being electrically connected to a semiconductor structure at a plurality of locations, the chips comprising outer edges;
depositing a length of continuous bonding material on each chip on a planar surface thereof defining a perimeter substantially adjacent to the outer edge of each chip;
connecting at least one support column on each of the chips and within the perimeter of each chip, each support column extending outwardly;
positioning the chips in overlapping relation such that the bonding material and the support columns are in mating relation to each other, respectively;
compressing the chips and thereby the bonding material together;
heating the bonding material to form a seal about the perimeter of the chips whereby a bonded chip structure is formed;
positioning a plurality of support columns between multiple layers in the chips to provide support between the layers;
depositing a bonding material along a perimeter adjacent to an outer edge of the wafer;
compressing the bonding material on each of the wafers together with each other in mating relation; and
heating the mated bonding material to form a seal and a bonded wafer structure.
8. (canceled)
9. (canceled)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/534,366 US20080124835A1 (en) | 2006-11-03 | 2006-11-03 | Hermetic seal and reliable bonding structures for 3d applications |
| US12/026,776 US7683478B2 (en) | 2006-11-03 | 2008-02-06 | Hermetic seal and reliable bonding structures for 3D applications |
| US12/035,053 US20080268574A1 (en) | 2006-11-03 | 2008-02-21 | Hermetic seal and reliable bonding structures for 3d applications |
| US12/038,501 US7786596B2 (en) | 2006-11-03 | 2008-02-27 | Hermetic seal and reliable bonding structures for 3D applications |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/534,366 US20080124835A1 (en) | 2006-11-03 | 2006-11-03 | Hermetic seal and reliable bonding structures for 3d applications |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/026,776 Division US7683478B2 (en) | 2006-11-03 | 2008-02-06 | Hermetic seal and reliable bonding structures for 3D applications |
| US12/035,053 Continuation US20080268574A1 (en) | 2006-11-03 | 2008-02-21 | Hermetic seal and reliable bonding structures for 3d applications |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080124835A1 true US20080124835A1 (en) | 2008-05-29 |
Family
ID=39464185
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/534,366 Abandoned US20080124835A1 (en) | 2006-11-03 | 2006-11-03 | Hermetic seal and reliable bonding structures for 3d applications |
| US12/026,776 Expired - Fee Related US7683478B2 (en) | 2006-11-03 | 2008-02-06 | Hermetic seal and reliable bonding structures for 3D applications |
| US12/035,053 Abandoned US20080268574A1 (en) | 2006-11-03 | 2008-02-21 | Hermetic seal and reliable bonding structures for 3d applications |
| US12/038,501 Active 2027-02-18 US7786596B2 (en) | 2006-11-03 | 2008-02-27 | Hermetic seal and reliable bonding structures for 3D applications |
Family Applications After (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/026,776 Expired - Fee Related US7683478B2 (en) | 2006-11-03 | 2008-02-06 | Hermetic seal and reliable bonding structures for 3D applications |
| US12/035,053 Abandoned US20080268574A1 (en) | 2006-11-03 | 2008-02-21 | Hermetic seal and reliable bonding structures for 3d applications |
| US12/038,501 Active 2027-02-18 US7786596B2 (en) | 2006-11-03 | 2008-02-27 | Hermetic seal and reliable bonding structures for 3D applications |
Country Status (1)
| Country | Link |
|---|---|
| US (4) | US20080124835A1 (en) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180190583A1 (en) * | 2016-12-29 | 2018-07-05 | Invensas Bonding Technologies, Inc. | Bonded structures with integrated passive component |
| US10269708B2 (en) | 2015-12-18 | 2019-04-23 | Invensas Bonding Technologies, Inc. | Increased contact alignment tolerance for direct bonding |
| US10276909B2 (en) | 2016-12-30 | 2019-04-30 | Invensas Bonding Technologies, Inc. | Structure comprising at least a first element bonded to a carrier having a closed metallic channel waveguide formed therein |
| US10446487B2 (en) | 2016-09-30 | 2019-10-15 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
| US10522499B2 (en) | 2017-02-09 | 2019-12-31 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US10546832B2 (en) | 2016-12-21 | 2020-01-28 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US10784191B2 (en) | 2017-03-31 | 2020-09-22 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
