US20070260054A1 - Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof - Google Patents
Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof Download PDFInfo
- Publication number
- US20070260054A1 US20070260054A1 US11/724,553 US72455307A US2007260054A1 US 20070260054 A1 US20070260054 A1 US 20070260054A1 US 72455307 A US72455307 A US 72455307A US 2007260054 A1 US2007260054 A1 US 2007260054A1
- Authority
- US
- United States
- Prior art keywords
- hydrophobic
- polysaccharide
- hydrophobic derivative
- groups
- backbone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000004676 glycans Chemical class 0.000 title claims abstract description 228
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 228
- 229920001282 polysaccharide Polymers 0.000 title claims abstract description 209
- 239000005017 polysaccharide Substances 0.000 title claims abstract description 209
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims abstract description 41
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 22
- 239000012867 bioactive agent Substances 0.000 claims description 79
- 150000002430 hydrocarbons Chemical class 0.000 claims description 58
- 239000004215 Carbon black (E152) Substances 0.000 claims description 56
- 229930195733 hydrocarbon Natural products 0.000 claims description 56
- 238000006467 substitution reaction Methods 0.000 claims description 13
- 150000002840 non-reducing disaccharides Chemical class 0.000 claims description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 3
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 3
- 230000001028 anti-proliverative effect Effects 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 150000007942 carboxylates Chemical group 0.000 claims 1
- 125000002345 steroid group Chemical group 0.000 claims 1
- 238000000576 coating method Methods 0.000 abstract description 88
- 229920000642 polymer Polymers 0.000 abstract description 60
- 239000011248 coating agent Substances 0.000 description 74
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 55
- 239000010410 layer Substances 0.000 description 55
- 239000000243 solution Substances 0.000 description 51
- 229920002774 Maltodextrin Polymers 0.000 description 46
- 239000007787 solid Substances 0.000 description 44
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 44
- 239000005913 Maltodextrin Substances 0.000 description 42
- 229940035034 maltodextrin Drugs 0.000 description 42
- 238000003756 stirring Methods 0.000 description 42
- 239000000203 mixture Substances 0.000 description 40
- 229920000856 Amylose Polymers 0.000 description 39
- 239000008367 deionised water Substances 0.000 description 35
- 229910021641 deionized water Inorganic materials 0.000 description 35
- 238000000034 method Methods 0.000 description 32
- 238000002360 preparation method Methods 0.000 description 32
- 150000001875 compounds Chemical class 0.000 description 26
- -1 thermoformed Substances 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 25
- 230000015556 catabolic process Effects 0.000 description 23
- 238000006731 degradation reaction Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- 238000001914 filtration Methods 0.000 description 21
- 150000004804 polysaccharides Polymers 0.000 description 20
- 239000000126 substance Substances 0.000 description 17
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 239000007943 implant Substances 0.000 description 16
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 108010089934 carbohydrase Proteins 0.000 description 15
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 15
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical group CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000000502 dialysis Methods 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 229920002472 Starch Polymers 0.000 description 10
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 10
- 229920000747 poly(lactic acid) Polymers 0.000 description 10
- 239000008107 starch Substances 0.000 description 10
- 235000019698 starch Nutrition 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 125000000217 alkyl group Chemical group 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- YHASWHZGWUONAO-UHFFFAOYSA-N butanoyl butanoate Chemical compound CCCC(=O)OC(=O)CCC YHASWHZGWUONAO-UHFFFAOYSA-N 0.000 description 9
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 9
- 239000002953 phosphate buffered saline Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 229960005294 triamcinolone Drugs 0.000 description 9
- 229960002117 triamcinolone acetonide Drugs 0.000 description 9
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 9
- 229920000945 Amylopectin Polymers 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 8
- 229920002245 Dextrose equivalent Polymers 0.000 description 7
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 7
- 239000008199 coating composition Substances 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229960004194 lidocaine Drugs 0.000 description 7
- 239000011859 microparticle Substances 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 6
- 125000003636 chemical group Chemical group 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical group CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 6
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 238000012377 drug delivery Methods 0.000 description 5
- 238000010828 elution Methods 0.000 description 5
- PKHMTIRCAFTBDS-UHFFFAOYSA-N hexanoyl hexanoate Chemical compound CCCCCC(=O)OC(=O)CCCCC PKHMTIRCAFTBDS-UHFFFAOYSA-N 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 150000003431 steroids Chemical class 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229920001059 synthetic polymer Polymers 0.000 description 5
- 229960000604 valproic acid Drugs 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 4
- 229910000861 Mg alloy Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 4
- 229930014626 natural product Natural products 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- VRBFTYUMFJWSJY-UHFFFAOYSA-N 28804-46-8 Chemical compound ClC1CC(C=C2)=CC=C2C(Cl)CC2=CC=C1C=C2 VRBFTYUMFJWSJY-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 208000008883 Patent Foramen Ovale Diseases 0.000 description 3
- 229920001054 Poly(ethylene‐co‐vinyl acetate) Polymers 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 208000001910 Ventricular Heart Septal Defects Diseases 0.000 description 3
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 3
- 102000004139 alpha-Amylases Human genes 0.000 description 3
- 108090000637 alpha-Amylases Proteins 0.000 description 3
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000002421 anti-septic effect Effects 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 229940064004 antiseptic throat preparations Drugs 0.000 description 3
- 239000003443 antiviral agent Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000009795 derivation Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid ester group Chemical class C(CCCCCCCCCCC)(=O)O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001477 hydrophilic polymer Polymers 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 229930002330 retinoic acid Natural products 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 229960001727 tretinoin Drugs 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 201000003130 ventricular septal defect Diseases 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- IAKHMKGGTNLKSZ-INIZCTEOSA-N (S)-colchicine Chemical compound C1([C@@H](NC(C)=O)CC2)=CC(=O)C(OC)=CC=C1C1=C2C=C(OC)C(OC)=C1OC IAKHMKGGTNLKSZ-INIZCTEOSA-N 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229930186147 Cephalosporin Natural products 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 2
- 229940121710 HMGCoA reductase inhibitor Drugs 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- NHTGHBARYWONDQ-JTQLQIEISA-N L-α-methyl-Tyrosine Chemical compound OC(=O)[C@](N)(C)CC1=CC=C(O)C=C1 NHTGHBARYWONDQ-JTQLQIEISA-N 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 229920002732 Polyanhydride Polymers 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 208000002158 Proliferative Vitreoretinopathy Diseases 0.000 description 2
- 206010038934 Retinopathy proliferative Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 229940024171 alpha-amylase Drugs 0.000 description 2
- 229940035674 anesthetics Drugs 0.000 description 2
- 230000001754 anti-pyretic effect Effects 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 229940030600 antihypertensive agent Drugs 0.000 description 2
- 239000002220 antihypertensive agent Substances 0.000 description 2
- 239000002221 antipyretic Substances 0.000 description 2
- 229940125716 antipyretic agent Drugs 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 229940124587 cephalosporin Drugs 0.000 description 2
- 150000001780 cephalosporins Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- 210000000795 conjunctiva Anatomy 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 125000002228 disulfide group Chemical group 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000007515 enzymatic degradation Effects 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 239000003527 fibrinolytic agent Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000003193 general anesthetic agent Substances 0.000 description 2
- 125000005597 hydrazone group Chemical group 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 239000002471 hydroxymethylglutaryl coenzyme A reductase inhibitor Substances 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 229940125721 immunosuppressive agent Drugs 0.000 description 2
- 229960000905 indomethacin Drugs 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- IYETZZCWLLUHIJ-UHFFFAOYSA-N methyl-(1-phenylpropan-2-yl)-prop-2-ynylazanium;chloride Chemical compound Cl.C#CCN(C)C(C)CC1=CC=CC=C1 IYETZZCWLLUHIJ-UHFFFAOYSA-N 0.000 description 2
- 150000002772 monosaccharides Chemical class 0.000 description 2
- 208000021971 neovascular inflammatory vitreoretinopathy Diseases 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000004632 polycaprolactone Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000000622 polydioxanone Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000006785 proliferative vitreoretinopathy Effects 0.000 description 2
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229960002930 sirolimus Drugs 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- YLJREFDVOIBQDA-UHFFFAOYSA-N tacrine Chemical compound C1=CC=C2C(N)=C(CCCC3)C3=NC2=C1 YLJREFDVOIBQDA-UHFFFAOYSA-N 0.000 description 2
- 229960001685 tacrine Drugs 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- ZPEFMSTTZXJOTM-OULXEKPRSA-N (1R,2S)-tranylcypromine hydrochloride Chemical compound Cl.N[C@@H]1C[C@H]1C1=CC=CC=C1 ZPEFMSTTZXJOTM-OULXEKPRSA-N 0.000 description 1
- XDIYNQZUNSSENW-UUBOPVPUSA-N (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O XDIYNQZUNSSENW-UUBOPVPUSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- RJMIEHBSYVWVIN-LLVKDONJSA-N (2r)-2-[4-(3-oxo-1h-isoindol-2-yl)phenyl]propanoic acid Chemical compound C1=CC([C@H](C(O)=O)C)=CC=C1N1C(=O)C2=CC=CC=C2C1 RJMIEHBSYVWVIN-LLVKDONJSA-N 0.000 description 1
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- FJLGEFLZQAZZCD-MCBHFWOFSA-N (3R,5S)-fluvastatin Chemical compound C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC(O)=O)=C1C1=CC=C(F)C=C1 FJLGEFLZQAZZCD-MCBHFWOFSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- PGRNEGLBSNLPNP-UHFFFAOYSA-N 1,6-dichloro-3-methylhex-1-ene Chemical compound ClC=CC(C)CCCCl PGRNEGLBSNLPNP-UHFFFAOYSA-N 0.000 description 1
- CZJMQTZQSNUDNV-UHFFFAOYSA-N 1-(2,3-dichlorophenyl)ethanamine Chemical compound CC(N)C1=CC=CC(Cl)=C1Cl CZJMQTZQSNUDNV-UHFFFAOYSA-N 0.000 description 1
- UOTMYNBWXDUBNX-UHFFFAOYSA-N 1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxyisoquinolin-2-ium;chloride Chemical compound Cl.C1=C(OC)C(OC)=CC=C1CC1=NC=CC2=CC(OC)=C(OC)C=C12 UOTMYNBWXDUBNX-UHFFFAOYSA-N 0.000 description 1
- YGEIMSMISRCBFF-UHFFFAOYSA-M 1-[bis(4-chlorophenyl)methyl]-3-[2-(2,4-dichlorophenyl)-2-[(2,4-dichlorophenyl)methoxy]ethyl]imidazol-3-ium;chloride Chemical compound [Cl-].C1=CC(Cl)=CC=C1C([N+]1=CN(CC(OCC=2C(=CC(Cl)=CC=2)Cl)C=2C(=CC(Cl)=CC=2)Cl)C=C1)C1=CC=C(Cl)C=C1 YGEIMSMISRCBFF-UHFFFAOYSA-M 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- QRIMLDXJAPZHJE-UHFFFAOYSA-N 2,3-dihydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(O)CO QRIMLDXJAPZHJE-UHFFFAOYSA-N 0.000 description 1
- OWPUOLBODXJOKH-UHFFFAOYSA-N 2,3-dihydroxypropyl prop-2-enoate Chemical compound OCC(O)COC(=O)C=C OWPUOLBODXJOKH-UHFFFAOYSA-N 0.000 description 1
- FHIKZROVIDCMJA-UHFFFAOYSA-N 2-(2,2-diphenylpentanoyloxy)ethyl-diethylazanium;chloride Chemical compound Cl.C=1C=CC=CC=1C(C(=O)OCCN(CC)CC)(CCC)C1=CC=CC=C1 FHIKZROVIDCMJA-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- QUCRZIVNKYXKAM-UHFFFAOYSA-N 2-(dimethylamino)-1-phenothiazin-10-ylpropan-1-one;hydron;chloride Chemical compound Cl.C1=CC=C2N(C(=O)C(N(C)C)C)C3=CC=CC=C3SC2=C1 QUCRZIVNKYXKAM-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- NQMXWUYBGYJKCN-UHFFFAOYSA-N 2-[ethoxymethyl(hydroxy)amino]-3,7-dihydropurin-6-one Chemical compound O=C1NC(N(O)COCC)=NC2=C1NC=N2 NQMXWUYBGYJKCN-UHFFFAOYSA-N 0.000 description 1
- TYIRELDXFZWDBV-UHFFFAOYSA-N 2-amino-1-cyclooctylethanol;hydrochloride Chemical compound Cl.NCC(O)C1CCCCCCC1 TYIRELDXFZWDBV-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- XNIHZNNZJHYHLC-UHFFFAOYSA-N 2-oxohexanoic acid Chemical compound CCCCC(=O)C(O)=O XNIHZNNZJHYHLC-UHFFFAOYSA-N 0.000 description 1
- APIXJSLKIYYUKG-UHFFFAOYSA-N 3 Isobutyl 1 methylxanthine Chemical compound O=C1N(C)C(=O)N(CC(C)C)C2=C1N=CN2 APIXJSLKIYYUKG-UHFFFAOYSA-N 0.000 description 1
- VDCDWNDTNSWDFJ-UHFFFAOYSA-N 3,5-dinitrocatechol Chemical compound OC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O VDCDWNDTNSWDFJ-UHFFFAOYSA-N 0.000 description 1
- BBAZDLONIUABKI-UHFFFAOYSA-N 3-(2,4-dichlorophenoxy)-n-methyl-n-prop-2-ynylpropan-1-amine;hydrochloride Chemical compound Cl.C#CCN(C)CCCOC1=CC=C(Cl)C=C1Cl BBAZDLONIUABKI-UHFFFAOYSA-N 0.000 description 1
- OFKWWALNMPEOSZ-UHFFFAOYSA-N 3-(hydrazinylmethyl)phenol Chemical compound NNCC1=CC=CC(O)=C1 OFKWWALNMPEOSZ-UHFFFAOYSA-N 0.000 description 1
- ZCNBZFRECRPCKU-UHFFFAOYSA-N 3-[2-[4-[bis(4-fluorophenyl)methylidene]-1-piperidinyl]ethyl]-2-sulfanylidene-1H-quinazolin-4-one Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)=C1CCN(CCN2C(C3=CC=CC=C3NC2=S)=O)CC1 ZCNBZFRECRPCKU-UHFFFAOYSA-N 0.000 description 1