| US10923408B2 (en) | 2017-12-22 | 2021-02-16 | Invensas Bonding Technologies, Inc. | Cavity packages |
| US11004757B2 (en) | 2018-05-14 | 2021-05-11 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US11169326B2 (en) | 2018-02-26 | 2021-11-09 | Invensas Bonding Technologies, Inc. | Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects |
| US11205600B2 (en) | 2014-03-12 | 2021-12-21 | Invensas Corporation | Integrated circuits protected by substrates with cavities, and methods of manufacture |
| US11257727B2 (en) | 2017-03-21 | 2022-02-22 | Invensas Bonding Technologies, Inc. | Seal for microelectronic assembly |
| US11335657B2 (en) * | 2020-09-16 | 2022-05-17 | International Business Machines Corporation | Wafer scale supercomputer |
| US11380597B2 (en) | 2017-12-22 | 2022-07-05 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US11515291B2 (en) | 2018-08-28 | 2022-11-29 | Adeia Semiconductor Inc. | Integrated voltage regulator and passive components |
| US11626363B2 (en) | 2016-12-29 | 2023-04-11 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
| US11715730B2 (en) | 2017-03-16 | 2023-08-01 | Adeia Semiconductor Technologies Llc | Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements |
| US11762200B2 (en) | 2019-12-17 | 2023-09-19 | Adeia Semiconductor Bonding Technologies Inc. | Bonded optical devices |
| US11881454B2 (en) | 2016-10-07 | 2024-01-23 | Adeia Semiconductor Inc. | Stacked IC structure with orthogonal interconnect layers |
| US11901281B2 (en) | 2019-03-11 | 2024-02-13 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
| US12270970B2 (en) | 2018-03-20 | 2025-04-08 | Adeia Semiconductor Bonding Technologies Inc. | Direct-bonded lamination for improved image clarity in optical devices |
| US12374641B2 (en) | 2019-06-12 | 2025-07-29 | Adeia Semiconductor Bonding Technologies Inc. | Sealed bonded structures and methods for forming the same |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7825517B2 (en) * | 2007-07-16 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for packaging semiconductor dies having through-silicon vias |
| US7863721B2 (en) * | 2008-06-11 | 2011-01-04 | Stats Chippac, Ltd. | Method and apparatus for wafer level integration using tapered vias |
| KR101695353B1 (en) * | 2010-10-06 | 2017-01-11 | 삼성전자 주식회사 | Semiconductor package and semiconductor package module |
| US8441134B2 (en) | 2011-09-09 | 2013-05-14 | United Microelectronics Corporation | Chip stacking structure |
| US9105628B1 (en) | 2012-03-29 | 2015-08-11 | Valery Dubin | Through substrate via (TSuV) structures and method of making the same |
| WO2013144801A1 (en) | 2012-03-30 | 2013-10-03 | Koninklijke Philips N.V. | Sealed semiconductor light emitting device. |
| US8809123B2 (en) * | 2012-06-05 | 2014-08-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three dimensional integrated circuit structures and hybrid bonding methods for semiconductor wafers |
| US9048283B2 (en) | 2012-06-05 | 2015-06-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid bonding systems and methods for semiconductor wafers |
| US9673169B2 (en) | 2013-02-05 | 2017-06-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for a wafer seal ring |
| US9287188B2 (en) * | 2013-02-05 | 2016-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for a seal ring structure |
| US10329142B2 (en) * | 2015-12-18 | 2019-06-25 | Samsung Electro-Mechanics Co., Ltd. | Wafer level package and method of manufacturing the same |
| US11158573B2 (en) * | 2018-10-22 | 2021-10-26 | Invensas Bonding Technologies, Inc. | Interconnect structures |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6661085B2 (en) * | 2002-02-06 | 2003-12-09 | Intel Corporation | Barrier structure against corrosion and contamination in three-dimensional (3-D) wafer-to-wafer vertical stack |
| US20040142540A1 (en) * | 2002-02-06 | 2004-07-22 | Kellar Scot A. | Wafer bonding for three-dimensional (3D) integration |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3418134B2 (en) * | 1999-02-12 | 2003-06-16 | ローム株式会社 | Semiconductor device with chip-on-chip structure |
| JP4502204B2 (en) * | 2005-03-22 | 2010-07-14 | ルネサスエレクトロニクス株式会社 | Semiconductor device |
-
2006
- 2006-11-03 US US11/534,366 patent/US20080124835A1/en not_active Abandoned
-
2008
- 2008-02-06 US US12/026,776 patent/US7683478B2/en not_active Expired - Fee Related