- NOIIUHRQUVNIDD-UHFFFAOYSA-N 3-[[oxo(pyridin-4-yl)methyl]hydrazo]-N-(phenylmethyl)propanamide Chemical compound C=1C=CC=CC=1CNC(=O)CCNNC(=O)C1=CC=NC=C1 NOIIUHRQUVNIDD-UHFFFAOYSA-N 0.000 description 1
- UQTZMGFTRHFAAM-ZETCQYMHSA-N 3-iodo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(I)=C1 UQTZMGFTRHFAAM-ZETCQYMHSA-N 0.000 description 1
- DEHHYUARFKIUDI-UHFFFAOYSA-N 3-phenylprop-2-yn-1-amine Chemical compound NCC#CC1=CC=CC=C1 DEHHYUARFKIUDI-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- LJSMGWBQOFWAPJ-UHFFFAOYSA-N 4-methoxy-3-(naphthalen-1-ylmethyl)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CC(CC(O)=O)C(=O)OC)=CC=CC2=C1 LJSMGWBQOFWAPJ-UHFFFAOYSA-N 0.000 description 1
- HTHGAIADRJRJOY-UHFFFAOYSA-N 6-(4-bromophenyl)-2,3,5,6-tetrahydroimidazo[2,1-b][1,3]thiazole Chemical compound C1=CC(Br)=CC=C1C1N=C2SCCN2C1 HTHGAIADRJRJOY-UHFFFAOYSA-N 0.000 description 1
- MFVJXLPANKSLLD-UHFFFAOYSA-N 6-[2-[4-[(4-fluorophenyl)-phenylmethylidene]-1-piperidinyl]ethyl]-7-methyl-5-thiazolo[3,2-a]pyrimidinone Chemical compound CC=1N=C2SC=CN2C(=O)C=1CCN(CC1)CCC1=C(C=1C=CC(F)=CC=1)C1=CC=CC=C1 MFVJXLPANKSLLD-UHFFFAOYSA-N 0.000 description 1
- NOOBQTYVTDBXTL-UHFFFAOYSA-N 6-hydroxy-1,3-benzothiazole-2-sulfonamide Chemical compound C1=C(O)C=C2SC(S(=O)(=O)N)=NC2=C1 NOOBQTYVTDBXTL-UHFFFAOYSA-N 0.000 description 1
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 description 1
- IADAQXMUWITWNG-UHFFFAOYSA-N 8,9-dichloro-2,3,4,5-tetrahydro-1h-benzo[c]azepine Chemical compound C1CCNCC2=C(Cl)C(Cl)=CC=C21 IADAQXMUWITWNG-UHFFFAOYSA-N 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 description 1
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 206010002329 Aneurysm Diseases 0.000 description 1
- XUKUURHRXDUEBC-UHFFFAOYSA-N Atorvastatin Natural products C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CCC(O)CC(O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-UHFFFAOYSA-N 0.000 description 1
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UQLLWWBDSUHNEB-CZUORRHYSA-N Cefaprin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CSC1=CC=NC=C1 UQLLWWBDSUHNEB-CZUORRHYSA-N 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 108010001394 Disaccharidases Proteins 0.000 description 1
- JWCSIUVGFCSJCK-CAVRMKNVSA-N Disodium Moxalactam Chemical compound N([C@]1(OC)C(N2C(=C(CSC=3N(N=NN=3)C)CO[C@@H]21)C(O)=O)=O)C(=O)C(C(O)=O)C1=CC=C(O)C=C1 JWCSIUVGFCSJCK-CAVRMKNVSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- 206010072064 Exposure to body fluid Diseases 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 102000003676 Glucocorticoid Receptors Human genes 0.000 description 1
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 229940122853 Growth hormone antagonist Drugs 0.000 description 1
- 206010019909 Hernia Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- NYMGNSNKLVNMIA-UHFFFAOYSA-N Iproniazid Chemical compound CC(C)NNC(=O)C1=CC=NC=C1 NYMGNSNKLVNMIA-UHFFFAOYSA-N 0.000 description 1
- 229910000575 Ir alloy Inorganic materials 0.000 description 1
- VHOQXEIFYTTXJU-UHFFFAOYSA-N Isobutylene-isoprene copolymer Chemical compound CC(C)=C.CC(=C)C=C VHOQXEIFYTTXJU-UHFFFAOYSA-N 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- PCZOHLXUXFIOCF-UHFFFAOYSA-N Monacolin X Natural products C12C(OC(=O)C(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 PCZOHLXUXFIOCF-UHFFFAOYSA-N 0.000 description 1
- 229920006602 NBR/PVC Polymers 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000001746 Pancreatic alpha-Amylases Human genes 0.000 description 1
- 108010029785 Pancreatic alpha-Amylases Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- TUZYXOIXSAXUGO-UHFFFAOYSA-N Pravastatin Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(O)C=C21 TUZYXOIXSAXUGO-UHFFFAOYSA-N 0.000 description 1
- 101710184309 Probable sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- CZMRCDWAGMRECN-UHFFFAOYSA-N Rohrzucker Natural products OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- RYMZZMVNJRMUDD-UHFFFAOYSA-N SJ000286063 Natural products C12C(OC(=O)C(C)(C)CC)CC(C)C=C2C=CC(C)C1CCC1CC(O)CC(=O)O1 RYMZZMVNJRMUDD-UHFFFAOYSA-N 0.000 description 1
- SKZKKFZAGNVIMN-UHFFFAOYSA-N Salicilamide Chemical compound NC(=O)C1=CC=CC=C1O SKZKKFZAGNVIMN-UHFFFAOYSA-N 0.000 description 1
- 102000013523 Salivary alpha-Amylases Human genes 0.000 description 1
- 108010026386 Salivary alpha-Amylases Proteins 0.000 description 1
- XHQYBDSXTDXSHY-UHFFFAOYSA-N Semicarbazide hydrochloride Chemical compound Cl.NNC(N)=O XHQYBDSXTDXSHY-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 102400000472 Sucrase Human genes 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 101710112652 Sucrose-6-phosphate hydrolase Proteins 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 206010046788 Uterine haemorrhage Diseases 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- IUHMWLMDASQDJQ-ZBFHGGJFSA-N [(3ar,8bs)-3,4,8b-trimethyl-2,3a-dihydro-1h-pyrrolo[2,3-b]indol-7-yl] n,n-dimethylcarbamate Chemical compound C12=CC(OC(=O)N(C)C)=CC=C2N(C)[C@@H]2[C@@]1(C)CCN2C IUHMWLMDASQDJQ-ZBFHGGJFSA-N 0.000 description 1
- YYBNDIVPHIWTPK-KYJQVDHRSA-N [(3as,8bs)-3,4,8b-trimethyl-1,2,3,3a-tetrahydropyrrolo[2,3-b]indol-3-ium-7-yl] n-methylcarbamate;sulfate Chemical compound [O-]S([O-])(=O)=O.C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CC[NH+]2C.C12=CC(OC(=O)NC)=CC=C2N(C)[C@@H]2[C@@]1(C)CC[NH+]2C YYBNDIVPHIWTPK-KYJQVDHRSA-N 0.000 description 1
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 238000011000 absolute method Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- RAUARFJXOYWAHD-JEDNCBNOSA-N acetic acid;(2s)-5-(diaminomethylideneamino)-2-(methylamino)pentanoic acid Chemical compound CC(O)=O.CN[C@H](C(O)=O)CCCNC(N)=N RAUARFJXOYWAHD-JEDNCBNOSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 231100000764 actin inhibitor Toxicity 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229960002478 aldosterone Drugs 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 102000016679 alpha-Glucosidases Human genes 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 230000003872 anastomosis Effects 0.000 description 1
- 229960003473 androstanolone Drugs 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 229940044094 angiotensin-converting-enzyme inhibitor Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001078 anti-cholinergic effect Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 230000001384 anti-glaucoma Effects 0.000 description 1
- 230000003276 anti-hypertensive effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000002927 anti-mitotic effect Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 230000000648 anti-parkinson Effects 0.000 description 1
- 230000000842 anti-protozoal effect Effects 0.000 description 1
- 230000000561 anti-psychotic effect Effects 0.000 description 1
- 230000002921 anti-spasmodic effect Effects 0.000 description 1
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000003904 antiprotozoal agent Substances 0.000 description 1
- 229940124575 antispasmodic agent Drugs 0.000 description 1
- 229960004676 antithrombotic agent Drugs 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 229960005370 atorvastatin Drugs 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- 229940092705 beclomethasone Drugs 0.000 description 1
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- 229960002537 betamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- ABBZJHFBQXYTLU-UHFFFAOYSA-N but-3-enamide Chemical compound NC(=O)CC=C ABBZJHFBQXYTLU-UHFFFAOYSA-N 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229960004205 carbidopa Drugs 0.000 description 1
- TZFNLOMSOLWIDK-JTQLQIEISA-N carbidopa (anhydrous) Chemical compound NN[C@@](C(O)=O)(C)CC1=CC=C(O)C(O)=C1 TZFNLOMSOLWIDK-JTQLQIEISA-N 0.000 description 1
- 229960001631 carbomer Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- 229960000603 cefalotin Drugs 0.000 description 1
- XIURVHNZVLADCM-IUODEOHRSA-N cefalotin Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC(=O)C)C(O)=O)C(=O)CC1=CC=CS1 XIURVHNZVLADCM-IUODEOHRSA-N 0.000 description 1
- 229960003012 cefamandole Drugs 0.000 description 1
- OLVCFLKTBJRLHI-AXAPSJFSSA-N cefamandole Chemical compound CN1N=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)[C@H](O)C=3C=CC=CC=3)[C@H]2SC1 OLVCFLKTBJRLHI-AXAPSJFSSA-N 0.000 description 1
- 229960004350 cefapirin Drugs 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960004489 cefonicid Drugs 0.000 description 1
- DYAIAHUQIPBDIP-AXAPSJFSSA-N cefonicid Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](O)C=2C=CC=CC=2)CC=1CSC1=NN=NN1CS(O)(=O)=O DYAIAHUQIPBDIP-AXAPSJFSSA-N 0.000 description 1
- GCFBRXLSHGKWDP-XCGNWRKASA-N cefoperazone Chemical compound O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC(O)=CC=1)C(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)C)CS[C@@H]21 GCFBRXLSHGKWDP-XCGNWRKASA-N 0.000 description 1
- 229960004682 cefoperazone Drugs 0.000 description 1
- 229960004292 ceforanide Drugs 0.000 description 1
- SLAYUXIURFNXPG-CRAIPNDOSA-N ceforanide Chemical compound NCC1=CC=CC=C1CC(=O)N[C@@H]1C(=O)N2C(C(O)=O)=C(CSC=3N(N=NN=3)CC(O)=O)CS[C@@H]21 SLAYUXIURFNXPG-CRAIPNDOSA-N 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- GPRBEKHLDVQUJE-VINNURBNSA-N cefotaxime Chemical compound N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C(O)=O)=O)C(=O)/C(=N/OC)C1=CSC(N)=N1 GPRBEKHLDVQUJE-VINNURBNSA-N 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- WZOZEZRFJCJXNZ-ZBFHGGJFSA-N cefoxitin Chemical compound N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)CC1=CC=CS1 WZOZEZRFJCJXNZ-ZBFHGGJFSA-N 0.000 description 1
- 229960002588 cefradine Drugs 0.000 description 1
- 229960001991 ceftizoxime Drugs 0.000 description 1
- NNULBSISHYWZJU-LLKWHZGFSA-N ceftizoxime Chemical compound N([C@@H]1C(N2C(=CCS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 NNULBSISHYWZJU-LLKWHZGFSA-N 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 229960001668 cefuroxime Drugs 0.000 description 1
- JFPVXVDWJQMJEE-IZRZKJBUSA-N cefuroxime Chemical compound N([C@@H]1C(N2C(=C(COC(N)=O)CS[C@@H]21)C(O)=O)=O)C(=O)\C(=N/OC)C1=CC=CO1 JFPVXVDWJQMJEE-IZRZKJBUSA-N 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 description 1
- 229960005110 cerivastatin Drugs 0.000 description 1
- SEERZIQQUAZTOL-ANMDKAQQSA-N cerivastatin Chemical compound COCC1=C(C(C)C)N=C(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC(O)=O)=C1C1=CC=C(F)C=C1 SEERZIQQUAZTOL-ANMDKAQQSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 210000003161 choroid Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960001747 cinchocaine Drugs 0.000 description 1
- PUFQVTATUTYEAL-UHFFFAOYSA-N cinchocaine Chemical compound C1=CC=CC2=NC(OCCCC)=CC(C(=O)NCCN(CC)CC)=C21 PUFQVTATUTYEAL-UHFFFAOYSA-N 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 229960001338 colchicine Drugs 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- HTWWKYKIBSHDPC-UHFFFAOYSA-N decanoyl decanoate Chemical compound CCCCCCCCCC(=O)OC(=O)CCCCCCCCC HTWWKYKIBSHDPC-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229920006237 degradable polymer Polymers 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 239000004053 dental implant Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- GPRLSGONYQIRFK-DYCDLGHISA-N deuteron Chemical compound [2H+] GPRLSGONYQIRFK-DYCDLGHISA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- GJQPMPFPNINLKP-UHFFFAOYSA-N diclofenamide Chemical compound NS(=O)(=O)C1=CC(Cl)=C(Cl)C(S(N)(=O)=O)=C1 GJQPMPFPNINLKP-UHFFFAOYSA-N 0.000 description 1
- 229960005081 diclofenamide Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 229940052760 dopamine agonists Drugs 0.000 description 1
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 229960002406 edrophonium chloride Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical class C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960003765 fluvastatin Drugs 0.000 description 1
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 125000005640 glucopyranosyl group Chemical group 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960000587 glutaral Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229960002474 hydralazine Drugs 0.000 description 1
- ZUXNZUWOTSUBMN-UHFFFAOYSA-N hydralazine hydrochloride Chemical compound Cl.C1=CC=C2C(NN)=NN=CC2=C1 ZUXNZUWOTSUBMN-UHFFFAOYSA-N 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 239000000413 hydrolysate Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 229960004187 indoprofen Drugs 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 229940070023 iproniazide Drugs 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 229940116108 lactase Drugs 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960000433 latamoxef Drugs 0.000 description 1
- 210000005248 left atrial appendage Anatomy 0.000 description 1
- 150000002617 leukotrienes Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 229960004844 lovastatin Drugs 0.000 description 1
- PCZOHLXUXFIOCF-BXMDZJJMSA-N lovastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)[C@@H](C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 PCZOHLXUXFIOCF-BXMDZJJMSA-N 0.000 description 1
- QLJODMDSTUBWDW-UHFFFAOYSA-N lovastatin hydroxy acid Natural products C1=CC(C)C(CCC(O)CC(O)CC(O)=O)C2C(OC(=O)C(C)CC)CC(C)C=C21 QLJODMDSTUBWDW-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960000901 mepacrine Drugs 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 229960004584 methylprednisolone Drugs 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 231100000782 microtubule inhibitor Toxicity 0.000 description 1
- 229960004023 minocycline Drugs 0.000 description 1
- 230000003547 miosis Effects 0.000 description 1
- 239000003604 miotic agent Substances 0.000 description 1
- 210000004115 mitral valve Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- XBGNERSKEKDZDS-UHFFFAOYSA-N n-[2-(dimethylamino)ethyl]acridine-4-carboxamide Chemical compound C1=CC=C2N=C3C(C(=O)NCCN(C)C)=CC=CC3=CC2=C1 XBGNERSKEKDZDS-UHFFFAOYSA-N 0.000 description 1
- BCXCABRDBBWWGY-UHFFFAOYSA-N n-benzyl-n-methylprop-2-yn-1-amine;hydrochloride Chemical compound Cl.C#CCN(C)CC1=CC=CC=C1 BCXCABRDBBWWGY-UHFFFAOYSA-N 0.000 description 1
- HNHVTXYLRVGMHD-UHFFFAOYSA-N n-butyl isocyanate Chemical compound CCCCN=C=O HNHVTXYLRVGMHD-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- LULNWZDBKTWDGK-UHFFFAOYSA-M neostigmine bromide Chemical compound [Br-].CN(C)C(=O)OC1=CC=CC([N+](C)(C)C)=C1 LULNWZDBKTWDGK-UHFFFAOYSA-M 0.000 description 1
- 229960001499 neostigmine bromide Drugs 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 239000002581 neurotoxin Substances 0.000 description 1
- 231100000618 neurotoxin Toxicity 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 229960003057 nialamide Drugs 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910021652 non-ferrous alloy Inorganic materials 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- WVJVHUWVQNLPCR-UHFFFAOYSA-N octadecanoyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(=O)CCCCCCCCCCCCCCCCC WVJVHUWVQNLPCR-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000643 oven drying Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229960001789 papaverine Drugs 0.000 description 1
- 229960001779 pargyline Drugs 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229960001847 physostigmine sulfate Drugs 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920006210 poly(glycolide-co-caprolactone) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229960002965 pravastatin Drugs 0.000 description 1
- TUZYXOIXSAXUGO-PZAWKZKUSA-N pravastatin Chemical compound C1=C[C@H](C)[C@H](CC[C@@H](O)C[C@@H](O)CC(O)=O)[C@H]2[C@@H](OC(=O)[C@@H](C)CC)C[C@H](O)C=C21 TUZYXOIXSAXUGO-PZAWKZKUSA-N 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003214 pyranose derivatives Chemical group 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 229960000672 rosuvastatin Drugs 0.000 description 1
- BPRHUIZQVSMCRT-VEUZHWNKSA-N rosuvastatin Chemical compound CC(C)C1=NC(N(C)S(C)(=O)=O)=NC(C=2C=CC(F)=CC=2)=C1\C=C\[C@@H](O)C[C@@H](O)CC(O)=O BPRHUIZQVSMCRT-VEUZHWNKSA-N 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229960000581 salicylamide Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229960003600 silver sulfadiazine Drugs 0.000 description 1
- UEJSSZHHYBHCEL-UHFFFAOYSA-N silver(1+) sulfadiazinate Chemical compound [Ag+].C1=CC(N)=CC=C1S(=O)(=O)[N-]C1=NC=CC=N1 UEJSSZHHYBHCEL-UHFFFAOYSA-N 0.000 description 1
- 229960002855 simvastatin Drugs 0.000 description 1
- RYMZZMVNJRMUDD-HGQWONQESA-N simvastatin Chemical compound C([C@H]1[C@@H](C)C=CC2=C[C@H](C)C[C@@H]([C@H]12)OC(=O)C(C)(C)CC)C[C@@H]1C[C@@H](O)CC(=O)O1 RYMZZMVNJRMUDD-HGQWONQESA-N 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- UHYAQBLOGVNWNT-UHFFFAOYSA-M sodium;2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetate;trihydrate Chemical compound O.O.O.[Na+].CC1=C(CC([O-])=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 UHYAQBLOGVNWNT-UHFFFAOYSA-M 0.000 description 1
- QPBKUJIATWTGHV-UHFFFAOYSA-M sodium;2-carbamoylphenolate Chemical compound [Na+].NC(=O)C1=CC=CC=C1[O-] QPBKUJIATWTGHV-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002731 stomach secretion inhibitor Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 125000004089 sulfido group Chemical group [S-]* 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 229960000103 thrombolytic agent Drugs 0.000 description 1
- 150000003595 thromboxanes Chemical class 0.000 description 1
- 239000002407 tissue scaffold Substances 0.000 description 1
- 210000000515 tooth Anatomy 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 229960003741 tranylcypromine Drugs 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- CGTADGCBEXYWNE-JUKNQOCSSA-N zotarolimus Chemical compound N1([C@H]2CC[C@@H](C[C@@H](C)[C@H]3OC(=O)[C@@H]4CCCCN4C(=O)C(=O)[C@@]4(O)[C@H](C)CC[C@H](O4)C[C@@H](/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C3)OC)C[C@H]2OC)C=NN=N1 CGTADGCBEXYWNE-JUKNQOCSSA-N 0.000 description 1
- 229950009819 zotarolimus Drugs 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/20—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/54—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B30/00—Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
- C08B30/12—Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
- C08B30/18—Dextrin, e.g. yellow canari, white dextrin, amylodextrin or maltodextrin; Methods of depolymerisation, e.g. by irradiation or mechanically
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/02—Starch; Degradation products thereof, e.g. dextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/14—Eye parts, e.g. lenses or corneal implants; Artificial eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/0008—Introducing ophthalmic products into the ocular cavity or retaining products therein
- A61F9/0017—Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
- A61K9/0051—Ocular inserts, ocular implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/20—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
- A61L2300/22—Lipids, fatty acids, e.g. prostaglandins, oils, fats, waxes
- A61L2300/222—Steroids, e.g. corticosteroids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/602—Type of release, e.g. controlled, sustained, slow
- A61L2300/604—Biodegradation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
Definitions
- the present invention relates to hydrophobic derivatives of natural biodegradable polysaccharides, and articles including these derivatives.
- PLA Polylactide
- PLA is a synthetic biodegradable thermoplastic derived from lactic acid that has been used extensively in the preparation of a wide variety of items.
- PLA has been used to construct biodegradable articles such as bags, containers, diapers and packaging materials.
- PLA has also been used for in the fabrication of biodegradable medical devices such as sutures that can dissolve in physiological conditions.
- PLA can be processed into fibers and films, thermoformed, or injection molded. While PLA provides desirable processing and degradation properties, it suffers from brittleness, hardness, inflexibility, and low melt tension. In order to overcome these undesirable characteristics, PLA is often blended with secondary agents, such as plasticizers, to improve its properties. Many commonly used secondary agents such as plasticizers, however, are not degradable. This presents obstacles for the preparation of PLA-based articles that are intended to be completely degradable.
- the present invention relates to hydrophobic derivatives of a natural biodegradable polysaccharide (“hydrophobic polysaccharides”), articles that include these hydrophobic polysaccharides, and methods utilizing these articles.
- hydrophobic polysaccharides a natural biodegradable polysaccharide
- articles that include these hydrophobic polysaccharides and methods utilizing these articles.
- the hydrophobic polysaccharides comprise a poly- ⁇ (1 ⁇ 4)glucopyranose backbone and have a low molecular weight and a plurality of groups pendent from the backbone that provide the hydrophobic portion.
- These hydrophobic polysaccharides have been found to be amenable to use in various fabrication processes and also can be used to form articles with desirable properties, such as properties desirable for use in association with implantable medical articles.
- matrices formed using hydrophobic polysaccharides of the invention demonstrate one more of the following properties, such as compliance, conformability, and/or durability, which provide(s) benefits for in vivo use. These properties can prevent or minimize cracking, delamination, and/or abrasion of the matrix during use.
- the coating compositions can also be prepared having a high concentration of solids, allowing the formation of a matrix having a high content of a secondary compound, such as a bioactive agent.
- Coatings for implantable medical articles as well as the body members of implantable medical articles exemplify hydrophobic polysaccharide matrices.
- the hydrophobic polysaccharides can be degraded into natural materials, which provide advantages for compatibility of implantable articles. Degradation of the matrix can result in the release of, for example, naturally occurring mono- or disaccharides, such as glucose, which are common serum components. This provides an advantage over matrices formed from polyglycolide-type molecules, which can degrade into products that cause unwanted side effects in the body by virtue of their presence or concentration in vivo.
- the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a non-cyclic poly- ⁇ (1 ⁇ 4)glucopyranose backbone and a plurality of groups pendent from the poly- ⁇ (1 ⁇ 4)glucopyranose backbone, the groups comprising a hydrocarbon segment having two or more carbon atoms, wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less.
- the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a non-cyclic poly- ⁇ (1 ⁇ 4)glucopyranose backbone; and a plurality of groups pendent from the poly- ⁇ (1 ⁇ 4)glucopyranose backbone, wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less, and a glass transition temperature of 35° C. or greater.
- the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a hydrophilic portion comprising a non-cyclic poly- ⁇ (1 ⁇ 4)glucopyranose backbone; a hydrophobic portion comprising a plurality of groups pendent from the poly- ⁇ (1 ⁇ 4)glucopyranose backbone, wherein the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 5:1 to 1:1.25, and wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less.
- the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a non-cyclic poly- ⁇ (1 ⁇ 4)glucopyranose backbone; and a plurality of groups pendent from the poly- ⁇ (1 ⁇ 4)glucopyranose backbone, the groups comprising a hydrocarbon segment, wherein at least a portion of the groups comprise a bioactive agent that is cleavable from the poly- ⁇ (1 ⁇ 4)glucopyranose backbone, and wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less.
- the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a polymeric backbone comprising non-reducing disaccharides and a plurality of groups pendent from the polymeric backbone, wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less.
- the polymeric backbone can be selected from the group consisting of polytrehalose, polysucrose, and polyalditol.
- the invention provides a disposable article formed of a hydrophobic polysaccharide of the invention.
- the invention provides coating for an implantable medical article, wherein the coating is formed of a hydrophobic polysaccharide of the invention.
- the invention provides an implantable medical article having a body member that is formed of a hydrophobic polysaccharide of the invention.
- the invention provides a method for delivering a bioactive agent to a subject comprising the steps of: implanting in a subject at a target location an implantable medical article formed of a hydrophobic polysaccharide of the invention; and allowing the bioactive agent to be released from the implantable medical article to provide a therapeutic effect to the subject.
- the invention provides a method for delivering a bioactive agent to a subject comprising the steps of: implanting in a subject at a target location an implantable medical article comprising a coating formed of a hydrophobic polysaccharides of the invention and a bioactive agent; and allowing the bioactive agent to be released from the coating to provide a therapeutic effect to the subject.
- FIG. 1 is a graph illustrating elution profiles of stents coated with lidocaine and hydrophobic polysaccharides.
- the invention is generally directed to the hydrophobic derivatives of non-cyclic ⁇ (1 ⁇ 4)glucopyranose polymers, articles that are formed using these hydrophobic polysaccharides, and uses of articles formed from these hydrophobic polysaccharides.
- the invention is also directed to hydrophobic derivatives of polysaccharides formed of non-reducing sugars, such as polyalditol.
- the hydrophobic polysaccharides have a low molecular weight and are useful for the preparation of polymeric matrices, which can be in a variety of forms, such as coatings or body members of articles.
- a “hydrophobic derivative” of a non-cyclic ⁇ (1 ⁇ 4)glucopyranose polymer refers to a non-cyclic ⁇ (1 ⁇ 4)glucopyranose polymer with a hydrophobic portion, wherein the hydrophobic derivative is not soluble in water.
- the hydrophobic portion includes a plurality of groups that are pendent from poly ⁇ (1 ⁇ 4)glucopyranose backbone and that, together, provide the polymer with the hydrophobic property.
- the plurality of pendent groups is collectively referred to as the “hydrophobic portion” of the hydrophobic derivative.
- the hydrophobic derivatives of the invention therefore include a hydrophobic portion and a polysaccharide portion.
- the non-cyclic ⁇ (1 ⁇ 4)glucopyranose polymer portion includes repeating glucopyranose monomeric units having ⁇ (1 ⁇ 4) linkages and is capable of being enzymatically degraded.
- Exemplary non-cyclic ⁇ (1 ⁇ 4)glucopyranose polymer portions include maltodextrin and amylose.
- amylose or “amylose polymer” refers to a linear polymer having repeating glucopyranose units that are joined by ⁇ -1,4 linkages. Some amylose polymers can have a very small amount of branching via ⁇ -1,6 linkages (about less than 0.5% of the linkages) but still demonstrate the same physical properties as linear (unbranched) amylose polymers do. Generally amylose polymers derived from plant sources have molecular weights of about 1 ⁇ 10 6 Da or less. Amylopectin, comparatively, is a branched polymer having repeating glucopyranose units that are joined by ⁇ -1,4 linkages to form linear portions and the linear portions are linked together via ⁇ -1,6 linkages. The branch point linkages are generally greater than 1% of the total linkages and typically 4%-5% of the total linkages. Generally amylopectin derived from plant sources have molecular weights of 1 ⁇ 10 7 Da or greater.
- Amylose can be obtained from, or is present in, a variety of sources. Typically, amylose is obtained from non-animal sources, such as plant sources. In some aspects, a purified preparation of amylose is used as starting material for the preparation of the amylose polymer having a hydrophobic portion. In other aspects, as starting material, amylose can be used in a mixture that includes other polysaccharides.
- starch preparations having a high amylose content, purified amylose, synthetically prepared amylose, or enriched amylose preparations can be used in the preparation of a hydrophobic derivative of amylose.
- amylose is typically present along with amylopectin, which is a branched polysaccharide. If a mixture of amylose and a higher molecular weight precursor is used (such as amylopectin), it is preferred that amylose is present in the composition in an amount greater than the higher molecular weight precursor.
- starch preparations having high amylose content, purified amylose, synthetically prepared amylose, or enriched amylose preparations can be used in the preparation of a hydrophobic derivative of amylose polymer.
- the composition includes a mixture of polysaccharides including amylose wherein the amylose content in the mixture of polysaccharides is 50% or greater, 60% or greater, 70% or greater, 80% or greater, or 85% or greater by weight.
- the composition includes a mixture of polysaccharides including amylose and amylopectin and wherein the amylopectin content in the mixture of polysaccharides is 30% or less, or 15% or less.
- the amount of amylopectin present in a starch may also be reduced by treating the starch with amylopectinase, which cleaves ⁇ -1,6 linkages resulting in the debranching of amylopectin into amylose.
- Steps may be performed before, during, and/or after the process of derivatizing the amylose polymer to provide for a hydrophobic derivative, to enrich the amount of amylose, or to purify the amylose.
- Amylose of particular molecular weights can be obtained commercially or can be prepared.
- synthetic amyloses with an average molecular mass of 70 kDa can be obtained from Nakano Vinegar Co., Ltd. (Aichi, Japan).
- the decision of using amylose of a particular size range may depend on factors such as the physical characteristics of the composition (e.g., viscosity), the desired rate of degradation of the coating formed from the hydrophobic polysaccharide, and the presence of other optional components in the composition, such as bioactive agents.
- Purified or enriched amylose preparations can be obtained commercially or can be prepared using standard biochemical techniques such as chromatography.
- high-amylose cornstarch can be used to prepare the hydrophobic polysaccharide.
- Maltodextrin is typically generated by hydrolyzing a starch slurry with heat-stable ⁇ -amylase at temperatures at 85-90° C. until the desired degree of hydrolysis is reached and then inactivating the ⁇ -amylase by a second heat treatment.
- the maltodextrin can be purified by filtration and then spray dried to a final product.
- DE dextrose equivalent
- maltodextrins are considered to have molecular weights that are less than amylose molecules.
- a starch preparation that has been totally hydrolyzed to dextrose (glucose) has a DE of 100, whereas starch has a DE of about zero.
- a DE of greater than 0 but less than 100 characterizes the mean-average molecular weight of a starch hydrolysate, and maltodextrins are considered to have a DE of less than 20.
- Maltodextrins of various molecular weights for example, in the range of about 500 Da to 5000 Da are commercially available (for example, from CarboMer, San Diego, Calif.).
- the hydrophobic polysaccharide has a polymeric backbone formed of non-reducing disaccharides (natural biodegradable non-reducing polysaccharides).
- a non-reducing polysaccharide refers to a polymer of non-reducing disaccharides (two monosaccharides linked through their anomeric centers) such as trehalose ( ⁇ -D-glucopyranosyl ⁇ -D-glucopyranoside) and sucrose ( ⁇ -D-fructofuranosyl ⁇ -D-glucopyranoside).
- An exemplary non-reducing polysaccharide comprises polyalditol which is available from GPC (Muscatine, Iowa).
- the polysaccharide is a glucopyranosyl polymer, such as a polymer that includes repeating (1 ⁇ 3)O- ⁇ -D-glucopyranosyl units.
- a non-reducing polysaccharide can provide an inert matrix thereby improving the stability of sensitive bioactive agents, such as proteins and enzymes.
- hydrophobic polysaccharides hydrophobic derivatives of the non-cyclic ⁇ (1 ⁇ 4)glucopyranose polymers and non-reducing polysaccharides.
- the polysaccharide portion and the hydrophobic portion comprise the predominant portion of the hydrophobic polysaccharide.
- the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 5:1 to 1:1.25.
- the polysaccharide portion can be about 25% wt of the hydrophobic polysaccharide or greater, in the range of about 25% to about 75%, in the range of about 30% to about 70%, in the range of about 35% to about 65%, in the range of about 40% to about 60%, or in the range of about 45% to about 55%.
- the hydrophobic portion can be about 25% wt of the hydrophobic polysaccharide or greater, in the range of about 25% to about 75%, in the range of about 30% to about 70%, in the range of about 35% to about 65%, in the range of about 40% to about 60%, or in the range of about 45% to about 55%.
- the hydrophobic polysaccharide has approximately 50% of its weight attributable to the polysaccharide portion, and approximately 50% of its weight attributable to its hydrophobic portion.
- the hydrophobic polysaccharide has the properties of being insoluble in water.
- the term for insolubility is a standard term used in the art, and meaning 1 part solute per 10,000 parts or greater solvent. (see, for example, Remington: The Science and Practice of Pharmacy, 20th ed. (2000), Lippincott Williams & Wilkins, Baltimore Md.).
- a hydrophobic polysaccharide can be prepared by coupling one or more hydrophobic compound(s) to a natural biodegradable polysaccharide polymer. Methods for preparing hydrophobic polysaccharides are described herein.
- the hydrophobic polysaccharides have a molecular weight of 100,000 Da or less. Use of these lower molecular weight derivatives provides matrices having desirable physical properties. In some aspects the hydrophobic polysaccharides have a molecular weight of about 50,000 Da or less, or 25,000 Da or less. Particularly preferred size ranges for the hydrophobic polysaccharides are in the range of about 2,000 Da to about 20,000 Da, or about 4,000 Da to about 10,000 Da.
- the molecular weight of the polymer is more precisely defined as “weight average molecular weight” or M w .
- M w is an absolute method of measuring molecular weight and is particularly useful for measuring the molecular weight of a polymer (preparation), such as preparations of hydrophobic polysaccharides.
- Polymer preparations typically include polymers that individually have minor variations in molecular weight. Polymers are molecules that have a relatively high molecular weight and such minor variations within the polymer preparation do not affect the overall properties of the polymer preparation.
- the weight average molecular weight (M w ) can be defined by the following formula:
- M w ⁇ i ⁇ N i ⁇ M i 2 ⁇ i ⁇ N i ⁇ M i
- N represents the number of moles of a polymer in the sample with a mass of M
- ⁇ i is the sum of all N i M i (species) in a preparation.
- the M w can be measured using common techniques, such as light scattering or ultracentrifugation. Discussion of M w and other terms used to define the molecular weight of polymer preparations can be found in, for example, Allcock, H. R. and Lampe, F. W. (1990) Contemporary Polymer Chemistry; pg 271.
- hydrophobic portion will generally cause an increase in molecular weight of the polysaccharide from its underivitized, starting molecular weight.
- the amount increase in molecular weight can depend on one or more factors, including the type of polysaccharide derivatized, the level of derivation, and, for example, the type or types of groups attached to the polysaccharide to provide the hydrophobic portion.
- the addition of hydrophobic portion causes an increase in molecular weight of the polysaccharide of about 20% or greater, about 50% or greater, about 75% or greater, about 100% or greater, or about 125%, the increase in relation to the underivitized form of the polysaccharide.
- a maltodextrin having a starting weight of about 3000 Da is derivitized to provide pendent hexanoate groups that are coupled to the polysaccharide via ester linkages to provide a degree of substitution (DS) of about 2.5.
- DS degree of substitution
- hydrophobic polysaccharide and as an example, a compound having a hydrocarbon segment can be covalently coupled to one or more portions of the polysaccharide.
- the compound can be coupled to monomeric units along the length of the polysaccharide.
- This provides a polysaccharide derivative with one or more pendent groups.
- Each chemical group comprises a hydrocarbon segment.
- the hydrocarbon segment can constitute all of the pendent chemical group, or the hydrocarbon segment can constitute a portion of the pendent chemical group.
- a portion of the hydrophobic polysaccharide can have the following structure:
- M is a monomeric unit of the polysaccharide
- H is the hydrocarbon segment
- L is a chemical group linking the hydrocarbon segment to the monomeric unit of the polysaccharide.
- the pendent group can also include an additional portion that is not a hydrocarbon segment [N] as represented by the following structure:
- hydrocarbon segment herein refers to a group of covalently bonded carbon atoms having the formula (CH n ) m , wherein m is 2 or greater, and n is independently 2 or 1.
- a hydrocarbon segment can include saturated hydrocarbon groups or unsaturated hydrocarbon groups, and examples thereof include alkyl, alkenyl, alkynyl, cyclic alkyl, cyclic alkenyl, aromatic hydrocarbon and aralkyl groups.
- the monomeric units of the hydrophobic polysaccharides described herein typically include monomeric units having ring structures with one or more reactive groups. These reactive groups are exemplified by hydroxyl groups, such as the ones that are present on glucopyranose-based monomeric units of amylose and maltodextrin. These hydroxyl groups can be reacted with a compound that includes a hydrocarbon segment and a group that is reactive with the hydroxyl group (a hydroxyl-reactive group).
- hydroxyl reactive groups include acetal, carboxyl, anhydride, acid halide, and the like. These groups can be used to form a hydrolytically cleavable covalent bond between the hydrocarbon segment and the polysaccharide backbone.
- the method can provide a pendent group having a hydrocarbon segment, the pendent group linked to the polysaccharide backbone with a cleavable ester bond.
- the synthesized hydrophobic polysaccharide will include chemical linkages that are both enzymatically cleavable (the polymer backbone) and non-enzymatically hydrolytically cleavable (the linkage between pendent group and the polymer backbone).
- cleavable chemical linkages that can be used to bond the pendent groups to the polysaccharide include peroxyester groups, disulfide groups, and hydrazone groups.
- the hydroxyl reactive groups include those such as isocyanate and epoxy. These groups can be used to form a non-cleavable covalent bond between the pendent group and the polysaccharide backbone.
- the synthesized hydrophobic polysaccharide includes chemical linkages that are enzymatically cleavable (the polymer backbone).
- reactive groups such as carboxyl groups, acetyl groups, or sulphate groups, are present on the ring structure of monomeric units of other natural biodegradable polysaccharides, such as chondrotin or hyaluronic acid. These groups can also be targeted for reaction with a compound having a hydrocarbon segment to be bonded to the polysaccharide backbone.
- hydrophobic polysaccharide Various factors can be taken into consideration in the synthesis of the hydrophobic polysaccharide. These factors include the physical and chemical properties of the polysaccharide, including its size, and the number and presence of reactive groups on the polysaccharide and solubility, the physical and chemical properties of the compound that includes the hydrocarbon segment, including its the size and solubility, and the reactivity of the compound with the polysaccharide.
- any suitable synthesis procedure can be performed. Synthesis can be carried out to provide a desired number of groups with hydrocarbon segments pendent from the polysaccharide backbone. The number and/or density of the pendent groups can be controlled, for example, by controlling the relative concentration of the compound that includes the hydrocarbon segment to the available reactive groups (e.g., hydroxyl groups) on the polysaccharide.
- the type and amount of groups having the hydrocarbon segment pendent from the polysaccharide is sufficient for the hydrophobic polysaccharide to be insoluble in water.
- a hydrophobic polysaccharide is obtained or prepared wherein the groups having the hydrocarbon segment pendent from the polysaccharide backbone in an amount in the range of 0.25 (pendent group):1 (polysaccharide monomer) by weight.
- glucopyranose polymers were reacted with compounds having the hydrocarbon segment to provide low molecular weight hydrophobic glucopyranose polymers.
- the natural biodegradable polysaccharide maltodextrin in an amount of 10 g (MW 3000-5000 Da; ⁇ 3 mmols) was dissolved in a suitable solvent, such as tetrahydrofuran.
- a solution having butyric anhydride in an amount of 18 g (0.11 mols) was added to the maltodextrin solution.
- maltodextrin-butyrate DS1 For maltodextrin and other polysaccharides that include three hydroxyl groups per monomeric unit, on average, one of the three hydroxyl groups per glycopyranose monomeric unit becomes substituted with a butyrate group.
- a maltodextrin polymer having this level of substitution is referred to herein as maltodextrin-butyrate DS1.
- the DS refers to the average number of reactive groups (including hydroxyl and other reactive groups) per monomeric unit that are substituted with the group having the hydrocarbon segment.
- butyrylated maltodextrin having a DS of 2.5 is prepared by reacting 10 g of maltodextrin (MW 3000-5000 Da; ⁇ 3 mmols) with 0.32 mols butyric anhydride.
- the invention provides a hydrophobic glucopyranose polymer comprising a DS in the range of about 2-3, comprising pendent linear, branched, or cyclic a C 4 -C 10 groups, and the polymer has a MW in the range of about 2000 to about 20000 Da.
- the invention provides a hydrophobic glucopyranose polymer comprising a DS in the range of about 2-3, comprising pendent linear, branched, or cyclic C 5 -C 7 groups, and the polymer has a MW in the range of about 2000 to about 20000 Da
- the degree of substitution can influence the hydrophobic character of the polysaccharide.
- coatings formed from hydrophobic polysaccharides having a substantial amount of groups having the hydrocarbon segments bonded to the polysaccharide backbone are generally more hydrophobic and can be more resistant to degradation.
- a matrix formed from maltodextrin-butyrate DS1 has a rate of degradation that is faster than a matrix formed from maltodextrin-butyrate DS2.
- the type of hydrocarbon segment present in the groups pendent from the polysaccharide backbone can also influence the hydrophobic properties of the polymer.
- the hydrophobic polysaccharide has pendent groups with hydrocarbon segments being short chain branched alkyl group.
- Exemplary short chain branched alkyl group are branched C 4 -C 10 groups.
- the preparation of a hydrophobic polymer with these types of pendent groups is exemplified by the reaction of maltodextrin with valproic acid/anhydride with maltodextrin (MD-val). The reaction can be carried out to provide a relatively lower degree of substitution of the hydroxyl groups, such as is in the range of 0.5-1.5. Although these polysaccharides have a lower degree of substitution, the short chain branched alkyl group imparts considerable hydrophobic properties to the polysaccharide.
- the MD-val can form forms matrices that are very compliant and durable. Because of the low degrees of substitution, the pendent groups with the branched C 8 segment can be hydrolyzed from the polysaccharide backbone at a relatively fast rate, thereby providing a matrix that can quickly degrade in vivo.
- Various synthetic schemes can be used for the preparation of a hydrophobic polysaccharide.
- pendent polysaccharide hydroxyl groups are reacted with a compound that includes a hydrocarbon segment and a group that is reactive with the hydroxyl groups. This reaction can provide polysaccharide with pendent groups comprising hydrocarbon segments.
- the pendent group comprises a hydrocarbon segment that is a linear, branched, or cyclic C 2 -C 18 group. More preferably the hydrocarbon segment comprises a C 2 -C 10 , or a C 4 -C 8 , linear, branched, or cyclic group.
- the hydrocarbon segment can be saturated or unsaturated, and can comprise alkyl groups or aromatic groups, respectively.
- the hydrocarbon segment can be linked to the polysaccharide backbone via a hydrolyzable bond or a non-hydrolyzable bond.
- the compound having a hydrocarbon segment that is reacted with the polysaccharide backbone is derived from a natural compound.
- Natural compounds with hydrocarbon segments include fatty acids, fats, oils, waxes, phospholipids, prostaglandins, thromboxanes, leukotrienes, terpenes, steroids, and lipid soluble vitamins.
- Exemplary natural compounds with hydrocarbon segments include fatty acids and derivatives thereof, such as fatty acid anhydrides and fatty acid halides.
- Exemplary fatty acids and anhydrides include acetic, propionic, butyric, isobutyric, valeric, caproic, caprylic, capric, and lauric acids and anhydrides, respectively.
- the hydroxyl group of a polysaccharide can be reacted with a fatty acid or anhydride to bond the hydrocarbon segment of the compound to the polysaccharide backbone via an ester group.
- the hydroxyl group of a polysaccharide can also cause the ring opening of lactones to provide pendent open-chain hydroxy esters.
- Exemplary lactones that can be reacted with the polysaccharide include caprolactone and glycolides.
- a smaller amount of the compound may be needed for its synthesis.
- a compound having a hydrocarbon segments with an alkyl chain length of C x is used to prepare a hydrophobic polysaccharide with a DS of 1
- a compound having a hydrocarbon segment with an alkyl chain length of C (x X 2) is reacted in an amount to provide a hydrophobic polysaccharide with a DS of 0.5.
- the hydrophobic polysaccharide can also be synthesized having combinations of pendent groups with two or more different hydrocarbon segments, respectively.
- the hydrophobic polysaccharide can be synthesized using compounds having hydrocarbon segments with different alkyl chain lengths.
- a polysaccharide is reacted with a mixture of two or more fatty acids (or derivatives thereof) selected from the group of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, caprylic acid, capric acid, and lauric acid to generate the hydrophobic polysaccharide.
- hydrophobic polysaccharide is synthesized having a non-hydrolyzable bond linking the hydrocarbon segment to the polysaccharide backbone.
- exemplary non-hydrolyzable bonds include urethane bonds.
- the hydrophobic polysaccharide can also be synthesized so that hydrocarbon segments are individually linked to the polysaccharide backbone via both hydrolyzable and non-hydrolyzable bonds.
- a hydrophobic polysaccharide is prepared by reacting a mixture of butyric acid anhydride and butyl isocyanate with maltodextrin. This yields a hydrophobic polysaccharide of maltodextrin with pendent butyric acid groups that are individually covalently bonded to the maltodextrin backbone with hydrolyzable ester linkages and non-hydrolyzable urethane linkages.
- the degradation of a coating having this type of hydrophobic polysaccharide can occur by loss of the butyrate groups from hydrolysis of the ester linkages. However, a portion of the butyrate groups (the ones that are bonded via the urethane groups) are not removed from the polysaccharide backbone and therefore the polysaccharide can maintain a desired degree of hydrophobicity, prior to enzymatic degradation of the polysaccharide backbone.
- the group that is pendent from the polysaccharide backbone has properties of a bioactive agent.
- the coating comprises polysaccharide-coupled bioactive agent.
- a bioactive agent which has a hydrocarbon segment can be hydrolyzed from the hydrophobic polysaccharide and released from the matrix to provide a therapeutic effect in a subject.
- a therapeutically useful compound having a hydrocarbon segments is butyric acid, which has been shown to elicit tumor cell differentiation and apoptosis, and is thought to be useful for the treatment of cancer and other blood diseases.
- illustrative compounds comprising hydrocarbon segments include valproic acid and retinoic acid. These compounds can be coupled to a polysaccharide backbone, and then cleaved from the polysaccharide backbone in a subject. Retinoic acid is known to possess antiproliferative effects and is thought to be useful for treatment of proliferative vitreoretinopathy (PVR).
- the pendent group that provides a therapeutic effect can also be a natural compound (such as butyric acid, valproic acid, and retinoic acid).
- corticosteroid Other illustrative compound that can be coupled to the polysaccharide backbone is a corticosteroid.
- An exemplary corticosteroid is triamcinolone.
- One method of coupling triamcinolone to a natural biodegradable polymer is by employing a modification of the method described in Cayanis, E. et al., Generation of an Auto - anti - idiotypic Antibody that Binds to Glucocorticoid Receptor, The Journal of Biol. Chem., 261(11):5094-5103 (1986).
- Triamcinolone hexanoic acid is prepared by reaction of triamcinolone with ketohexanoic acid; an acid chloride of the resulting triamcinolone hexanoic acid can be formed and then reacted with the polysaccharide, such as maltodextrin or polyalditol, resulting in pendent triamcinolone groups coupled via ester bonds to the polysaccharide.
- the polysaccharide such as maltodextrin or polyalditol
- the hydrophobic polysaccharide can also be synthesized having two or more different pendent groups, wherein at least one of the pendent groups comprises a bioactive agent.
- the hydrophobic polysaccharide can be synthesized with an amount of a pendent groups comprising a bioactive agent, that when released from the polysaccharide, provides a therapeutic effect to a subject.
- An example of such a hydrophobic polysaccharide is maltodextrin-caproate-triamcinolone.
- This hydrophobic polysaccharide can be prepared by reacting a mixture including triamcinolone hexanoic acid and an excess of caproic anhydride (n-hexanoic anhydride) with maltodextrin to provide a derivative with a DS of 2.5.
- the group that is pendent from the polysaccharide includes a hydrocarbon segment that is an aromatic group, such as a phenyl group.
- o-acetylsalicylic acid is reacted with a polysaccharide such as maltodextrin to provide pendent chemical group having a hydrocarbon segment that is a phenyl group, and a non-hydrocarbon segment that is an acetate group wherein the pendent group is linked to the polysaccharide via an ester bond.
- hydrophobic polysaccharides can be used to form articles that are wholly or partially degradable.
- a partially degradable article can be an article that has a biostable portion, such as a biostable body member, and a biodegradable portion, such as a biodegradable coating.
- the articles of the invention have desirable and beneficial physical properties.
- the hydrophobic polysaccharides can be used to form biodegradable coatings that demonstrate excellent durability, compliance, and rate of degradation.
- these coatings offer advantages for the controlled release of bioactive agents, if included in the coating.
- these articles can be formed without requiring the covalent crosslinking of the polysaccharide polymers.
- the hydrophobic polysaccharides of the invention can be used in many applications, including systems and methods wherein the hydrophobic polysaccharide is contacted with a carbohydrase.
- some of the hydrophobic polysaccharides can be formed into coatings or articles that have a substantially slow rate of degradation. This is desirable in a variety of applications where it desired that the article (or coating) maintain its integrity for a protracted period of time, such as a period of months to years, but that it eventually degrades.
- the hydrophobic polysaccharides have utility in a broad range of applications.
- Such applications include medical applications, including implantable medical articles and coatings for implantable medical articles for the long-term treatment of various conditions.
- hydrophobic polysaccharides can also be used in the preparation of disposable consumer items. In these applications the structural integrity of the item is maintained for a period of use. However, following disposal, the item loses its structural integrity as the hydrophobic polysaccharide degrades.
- the hydrophobic polysaccharide is used to form an article, or a portion of an article, that can be degraded.
- the article is a disposable consumer item.
- a disposable consumer item broadly refers to any sort of article that is utilized by an individual and then disposed of after use. Following disposal, the article can be degraded in an appropriate waste environment. For example, the article can be disposed of in a landfill wherein the article is exposed to conditions that promote its degradation. For example, the article is exposed to carbohydrases present in the soil or water. These carbohydrases can be produced from environmental microorganisms and promote the degradation of the article over a period of time.
- Examples of disposable consumer items include packaging materials, paper products, tissues, towels, wipes, food containers, beverage containers, utensils, plates, cups, boxes, food wrap, food bags, garbage bags, personal care items, feminine hygiene products, restroom supplies, seat covers, child and infant care products.
- the hydrophobic polysaccharide is used to form the body member, or a portion of a body member, of an implantable medical article.
- a degradable body member, or portion thereof can provide mechanical properties at the implantation site and can maintain these mechanical properties until they are no longer needed. After a period of time has elapsed, the body member is degraded to an extent that the mechanical properties are no longer provided, and the degraded components of the article are processed by the body.
- the body member of the medical article slowly degrades and transfers stress at the appropriate rate to surrounding tissues as these tissues heal and can accommodate the stress once borne by the body member of the medical article.
- the medical article can optionally include a coating or a bioactive agent to provide one or more additional functional features, however, these are not required in order for the article to be of use at the treatment site.
- a biodegradable stent structure formed from the hydrophobic polysaccharide is an example of a body member of an implantable device.
- Other body members are exemplified herein.
- the article can also comprise fibers, such as microfibers and/or nanofibers that are formed from the hydrophobic polysaccharide.
- the fibers can be included in or associated with various articles including implantable medical articles and cell culture articles.
- the hydrophobic polysaccharide is used to form a coating on the surface of a medical article.
- the hydrophobic polysaccharide can be present in one or more coated layers all or a portion of the surface of the device.
- a “coating” as used herein can include one or more “coated layers”, each coated layer including one or more coating materials.
- the coating can be formed of a single layer of material that includes the hydrophobic polysaccharide, such as hydrophobic amylose or maltodextrin.
- the coating includes more than one coated layer, at least one of the coated layers including the hydrophobic polysaccharide. If more than one layer is present in the coating, the layers can be composed of the same or different materials.
- Bioactive agents can also be included in the coating.
- the bioactive agent can be in the same coated layer as the hydrophobic polysaccharide, or in a different coated layer.
- the bioactive agent can be released from the coating upon degradation of the coated layer that includes the hydrophobic polysaccharide.
- the coated layer that includes the hydrophobic polysaccharide can modulate bioactive agent release. In this aspect some or no degradation of the coated layer that includes the hydrophobic polysaccharide may occur.
- the following list of medical articles is provided to illustrate various medical articles that can be fabricated from the hydrophobic polysaccharide to form the body member of the medical articles.
- This list of various medical articles also exemplifies various body members that can be provided with a coating that includes the hydrophobic polysaccharide.
- These types of articles are typically introduced temporarily or permanently into a mammal for the prophylaxis or treatment of a medical condition.
- these articles can be introduced subcutaneously, percutaneously or surgically to rest within an organ, tissue, or lumen of an organ, such as arteries, veins, ventricles, or atria of the heart.
- Exemplary medical articles include vascular implants and grafts, grafts, surgical devices; synthetic prostheses; vascular prosthesis including endoprosthesis, stent-graft, and endovascular-stent combinations; small diameter grafts, abdominal aortic aneurysm grafts; wound dressings and wound management device; hemostatic barriers; mesh and hernia plugs; patches, including uterine bleeding patches, atrial septic defect (ASD) patches, patent foramen ovale (PFO) patches, ventricular septal defect (VSD) patches, and other generic cardiac patches; ASD, PFO, and VSD closures; percutaneous closure devices, mitral valve repair devices; left atrial appendage filters; valve annuloplasty devices, catheters; central venous access catheters, vascular access catheters, abscess drainage catheters, drug infusion catheters, parenteral feeding catheters, intravenous catheters (e.g., treated with antithrombotic agents), stroke therapy catheters, blood pressure and stent graft
- the hydrophobic polysaccharide is utilized in an ophthalmic article.
- Compositions including the hydrophobic polysaccharide can be used for the formation of a coating on the surface of an ophthalmic article, in the construction of the body member of the ophthalmic article, or both.
- the ophthalmic article can be configured for placement at an external or internal site of the eye.
- the articles can be utilized to deliver a bioactive agent to an anterior segment of the eye (in front of the lens), and/or a posterior segment of the eye (behind the lens). Suitable ophthalmic devices can also be utilized to provide bioactive agent to tissues in proximity to the eye, when desired.
- Suitable external articles can be configured for topical administration of bioactive agent.
- Such external devices can reside on an external surface of the eye, such as the cornea (for example, contact lenses) or bulbar conjunctiva.
- suitable external devices can reside in proximity to an external surface of the eye.
- Articles configured for placement at an internal site of the eye can reside within any desired area of the eye.
- the ophthalmic article can be configured for placement at an intraocular site, such as the vitreous.
- Illustrative intraocular devices include, but are not limited to, those described in U.S. Pat. No. 6,719,750 B2 (“Devices for Intraocular Drug Delivery,” Varner et al.) and U.S. Pat. No. 5,466,233 (“Tack for Intraocular Drug Delivery and Method for Inserting and Removing Same,” Weiner et al.); U.S. Publication Nos.
- a coating including the hydrophobic polysaccharide is formed on a non-linear intraocular device.
- the ophthalmic article can be configured for placement, or can be formed, at a subretinal area within the eye.
- Illustrative ophthalmic devices for subretinal application include, but are not limited to, those described in U.S. Patent Publication No. 2005/0143363 (“Method for Subretinal Administration of Therapeutics Including Steroids; Method for Localizing Pharmacodynamic Action at the Choroid and the Retina; and Related Methods for Treatment and/or Prevention of Retinal Diseases,” de Juan et al.); U.S. application Ser. No. 11/175,850 (“Methods and Devices for the Treatment of Ocular Conditions,” de Juan et al.); and related applications.
- Ophthalmic articles can also be configured for placement within any desired tissues of the eye.
- ophthalmic devices can be configured for placement at a subconjunctival area of the eye, such as devices positioned extrasclerally but under the conjunctiva, such as glaucoma drainage devices and the like.
- a coating that includes the hydrophobic polysaccharide can be formed on the body member of a medical article, including those listed herein, wherein the medical article is formed of a non-biodegradable material.
- a coating can be formed on a body member of a medical article that is partially or entirely fabricated from a plastic polymer.
- Plastic polymers include those formed of synthetic polymers, including oligomers, homopolymers, and copolymers resulting from either addition or condensation polymerizations.
- suitable addition polymers include, but are not limited to, acrylics such as those polymerized from methyl acrylate, methyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, acrylic acid, methacrylic acid, glyceryl acrylate, glyceryl methacrylate, methacrylamide, and acrylamide; vinyls such as ethylene, propylene, vinyl chloride, vinyl acetate, vinyl pyrrolidone, vinylidene difluoride, and styrene.
- acrylics such as those polymerized from methyl acrylate, methyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, acrylic acid, methacrylic acid, glyceryl acrylate, glyceryl methacrylate, methacrylamide, and acrylamide
- vinyls such as ethylene, propylene, vinyl chloride, vinyl acetate, vinyl pyrrolidone, vinylidene
- condensation polymers include, but are not limited to, nylons such as polycaprolactam, polylauryl lactam, polyhexamethylene adipamide, and polyhexamethylene dodecanediamide, and also polyurethanes, polycarbonates, polyamides, polysulfones, poly(ethylene terephthalate), polydimethylsiloxanes, and polyetherketone.
- suitable polymers that can be used to construct the body member include polyamides, polyimides, polyolefins, polystyrenes, polyesters, polycarbonates, polyketones, polyureas, acrylonitrile butadiene, butadiene rubber, chlorinated and chloro-sulfonated polyethylene, chloroprene, EPM, EPDM, PE-EPDM, PP-EPDM, EVOH, epichlorihydrin, isobutylene isoprene, isoprene, polysulfides, silicones, NBR/PVC, styrene butadienes, and vinyl acetate ethylenes, and combinations thereof.
- the coating of the invention is formed on an implantable medical article is partially or entirely fabricated from a degradable polymer.
- the article can degrade in an aqueous environment, such as by simple hydrolysis, or can be enzymatically degraded.
- Examples of classes of synthetic polymers that can be used to form the structure of the article include polyesters, polyamides, polyurethanes, polyorthoesters, polycaprolactone (PCL), polyiminocarbonates, aliphatic carbonates, polyphosphazenes, polyanhydrides, and copolymers thereof.
- Specific examples of biodegradable materials that can be used in connection with the device of the invention include polylactide, polygylcolide, polydioxanone, poly(lactide-co-glycolide), poly(glycolide-co-polydioxanone), polyanhydrides, poly(glycolide-co-trimethylene carbonate), and poly(glycolide-co-caprolactone).
- the hydrophobic polysaccharide can provide a barrier coating to articles fabricated from PLA or copolymers thereof. The coating can shield the article during a portion or all of a desired period of treatment. The coating article can still be fully degradable.
- Blends of these polymers with other biodegradable polymers can also be used.
- Coatings that include the hydrophobic polysaccharide can also be formed on medical devices that are partially or entirely fabricated from a metal. Although many devices or articles are constructed from substantially all metal materials, such as alloys, some may be constructed from both non-metal and metal materials, where at least a portion of the surface of the device is metal.
- metals include platinum, gold, or tungsten, as well as other metals such as rhenium, palladium, rhodium, ruthenium, titanium, nickel, and alloys of these metals, such as stainless steel, titanium/nickel, nitinol alloys, cobalt chrome alloys, non-ferrous alloys, and platinum/iridium alloys.
- One exemplary alloy is MP35.
- the biodegradable coating is formed on the surface of an erodable implantable medical device formed from of a metal.
- the biodegradable coating can be formed on a magnesium alloy stent that can be corroded following placement in a subject (see, for example, De Mario, C. et al. (2004) J. Interv. Cardiol., 17(6):391-395, and Heublein, B., et al. (2003) Heart; 89:651-656).
- the erodable implantable medical device can also include a bioactive agent, if desired.
- an in vivo lifetime of the article can be determined.
- the biodegradable coatings of the present invention can be applied to the surface of these erodable or degradable articles to prolong their in vivo lifetime.
- the in vivo lifetime is a period of time starting upon placement of the coated article at a target location, and ending when the coated article is completely degraded at the target location.
- Other surfaces that can be coated include those that include human tissue such as bone, cartilage, skin and teeth; or other organic materials such as wood, cellulose, compressed carbon, and rubber.
- Other contemplated biomaterials include ceramics including, but not limited to, silicon nitride, silicon carbide, zirconia, and alumina, as well as glass, silica, and sapphire. Combinations of ceramics and metals can also be coated.
- the hydrophobic polysaccharide can be formed into, or can be present in a coated layer on, an article having a porous structure.
- the porous structure of the article is a fabric or has fabric-like qualities.
- the porous structure can be formed from textiles, which include woven materials, knitted materials, and braided materials. Particularly useful textile materials are woven materials which can be formed using any suitable weave pattern known in the art.
- the porous structure can be that of a graft, sheath, cover, patch, sleeve, wrap, casing, and the like, including many of the medical articles described herein. These types of articles can function as the medical article itself or be used in conjunction with another part of a medical article.
- porous structures include grafts, particularly grafts having textured exterior portions.
- textured grafts include those that have velour-textured exteriors, with textured or smooth interiors.
- Grafts constructed from woven textile products are well known in the art and have been described in numerous documents, for example, U.S. Pat. No. 4,047,252; U.S. Pat. No. 5,178,630; U.S. Pat. No. 5,282,848; and U.S. Pat. No. 5,800,514.
- a medical article having a biodegradable coating including the hydrophobic polysaccharide, or a medical article that is formed using the hydrophobic polysaccharide can be prepared by assembling an article having two or more “parts.” These parts can be pieces of a medical article that can be put together to form the article. All or a portion of the part of the medical article can include the hydrophobic polysaccharide. In this regard, the invention also contemplates parts of medical article (for example, not the fully assembled article) that include the hydrophobic polysaccharide.
- the invention provides coatings that include a coated layer comprising the hydrophobic polysaccharide, wherein the coating is also capable of releasing one or more bioactive agents.
- a bioactive agent is present in association with a hydrophobic coated layer that includes the hydrophobic polysaccharide.
- the bioactive agent generally has poor or no solubility in water.
- the coating can demonstrate a particular release mechanism.
- the bioactive agent may be released from the coated layer with little or no degradation of the hydrophobic polysaccharide.
- a coated layer that includes maltodextrin-butyrate having a high degree of substitution (such as in the range of DS 2-DS 3) and a hydrophobic bioactive agent that is not covalently bonded to the maltodextrin-butyrate may release the bioactive agent with little or no degradation of the coating. That is, release of the bioactive agent is primarily driven by diffusion of the bioactive agent from the coated layer.
- the coated layer containing the hydrophobic polysaccharide contributes to release of the bioactive agent.
- the coated layer is weaker and more susceptible to degradation.
- the coated layer can be formed from a maltodextrin-butyrate having a lower degree of substitution (such as about DS 1) and that includes a bioactive agent. Degradation of the coated layer can proceed by hydrolysis of the butyrate group and enzymatic degradation of the maltodextrin. Depending on the properties of the bioactive agent, release can occur by degradation of the coated layer; however, diffusion of the bioactive agent from the coated layer may also occur.
- the bioactive agent may be covalently bonded to the natural biodegradable polysaccharide.
- the bioactive agent is a group pendent from the hydrophobic polysaccharide, such as a butyrate group.
- the bioactive agent is covalently bonded, it is cleavable from the polysaccharide.
- Cleavable chemical linkages that can be used to bond the bioactive agent to the polysaccharide include ester group, peroxyester groups, disulfide groups, and hydrazone groups.
- the cleavable linking group can be enzymatically cleaved, for example, by proteases or by carbohydrases.
- the coating includes more than one coated layer of material, wherein a bioactive agent is present in a first coated layer, and second coated layer of material that includes the hydrophobic polysaccharide.
- the second coated layer is able to control the release of the bioactive agent from the coating.
- a first coated layer that includes a polymeric material and a bioactive agent can be formed between the device surface and a second coated layer that includes the hydrophobic polysaccharide.
- the bioactive agent diffuses from the first coated layer, but the second coated layer controls its release from the surface of the device in a more effective therapeutic profile.
- a first coated layer is prepared that includes a synthetic polymer and a hydrophilic bioactive agent.
- the synthetic polymer can be a non-biodegradable polymer.
- Exemplary synthetic polymers include poly(alkyl(meth)acrylates) such as poly(butylmethacrylate); secondary polymers can be included in the first coated layer.
- a hydrophilic bioactive agent is included in the first coated layer.
- a second coated layer that includes the hydrophobic polysaccharide is formed. The second coated layer can be in direct contact with the first coated layer. Upon implantation, the second coated layer slows the release of the hydrophilic bioactive agent, which is otherwise typically released very rapidly.
- bioactive agent refers to an inorganic or organic molecule, which can be synthetic or natural, that causes a biological effect when administered in vivo to an animal, including but not limited to birds and mammals, including humans.
- bioactive agents A partial list of bioactive agents is provided below. According to embodiments of the present invention, one may choose one or more of the bioactive agents to be included in an article or coating that comprises the hydrophobic polysaccharide.
- a comprehensive listing of bioactive agents, in addition to information of the water solubility of the bioactive agents, can be found in The Merck Index, Thirteenth Edition, Merck & Co. (2001).
- Articles and coatings prepared according to the invention can be used to release bioactive agents falling within one or more of the following classes include, but are not limited to: ACE inhibitors, actin inhibitors, analgesics, anesthetics, anti-hypertensives, anti polymerases, antisecretory agents, anti-AIDS substances, antibiotics, anti-cancer substances, anti-cholinergics, anti-coagulants, anti-convulsants, anti-depressants, anti-emetics, antifungals, anti-glaucoma solutes, antihistamines, antihypertensive agents, anti-inflammatory agents (such as NSAIDs), anti metabolites, antimitotics, antioxidizing agents, anti-parasite and/or anti-Parkinson substances, antiproliferatives (including antiangiogenesis agents), anti-protozoal solutes, anti-psychotic substances, anti-pyretics, antiseptics, anti-spasmodics, antiviral agents, calcium channel blockers, cell response modifiers
- Antibiotics are art recognized and are substances which inhibit the growth of or kill microorganisms.
- antibiotics include penicillin, tetracycline, chloramphenicol, minocycline, doxycycline, vancomycin, bacitracin, kanamycin, neomycin, gentamycin, erythromycin, cephalosporins, geldanamycin, and analogs thereof.
- cephalosporins examples include cephalothin, cephapirin, cefazolin, cephalexin, cephradine, cefadroxil, cefamandole, cefoxitin, cefaclor, cefuroxime, cefonicid, ceforanide, cefotaxime, moxalactam, ceftizoxime, ceftriaxone, and cefoperazone.
- Antiseptics are recognized as substances that prevent or arrest the growth or action of microorganisms, generally in a nonspecific fashion, e.g., by inhibiting their activity or destroying them.
- antiseptics include silver sulfadiazine, chlorhexidine, glutaraldehyde, peracetic acid, sodium hypochlorite, phenols, phenolic compounds, iodophor compounds, quaternary ammonium compounds, and chlorine compounds.
- Anti-viral agents are substances capable of destroying or suppressing the replication of viruses.
- examples of anti-viral agents include ⁇ -methyl-P-adamantane methylamine, hydroxy-ethoxymethylguanine, adamantanamine, 5-iodo-2′-deoxyuridine, trifluorothymidine, interferon, and adenine arabinoside.
- Enzyme inhibitors are substances that inhibit an enzymatic reaction.
- enzyme inhibitors include edrophonium chloride, N-methylphysostigmine, neostigmine bromide, physostigmine sulfate, tacrine HCl, tacrine, 1-hydroxymaleate, iodotubercidin, p-bromotetramisole, 10-( ⁇ -diethylaminopropionyl)-phenothiazine hydrochloride, calmidazolium chloride, hemicholinium-3,3,5-dinitrocatechol, diacylglycerol kinase inhibitor I, diacylglycerol kinase inhibitor II, 3-phenylpropargylamine, N-monomethyl-L-arginine acetate, carbidopa, 3-hydroxybenzylhydrazine HCl, hydralazine HCl, clorgyline HCl, deprenyl HCl
- Anti-pyretics are substances capable of relieving or reducing fever.
- Anti-inflammatory agents are substances capable of counteracting or suppressing inflammation. Examples of such agents include aspirin (salicylic acid), indomethacin, sodium indomethacin trihydrate, salicylamide, naproxen, colchicine, fenoprofen, sulindac, diflunisal, diclofenac, indoprofen and sodium salicylamide.
- Local anesthetics are substances that have an anesthetic effect in a localized region. Examples of such anesthetics include procaine, lidocaine, tetracaine and dibucaine.
- statins examples include lovastatin, pravastatin, simvastatin, fluvastatin, atorvastatin, cerivastatin, rosuvastatin, and superstatin.
- steroids examples include glucocorticoids such as cortisone, hydrocortisone, dexamethasone, betamethasone, prednisone, prednisolone, methylprednisolone, triamcinolone, beclomethasone, fludrocortisone, and aldosterone; sex steroids such as testostersone, dihydrotestosterone, estradiol, diethylstilbestrol, progesterone, and progestins.
- glucocorticoids such as cortisone, hydrocortisone, dexamethasone, betamethasone, prednisone, prednisolone, methylprednisolone, triamcinolone, beclomethasone, fludrocortisone, and aldosterone
- sex steroids such as testostersone, dihydrotestosterone, estradiol, diethylstilbestrol, progesterone, and progestins.
- the bioactive agent can be an immunosuppressive agent, for example, rapamycin, ABT-578, cyclosporine, everolimus, mycophenolic acid, sirolimus, tacrolimus, and the like.
- immunosuppressive agent for example, rapamycin, ABT-578, cyclosporine, everolimus, mycophenolic acid, sirolimus, tacrolimus, and the like.
- a composition that includes the hydrophobic polysaccharide can be prepared.
- the natural biodegradable polysaccharide is dissolved in a suitable solvent and the composition is used in a desired process.
- solvents examples include aromatic compounds such as toluene and xylene, and ethers such as tetrahydrofuran.
- Other suitable solvents include halogenated alkanes such as methylene chloride and chloroform; and amides such as dimethylformamide (DMF). Combinations of one or more of these or other solvents can also be used.
- the type of solvent system used can be chosen according to the hydrophobic polysaccharide, and any other optional component present in the composition.
- the concentration of the hydrophobic polysaccharide in a composition can be chosen to provide an article or coating with desired physical and functional properties.
- a coating composition such as one for a spray coating process, can be prepared having the hydrophobic polysaccharide composition at a concentration in the range of about 5 mg/mL to about 500 mg/mL.
- the hydrophobic polysaccharide is present in the composition at about 50 mg/mL and the composition is used for coating a surface.
- the hydrophobic polysaccharide can be blended with one or more other hydrophobic compounds in a composition for preparation of an article.
- the other hydrophobic compounds can be hydrophobic polysaccharides.
- mixtures of hydrophobic polysaccharides of different molecular weights can be blended in a composition and used to prepare an article.
- the composition used to form the coating or article can include a radiopacifying agent.
- a radiopacifying agent in the formed coating or article can promote detection of the location of a device following implantation.
- the composition can also include a bioactive agent, such as one or more of those described herein.
- the bioactive agent can be present in the composition at a concentration, which allows formation of a coating or an article with therapeutically useful properties.
- the amount and type of bioactive agent may be chosen based on the type of hydrophobic polysaccharide present in the composition.
- compositions of the invention that include the hydrophobic polysaccharide in an organic solvent can be used to coat the surface of a variety of implantable medical devices.
- the coating composition (with or without bioactive agent) can be applied to a medical device using standard techniques to cover the entire surface of the device, or a portion of the device surface. If more than one coated layer is applied to a surface, it is typically applied successively.
- a natural biodegradable polysaccharide coated layer can be formed by, for example, dipping, spraying, bushing, or swabbing the coating material on the article to form a layer, and then drying the coated layer. The process can be repeated to provide a coating having multiple coated layers, wherein at least one layer includes the natural biodegradable polysaccharide.
- the compositions of the present invention are particularly suitable for use in spray coating processes.
- a composition that includes the hydrophobic polysaccharide can be spray coated directly onto the surface of a body member of a medical article, or can be spray coated onto a surface that includes one or more coated layers of material previously formed on the body member.
- the composition may be spray coated onto a coated layer of material that includes a bioactive agent.
- coated layers can include polymers such as methacrylate, acrylate, alkylacrylate, acrylamide, vinylpyrrolidinone, vinylacetamide, or vinyl formamide polymers. These polymers can also include latent reactive groups, such as photoreactive groups.
- the coated layer that includes the hydrophobic polysaccharide is formed on a base layer.
- the base layer can serve one or more functions, for example, it can provide an improved surface for the formation of a coated layer that includes the hydrophobic polysaccharide.
- Components of the biodegradable coating can be applied to the medical device using standard techniques to cover the entire surface of the device, or a portion of the device surface. As indicated, the components can be applied to the medical device independently or together, for example, in a composition.
- the coating formed on the device can be a single layer coating, or a multiple layer coating.
- the hydrophobic polysaccharide is used to form a medical implant that includes a bioactive agent.
- the implant may not have any distinct mechanical properties, such as would be apparent with an intravascular prosthesis, but rather provides a mechanism to deliver the bioactive agent to a particular portion of the body.
- the implant can have a defined structure and size that is appropriate for its use at a desired location in the body.
- a medical implant having a defined structure can be formed by any suitable process, including molding, extruding, shaping, cutting, casting, and the like.
- the concentration of the natural biodegradable polysaccharide may be higher to provide a more structurally rigid implant.
- the hydrophobic polysaccharide is used to form a microparticle.
- the microparticle can also include a bioactive agent, and it can be used to deliver this bioactive agent from a coating on a medical article.
- microparticles have a size in the range of 5 nm to 100 ⁇ m in diameter, and are spherical or somewhat spherical in shape.
- Microparticles that include a hydrophobic polysaccharide can be prepared by established techniques, for example, by solvent evaporation (see, for example, Wichert, B. and Rohdewald, P. (1993) J. Microencapsul. 10:195).
- Bioactive agents can also be incorporated into the microparticles using these techniques and can be formulated to release a desired amount of the agent over a predetermined period of time.
- the bioactive agent can be released from the biodegradable microparticle upon degradation of the biodegradable microparticle in vivo.
- Medical articles formed from the hydrophobic polysaccharide, or that include a biodegradable coating can be treated to sterilize one or more parts of the article, or the entire medical article. Sterilization can take place prior to using the medical article and/or, in some cases, during implantation of the medical article.
- the invention provides a method for delivering a bioactive agent from coating or article formed from a hydrophobic polysaccharide.
- the article is placed in a subject.
- the bioactive agent is released from the coating.
- the coating can be formulated, as described herein, to release the bioactive agent over a prolonged period of time.
- a carbohydrase can promote the degradation of the biodegradable coating.
- the carbohydrase that contacts the coating or article can specifically degrade the natural biodegradable polysaccharide. This may occur before, during, or after the release of the bioactive agent.
- carbohydrases that can specifically degrade natural biodegradable polysaccharide coatings include ⁇ -amylases, such as salivary and pancreatic ⁇ -amylases; disaccharidases, such as maltase, lactase and sucrase; trisaccharidases; and glucoamylase (amyloglucosidase).
- Serum concentrations for amylase are estimated to be in the range of about 50-100 U per liter, and vitreal concentrations also fall within this range (Varela, R. A., and Bossart, G. D. (2005) J Am Vet Med Assoc 226:88-92).
- the carbohydrase can be administered to a subject to increase the local concentration, for example in the serum or the tissue surrounding the implanted device, so that the carbohydrase may promote the degradation of the coating.
- exemplary routes for introducing a carbohydrase include local injection, intravenous (IV) routes, and the like.
- degradation can be promoted by indirectly increasing the concentration of a carbohydrase in the vicinity of the coated article, for example, by a dietary process, or by ingesting or administering a compound that increases the systemic levels of a carbohydrase.
- the carbohydrase can be provided on a portion of the article.
- the carbohydrase may be eluted from a portion of the article that does not include hydrophobic polysaccharide.
- the carbohydrase as released it locally acts upon the coating to cause its degradation and promote the release of the bioactive agent.
- the dialysis tube and contents were placed in 1 liter of acetone/methanol-50/50 (volume) three times for more than 1 hour for each solvent change.
- the dialysis tube and contents were then placed in 4 liters of acetone/methanol-50/50 (volume) three times for 1 day for each solvent change.
- the solid from the dialysis tube was dried in vacuo. 1.69 g of a white solid was obtained.
- the theoretical DS was 0.1.
- the dialysis tube and contents were placed in 1 liter of acetone/methanol-50/50 (volume) three times for more than 1 hour for each solvent change.
- the dialysis tube and contents were then placed in 4 liters of acetone/methanol-50/50 (volume) three times for 1 day for each solvent change.
- the solid from the dialysis tube was dried in vacuo. 6.58 g of a white powdery solid was obtained.
- the theoretical DS was 0.1.
- N,N′-diisopropylcarbodiimide, DIC (9.47 g) was weighed into a 30 mL amber vial and dissolved with 10 mL of anhydrous DMSO.
- the DIC solution was poured into the 120 mL amber vial and purged with nitrogen gas.
- a Teflon stir bar was inserted into the 120 mL vial before being capped and placed on a stir plate to stir overnight at room temperature. After overnight stirring, no visible product was seen and the reaction was placed in a 55° C. oven to stir overnight. The reaction formed two layers after heating overnight and was precipitated into 2 L deionized water while stirring.
- the yellowish/white solid was vacuum-filtered using a water aspirator and rinsed three times with deionized water (100 mL). The solid precipitate was collected and dried in a vacuum oven at 40° C. overnight. The dried solid was organic soluble (tetrahydrofuran, methylene chloride). A 50 mg/mL solution in THF was prepared and tested by dip coating onto a clean Pebax rod giving a uniform, off-white coating.
- Vacuum oven-dried Polyalditol PD60 (4.10 g), N-hydroxysuccinimide (0.38 g), 4-di(methylamino)pyridine (0.39 g), and o-acetylsalicylic acid, ASA, (11.26 g) were weighed into a 120 mL amber vial.
- Anhydrous dimethyl sulfoxide 50 mL was poured into the vial, purged with nitrogen, and placed on a rotary shaker to dissolve.
- N,N′-diisopropylcarbodiimide, DIC (9.47 g) was weighed into a 30 mL amber vial and dissolved with 10 mL of anhydrous DMSO.
- the DIC solution was poured into the 120 mL amber vial and purged with nitrogen gas.
- a Teflon stir bar was inserted into the 120 mL vial before being capped and placed on a stir plate to stir overnight at room temperature. After overnight stirring, no visible product was seen and the reaction was placed in a 55° C. oven to stir overnight.
- the reaction formed a viscous, orange material after heating overnight and was precipitated into 2 L deionized water while stirring.
- the orange solid was vacuum-filtered using a water aspirator and rinsed once with acetone (25 mL) followed by three times with deionized water (100 mL).
- the solid precipitate was collected and dried in a vacuum oven at 40° C. overnight. The dried solid was organic soluble (tetrahydrofuran, methylene chloride).
- a solution was prepared in 15 mls of THF containing 200 mgs of poly(butylmethacrylate) (PBMA) with an approximate weight average molecular weight of 337 kD, 200 mgs poly (ethylene-co-vinyl acetate) (PEVA) with a vinyl acetate content of 33% (w/w), and 200 mgs lidocaine.
- PBMA poly(butylmethacrylate)
- PEVA poly (ethylene-co-vinyl acetate) with a vinyl acetate content of 33% (w/w)
- lidocaine 200 mgs lidocaine.
- Stainless steel stents were prepared for coating as follows. The stents were cleaned by soaking in a 6% (by volume) solution of ENPREP-160SE (Cat. #2108-100, Enthone-OMI, Inc., West Haven, Conn.) in deionized water for 1 hour. After soaking, the parts were then rinsed several times with deionized water. After rinsing, the stents were soaked for 1 hour at room temperature in 0.5% (by volume) methacryloxypropyltrimethoxy silane (Cat.#M6514, Sigma Aldrich, St. Louis, Mo.) made in a 50% (by volume) solution of deionized water and isopropyl alcohol. The stainless steel wires were allowed to drain and air dry. The dried stents were then placed in a 100° C. oven for 1 hour.
- ENPREP-160SE Cat. #2108-100, Enthone-OMI, Inc., West Haven, Conn.
- the parts were then rinsed several
- the stents were placed in a parylene coating reactor (PDS 2010 LABCOTERTM 2, Specialty Coating Systems, Indianapolis, Ind.) and coated with 2 g of Parylene C (Specialty Coating Systems, Indianapolis, Ind.) by following the operating instructions for the LABCOTERTM system.
- the resulting Parylene C coating was approximately 1-2 ⁇ m thickness.
- the coating compositions on the stents were dried by evaporation of solvent, approximately 8-10 hours, at room temperature (approximately 20° C. to 22° C.). After drying, the coated stents were re-weighed. From this weight, the mass of the coating was calculated, which in turn permitted the mass of the coated polymer(s) and lidocaine to be determined.
- Example 10 Three solutions were prepared in THF; each solution was prepared at 50 mg/mL.
- the three solutions were comprised of maltodextrin-propionate (MD-Prop) (from Example 8), maltodextrin-acetate (MD-Ace) (from Example 2), and maltodextrin-caproate (MD-Cap) (from Example 10).
- MD-Prop maltodextrin-propionate
- MD-Ace maltodextrin-acetate
- MD-Cap maltodextrin-caproate
- Each of these solutions was coated onto PBMA/PEVA/lidocaine coated stents as described above. The spraying process was repeated until the amount of MD polymer was estimated to be around 500 micrograms.
- the Elution Assay utilized herein was as follows. Phosphate buffered saline (PBS, 10 mM phosphate, 150 mM NaCl, pH 7.4, aqueous solution) was pipetted in an amount of 3 mL to 10 mL into an amber vial with a TeflonTM lined cap. A wire or coil treated with the coating composition was immersed into the PBS. A stir bar was placed into the vial and the cap was screwed tightly onto the vial. The PBS was stirred with the use of a stir plate, and the temperature of the PBS was maintained at 37° C. with the use of a water bath. The sampling times were chosen based upon the expected or desired elution rate.
- PBS Phosphate buffered saline
- the stent was removed from the vial and placed into a new vial containing fresh PBS.
- a UV/VIS spectrophotometer was used to determine the concentration of the drug in the PBS solution that previously contained the stent treated with the coating composition.
- the cumulative amount of drug eluted versus time was plotted to obtain an elution profile.
- the elution profiles are illustrated graphically in FIG. 1 .
- Coated and uncoated strips are placed individually into vials and 2 mls of phosphate buffered saline (PBS) pH 7.4 is added to each vial.
- PBS phosphate buffered saline
- the vials were sealed and placed in a 37° C. environmental chamber. At various time points the vials were removed from the chamber and the strips visually observed; approximate estimates of the amount of each strip remaining were made and are shown in Table 1.
- Triamcinolone acetonide-releasing medical implants were prepared by combining various hydrophobic maltodextrin (MD) polymers with triamcinolone acetonide (TA) in various ratios. In some cases a hydrophilic polymer was added to the hydrophobic MD and TA. Implants were prepared using hydrophobic MDs, TA, and hydrophilic polymers in the amounts as shown in Table 2.
- MD maltodextrin
- TA triamcinolone acetonide
- the ingredients were heated and mixed in an extruder (DACATM Microcompounder; DACA Instruments, Santa Barbara Calif.). Total batch size for an individual preparation was 4 grams. For example 2 g of MD-Hex (DS 2.5) ⁇ 3 kDa was mixed with 2 g of triamcinolone acetonide (Pharmacia & Upjohn Company) the preparation of implant sample A. Ingredients were fed in dry (powder of pellet) form to the feed section of the heated extruder. For preparations containing MD-But 2.0 the extruder was heated to a temperature of approximately 150° C. For preparations containing MD-But 2.0 the extruder was heated to a temperature of approximately 150° C.
- the extruder was heated to a temperature of approximately 110° C.
- the extruder heated, mixed, and recirculated the ingredients to create a uniform mixture.
- the polymeric ingredients melted and blended together, and the TA is uniformly blended into the polymer melt. Processing temperatures did not melt PVP in the PVP-containing mixtures.
- the ingredients were mixed for an average of about 6 minutes before being extruded. Solvent was not added, so the original polymorphic form of the TA during the extrusion process was maintained.
- the mixture was extruded out of a die and elongated into a cylindrical shape with diameter in the range of about 250 ⁇ m to about 650 ⁇ m. Other diameters, such in the range of about 100 ⁇ m to 1000 ⁇ m, can be prepared.
- the resulting cylinders were cut to the desired length, typically 3-6 mm, to create the implant.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Molecular Biology (AREA)
- Transplantation (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Neurosurgery (AREA)
- Biochemistry (AREA)
- Materials For Medical Uses (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Medicinal Preparation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Low molecular weight hydrophobic derivatives of non-cyclic α(1→4)glucopyranose polymers and non-reducing polysaccharides are described. The derivates can be used to form matrices in various forms, including body members of implantable articles, coatings, and consumer items, which have desirable properties.
Description
- The present non-provisional Application claims the benefit of commonly owned provisional Application having Ser. No. 60/782,957, filed on Mar. 15, 2006, and entitled HYDROPHOBIC DERIVATIVES OF NATURAL BIODEGRADABLE POLYSACCHARIDES; and commonly owned provisional Application having Ser. No. 60/900,853, filed on Feb. 10, 2007, and entitled BIODEGRADABLE HYDROPHOBIC POLYSACCHARIDE-BASED DRUG DELIVERY IMPLANTS; which Applications are incorporated herein by reference in their entirety.
- The present invention relates to hydrophobic derivatives of natural biodegradable polysaccharides, and articles including these derivatives.
- Polylactide (PLA) is a synthetic biodegradable thermoplastic derived from lactic acid that has been used extensively in the preparation of a wide variety of items. In particular, PLA has been used to construct biodegradable articles such as bags, containers, diapers and packaging materials. PLA has also been used for in the fabrication of biodegradable medical devices such as sutures that can dissolve in physiological conditions.
- Similar to other thermoplastics, PLA can be processed into fibers and films, thermoformed, or injection molded. While PLA provides desirable processing and degradation properties, it suffers from brittleness, hardness, inflexibility, and low melt tension. In order to overcome these undesirable characteristics, PLA is often blended with secondary agents, such as plasticizers, to improve its properties. Many commonly used secondary agents such as plasticizers, however, are not degradable. This presents obstacles for the preparation of PLA-based articles that are intended to be completely degradable.
- Generally, the present invention relates to hydrophobic derivatives of a natural biodegradable polysaccharide (“hydrophobic polysaccharides”), articles that include these hydrophobic polysaccharides, and methods utilizing these articles.
- Generally, the hydrophobic polysaccharides comprise a poly-α(1→4)glucopyranose backbone and have a low molecular weight and a plurality of groups pendent from the backbone that provide the hydrophobic portion. These hydrophobic polysaccharides have been found to be amenable to use in various fabrication processes and also can be used to form articles with desirable properties, such as properties desirable for use in association with implantable medical articles. For example, matrices formed using hydrophobic polysaccharides of the invention demonstrate one more of the following properties, such as compliance, conformability, and/or durability, which provide(s) benefits for in vivo use. These properties can prevent or minimize cracking, delamination, and/or abrasion of the matrix during use. The coating compositions can also be prepared having a high concentration of solids, allowing the formation of a matrix having a high content of a secondary compound, such as a bioactive agent. Coatings for implantable medical articles as well as the body members of implantable medical articles exemplify hydrophobic polysaccharide matrices.
- The hydrophobic polysaccharides can be degraded into natural materials, which provide advantages for compatibility of implantable articles. Degradation of the matrix can result in the release of, for example, naturally occurring mono- or disaccharides, such as glucose, which are common serum components. This provides an advantage over matrices formed from polyglycolide-type molecules, which can degrade into products that cause unwanted side effects in the body by virtue of their presence or concentration in vivo.
- In one aspect, the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a non-cyclic poly-α(1→4)glucopyranose backbone and a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone, the groups comprising a hydrocarbon segment having two or more carbon atoms, wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less.
- In another aspect, the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a non-cyclic poly-α(1→4)glucopyranose backbone; and a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone, wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less, and a glass transition temperature of 35° C. or greater.
- In another aspect, the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a hydrophilic portion comprising a non-cyclic poly-α(1→4)glucopyranose backbone; a hydrophobic portion comprising a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone, wherein the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 5:1 to 1:1.25, and wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less.
- In another aspect, the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a non-cyclic poly-α(1→4)glucopyranose backbone; and a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone, the groups comprising a hydrocarbon segment, wherein at least a portion of the groups comprise a bioactive agent that is cleavable from the poly-α(1→4)glucopyranose backbone, and wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less.
- In another aspect, the invention provides a hydrophobic derivative of a natural biodegradable polysaccharide comprising a polymeric backbone comprising non-reducing disaccharides and a plurality of groups pendent from the polymeric backbone, wherein the hydrophobic derivative has a molecular weight of about 100,000 Da or less. The polymeric backbone can be selected from the group consisting of polytrehalose, polysucrose, and polyalditol.
- In another aspect, the invention provides a disposable article formed of a hydrophobic polysaccharide of the invention.
- In another aspect, the invention provides coating for an implantable medical article, wherein the coating is formed of a hydrophobic polysaccharide of the invention.
- In another aspect, the invention provides an implantable medical article having a body member that is formed of a hydrophobic polysaccharide of the invention.
- In another aspect, the invention provides a method for delivering a bioactive agent to a subject comprising the steps of: implanting in a subject at a target location an implantable medical article formed of a hydrophobic polysaccharide of the invention; and allowing the bioactive agent to be released from the implantable medical article to provide a therapeutic effect to the subject.
- In another aspect, the invention provides a method for delivering a bioactive agent to a subject comprising the steps of: implanting in a subject at a target location an implantable medical article comprising a coating formed of a hydrophobic polysaccharides of the invention and a bioactive agent; and allowing the bioactive agent to be released from the coating to provide a therapeutic effect to the subject.
-
FIG. 1 is a graph illustrating elution profiles of stents coated with lidocaine and hydrophobic polysaccharides. - The embodiments of the present invention described herein are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather, the embodiments are chosen and described so that others skilled in the art can appreciate and understand the principles and practices of the present invention.
- All publications and patents mentioned herein are hereby incorporated by reference. The publications and patents disclosed herein are provided solely for their disclosure. Nothing herein is to be construed as an admission that the inventors are not entitled to antedate any publication and/or patent, including any publication and/or patent cited herein.
- The invention is generally directed to the hydrophobic derivatives of non-cyclic α(1→4)glucopyranose polymers, articles that are formed using these hydrophobic polysaccharides, and uses of articles formed from these hydrophobic polysaccharides. The invention is also directed to hydrophobic derivatives of polysaccharides formed of non-reducing sugars, such as polyalditol. The hydrophobic polysaccharides have a low molecular weight and are useful for the preparation of polymeric matrices, which can be in a variety of forms, such as coatings or body members of articles.
- As used herein, a “hydrophobic derivative” of a non-cyclic α(1→4)glucopyranose polymer refers to a non-cyclic α(1→4)glucopyranose polymer with a hydrophobic portion, wherein the hydrophobic derivative is not soluble in water. In many cases the hydrophobic portion includes a plurality of groups that are pendent from poly α(1→4)glucopyranose backbone and that, together, provide the polymer with the hydrophobic property. The plurality of pendent groups is collectively referred to as the “hydrophobic portion” of the hydrophobic derivative. The hydrophobic derivatives of the invention therefore include a hydrophobic portion and a polysaccharide portion.
- The non-cyclic α(1→4)glucopyranose polymer portion includes repeating glucopyranose monomeric units having α(1→4) linkages and is capable of being enzymatically degraded. Exemplary non-cyclic α(1→4)glucopyranose polymer portions include maltodextrin and amylose.
- As used herein, “amylose” or “amylose polymer” refers to a linear polymer having repeating glucopyranose units that are joined by α-1,4 linkages. Some amylose polymers can have a very small amount of branching via α-1,6 linkages (about less than 0.5% of the linkages) but still demonstrate the same physical properties as linear (unbranched) amylose polymers do. Generally amylose polymers derived from plant sources have molecular weights of about 1×106 Da or less. Amylopectin, comparatively, is a branched polymer having repeating glucopyranose units that are joined by α-1,4 linkages to form linear portions and the linear portions are linked together via α-1,6 linkages. The branch point linkages are generally greater than 1% of the total linkages and typically 4%-5% of the total linkages. Generally amylopectin derived from plant sources have molecular weights of 1×107 Da or greater.
- Amylose can be obtained from, or is present in, a variety of sources. Typically, amylose is obtained from non-animal sources, such as plant sources. In some aspects, a purified preparation of amylose is used as starting material for the preparation of the amylose polymer having a hydrophobic portion. In other aspects, as starting material, amylose can be used in a mixture that includes other polysaccharides.
- For example, in some aspects, starch preparations having a high amylose content, purified amylose, synthetically prepared amylose, or enriched amylose preparations can be used in the preparation of a hydrophobic derivative of amylose. In starch sources, amylose is typically present along with amylopectin, which is a branched polysaccharide. If a mixture of amylose and a higher molecular weight precursor is used (such as amylopectin), it is preferred that amylose is present in the composition in an amount greater than the higher molecular weight precursor. For example, in some aspects, starch preparations having high amylose content, purified amylose, synthetically prepared amylose, or enriched amylose preparations can be used in the preparation of a hydrophobic derivative of amylose polymer. In some embodiments the composition includes a mixture of polysaccharides including amylose wherein the amylose content in the mixture of polysaccharides is 50% or greater, 60% or greater, 70% or greater, 80% or greater, or 85% or greater by weight. In other embodiments the composition includes a mixture of polysaccharides including amylose and amylopectin and wherein the amylopectin content in the mixture of polysaccharides is 30% or less, or 15% or less.
- The amount of amylopectin present in a starch may also be reduced by treating the starch with amylopectinase, which cleaves α-1,6 linkages resulting in the debranching of amylopectin into amylose.
- Steps may be performed before, during, and/or after the process of derivatizing the amylose polymer to provide for a hydrophobic derivative, to enrich the amount of amylose, or to purify the amylose.
- Amylose of particular molecular weights can be obtained commercially or can be prepared. For example, synthetic amyloses with an average molecular mass of 70 kDa can be obtained from Nakano Vinegar Co., Ltd. (Aichi, Japan). The decision of using amylose of a particular size range may depend on factors such as the physical characteristics of the composition (e.g., viscosity), the desired rate of degradation of the coating formed from the hydrophobic polysaccharide, and the presence of other optional components in the composition, such as bioactive agents.
- Purified or enriched amylose preparations can be obtained commercially or can be prepared using standard biochemical techniques such as chromatography. In some aspects, high-amylose cornstarch can be used to prepare the hydrophobic polysaccharide.
- Maltodextrin is typically generated by hydrolyzing a starch slurry with heat-stable α-amylase at temperatures at 85-90° C. until the desired degree of hydrolysis is reached and then inactivating the α-amylase by a second heat treatment. The maltodextrin can be purified by filtration and then spray dried to a final product. Maltodextrins are typically characterized by their dextrose equivalent (DE) value, which is related to the degree of hydrolysis defined as: DE=MW dextrose/number-averaged MW starch hydrolysate X 100. Generally, maltodextrins are considered to have molecular weights that are less than amylose molecules.
- A starch preparation that has been totally hydrolyzed to dextrose (glucose) has a DE of 100, whereas starch has a DE of about zero. A DE of greater than 0 but less than 100 characterizes the mean-average molecular weight of a starch hydrolysate, and maltodextrins are considered to have a DE of less than 20. Maltodextrins of various molecular weights, for example, in the range of about 500 Da to 5000 Da are commercially available (for example, from CarboMer, San Diego, Calif.).
- In another aspect, the hydrophobic polysaccharide has a polymeric backbone formed of non-reducing disaccharides (natural biodegradable non-reducing polysaccharides). A non-reducing polysaccharide refers to a polymer of non-reducing disaccharides (two monosaccharides linked through their anomeric centers) such as trehalose (α-D-glucopyranosyl α-D-glucopyranoside) and sucrose (β-D-fructofuranosyl α-D-glucopyranoside). An exemplary non-reducing polysaccharide comprises polyalditol which is available from GPC (Muscatine, Iowa). In another aspect, the polysaccharide is a glucopyranosyl polymer, such as a polymer that includes repeating (1→3)O-β-D-glucopyranosyl units. A non-reducing polysaccharide can provide an inert matrix thereby improving the stability of sensitive bioactive agents, such as proteins and enzymes.
- To facilitate discussion of the invention, the hydrophobic derivatives of the non-cyclic α(1→4)glucopyranose polymers and non-reducing polysaccharides are generally referred to herein as “hydrophobic polysaccharides.”
- In many aspects the polysaccharide portion and the hydrophobic portion comprise the predominant portion of the hydrophobic polysaccharide. In one aspect, the wherein the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 5:1 to 1:1.25. For example, based on a weight percentage, the polysaccharide portion can be about 25% wt of the hydrophobic polysaccharide or greater, in the range of about 25% to about 75%, in the range of about 30% to about 70%, in the range of about 35% to about 65%, in the range of about 40% to about 60%, or in the range of about 45% to about 55%. Likewise, based on a weight percentage of the overall hydrophobic polysaccharide, the hydrophobic portion can be about 25% wt of the hydrophobic polysaccharide or greater, in the range of about 25% to about 75%, in the range of about 30% to about 70%, in the range of about 35% to about 65%, in the range of about 40% to about 60%, or in the range of about 45% to about 55%. In exemplary aspects, the hydrophobic polysaccharide has approximately 50% of its weight attributable to the polysaccharide portion, and approximately 50% of its weight attributable to its hydrophobic portion.
- The hydrophobic polysaccharide has the properties of being insoluble in water. The term for insolubility is a standard term used in the art, and meaning 1 part solute per 10,000 parts or greater solvent. (see, for example, Remington: The Science and Practice of Pharmacy, 20th ed. (2000), Lippincott Williams & Wilkins, Baltimore Md.).
- A hydrophobic polysaccharide can be prepared by coupling one or more hydrophobic compound(s) to a natural biodegradable polysaccharide polymer. Methods for preparing hydrophobic polysaccharides are described herein.
- The hydrophobic polysaccharides have a molecular weight of 100,000 Da or less. Use of these lower molecular weight derivatives provides matrices having desirable physical properties. In some aspects the hydrophobic polysaccharides have a molecular weight of about 50,000 Da or less, or 25,000 Da or less. Particularly preferred size ranges for the hydrophobic polysaccharides are in the range of about 2,000 Da to about 20,000 Da, or about 4,000 Da to about 10,000 Da.
- The molecular weight of the polymer is more precisely defined as “weight average molecular weight” or Mw. Mw is an absolute method of measuring molecular weight and is particularly useful for measuring the molecular weight of a polymer (preparation), such as preparations of hydrophobic polysaccharides. Polymer preparations typically include polymers that individually have minor variations in molecular weight. Polymers are molecules that have a relatively high molecular weight and such minor variations within the polymer preparation do not affect the overall properties of the polymer preparation. The weight average molecular weight (Mw) can be defined by the following formula:
-
- wherein N represents the number of moles of a polymer in the sample with a mass of M, and Σi is the sum of all NiMi (species) in a preparation. The Mw can be measured using common techniques, such as light scattering or ultracentrifugation. Discussion of Mw and other terms used to define the molecular weight of polymer preparations can be found in, for example, Allcock, H. R. and Lampe, F. W. (1990) Contemporary Polymer Chemistry; pg 271.
- The addition of hydrophobic portion will generally