- 2008-02-21 US US12/035,053 patent/US20080268574A1/en not_active Abandoned
- 2008-02-27 US US12/038,501 patent/US7786596B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6661085B2 (en) * | 2002-02-06 | 2003-12-09 | Intel Corporation | Barrier structure against corrosion and contamination in three-dimensional (3-D) wafer-to-wafer vertical stack |
| US20040142540A1 (en) * | 2002-02-06 | 2004-07-22 | Kellar Scot A. | Wafer bonding for three-dimensional (3D) integration |
| US7056807B2 (en) * | 2002-02-06 | 2006-06-06 | Intel Corporation | Barrier structure against corrosion and contamination in three-dimensional (3-D) wafer-to-wafer vertical stack |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11205600B2 (en) | 2014-03-12 | 2021-12-21 | Invensas Corporation | Integrated circuits protected by substrates with cavities, and methods of manufacture |
| US10269708B2 (en) | 2015-12-18 | 2019-04-23 | Invensas Bonding Technologies, Inc. | Increased contact alignment tolerance for direct bonding |
| US10607937B2 (en) | 2015-12-18 | 2020-03-31 | Invensas Bonding Technologies, Inc. | Increased contact alignment tolerance for direct bonding |
| US10998265B2 (en) | 2016-09-30 | 2021-05-04 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
| US10446487B2 (en) | 2016-09-30 | 2019-10-15 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
| US12218059B2 (en) | 2016-10-07 | 2025-02-04 | Adeia Semiconductor Inc. | Stacked IC structure with orthogonal interconnect layers |
| US11881454B2 (en) | 2016-10-07 | 2024-01-23 | Adeia Semiconductor Inc. | Stacked IC structure with orthogonal interconnect layers |
| US11670615B2 (en) | 2016-12-21 | 2023-06-06 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures |
| US10879207B2 (en) | 2016-12-21 | 2020-12-29 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US10546832B2 (en) | 2016-12-21 | 2020-01-28 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US12100684B2 (en) | 2016-12-21 | 2024-09-24 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures |
| US12057383B2 (en) | 2016-12-29 | 2024-08-06 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
| US20180190583A1 (en) * | 2016-12-29 | 2018-07-05 | Invensas Bonding Technologies, Inc. | Bonded structures with integrated passive component |
| US11626363B2 (en) | 2016-12-29 | 2023-04-11 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
| US10276909B2 (en) | 2016-12-30 | 2019-04-30 | Invensas Bonding Technologies, Inc. | Structure comprising at least a first element bonded to a carrier having a closed metallic channel waveguide formed therein |
| US10879210B2 (en) | 2017-02-09 | 2020-12-29 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US10522499B2 (en) | 2017-02-09 | 2019-12-31 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US11715730B2 (en) | 2017-03-16 | 2023-08-01 | Adeia Semiconductor Technologies Llc | Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements |
| US12199082B2 (en) | 2017-03-16 | 2025-01-14 | Adeia Semiconductor Technologies Llc | Method of direct-bonded optoelectronic devices |
| US12166024B2 (en) | 2017-03-16 | 2024-12-10 | Adeia Semiconductor Technologies Llc | Direct-bonded LED arrays drivers |
| US12322667B2 (en) | 2017-03-21 | 2025-06-03 | Adeia Semiconductor Bonding Technologies Inc. | Seal for microelectronic assembly |
| US11417576B2 (en) | 2017-03-21 | 2022-08-16 | Invensas Bonding Technologies, Inc. | Seal for microelectronic assembly |
| US11257727B2 (en) | 2017-03-21 | 2022-02-22 | Invensas Bonding Technologies, Inc. | Seal for microelectronic assembly |
| US12381119B2 (en) | 2017-03-21 | 2025-08-05 | Adeia Semiconductor Bonding Technologies Inc. | Seal for microelectronic assembly |
| US10784191B2 (en) | 2017-03-31 | 2020-09-22 | Invensas Bonding Technologies, Inc. | Interface structures and methods for forming same |
| US11600542B2 (en) | 2017-12-22 | 2023-03-07 | Adeia Semiconductor Bonding Technologies Inc. | Cavity packages |
| US11948847B2 (en) | 2017-12-22 | 2024-04-02 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures |
| US10923408B2 (en) | 2017-12-22 | 2021-02-16 | Invensas Bonding Technologies, Inc. | Cavity packages |
| US11380597B2 (en) | 2017-12-22 | 2022-07-05 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US12271032B2 (en) | 2018-02-26 | 2025-04-08 | Adeia Semiconductor Bonding Technologies Inc. | Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects |
| US11169326B2 (en) | 2018-02-26 | 2021-11-09 | Invensas Bonding Technologies, Inc. | Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects |
| US11860415B2 (en) | 2018-02-26 | 2024-01-02 | Adeia Semiconductor Bonding Technologies Inc. | Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects |
| US12270970B2 (en) | 2018-03-20 | 2025-04-08 | Adeia Semiconductor Bonding Technologies Inc. | Direct-bonded lamination for improved image clarity in optical devices |
| US11004757B2 (en) | 2018-05-14 | 2021-05-11 | Invensas Bonding Technologies, Inc. | Bonded structures |
| US11955393B2 (en) | 2018-05-14 | 2024-04-09 | Adeia Semiconductor Bonding Technologies Inc. | Structures for bonding elements including conductive interface features |
| US12278215B2 (en) | 2018-08-28 | 2025-04-15 | Adeia Semiconductor Inc. | Integrated voltage regulator and passive components |
| US11515291B2 (en) | 2018-08-28 | 2022-11-29 | Adeia Semiconductor Inc. | Integrated voltage regulator and passive components |
| US11894345B2 (en) | 2018-08-28 | 2024-02-06 | Adeia Semiconductor Inc. | Integrated voltage regulator and passive components |
| US11901281B2 (en) | 2019-03-11 | 2024-02-13 | Adeia Semiconductor Bonding Technologies Inc. | Bonded structures with integrated passive component |
| US12374641B2 (en) | 2019-06-12 | 2025-07-29 | Adeia Semiconductor Bonding Technologies Inc. | Sealed bonded structures and methods for forming the same |
| US12153222B2 (en) | 2019-12-17 | 2024-11-26 | Adeia Semiconductor Bonding Technologies Inc. | Bonded optical devices |
| US11762200B2 (en) | 2019-12-17 | 2023-09-19 | Adeia Semiconductor Bonding Technologies Inc. | Bonded optical devices |
| US11335657B2 (en) * | 2020-09-16 | 2022-05-17 | International Business Machines Corporation | Wafer scale supercomputer |
Also Published As
| Publication number | Publication date |
|---|---|
| US20080268574A1 (en) | 2008-10-30 |
| US7683478B2 (en) | 2010-03-23 |
| US20090140404A1 (en) | 2009-06-04 |
| US20080142958A1 (en) | 2008-06-19 |
| US7786596B2 (en) | 2010-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7683478B2 (en) | Hermetic seal and reliable bonding structures for 3D applications | |
| US5600541A (en) | Vertical IC chip stack with discrete chip carriers formed from dielectric tape | |
| US20090014856A1 (en) | Microbump seal | |
| US7056807B2 (en) | Barrier structure against corrosion and contamination in three-dimensional (3-D) wafer-to-wafer vertical stack | |
| EP2097925B1 (en) | Stacked packages | |
| EP2647046B1 (en) | Stacked microelectronic assembly having interposer connecting active chips | |
| US5418687A (en) | Wafer scale multi-chip module | |
| US20180240789A1 (en) | Stackable electronic package and method of fabricating same | |
| US9024447B2 (en) | Stackable electronic package and method of making same | |
| US20070216008A1 (en) | Low profile semiconductor package-on-package | |
| KR100565961B1 (en) | 3D stacked chip package manufacturing method | |
| JP2003078106A (en) | Chip stacked package element and method of manufacturing the same | |
| EP3104410B1 (en) | Multi-chip module, on-board computer, sensor interface substrate, and multi-chip module manufacturing method | |
| US11367709B2 (en) | Semiconductor chip stack arrangement and semiconductor chip for producing such a semiconductor chip stack arrangement | |
| US20040124513A1 (en) | High-density multichip module package | |
| TWI445468B (en) | Computer modules with small thicknesses and associated methods of manufacturing | |
| US12119296B2 (en) | Encircling a semiconductor device with stacked frames on a substrate | |
| US8049323B2 (en) | Chip holder with wafer level redistribution layer | |
| US6972243B2 (en) | Fabrication of semiconductor dies with micro-pins and structures produced therewith | |
| CN211208440U (en) | Three-dimensional packaging structure integrating chip and antenna | |
| JP3651362B2 (en) | Manufacturing method of semiconductor device | |
| US20040089930A1 (en) | Simplified stacked chip assemblies | |
| KR100374517B1 (en) | Module structure of a power amplifier and method for packaging same | |
| US20250125310A1 (en) | Semiconductor package structures | |
| US9761535B1 (en) | Interposer, semiconductor package with the same and method for preparing a semiconductor package with the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, KUAN-NENG;FURMAN, BRUCE K.;SPROGIS, EDMUND J.;AND OTHERS;REEL/FRAME:018556/0521 Effective date: 20060922 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |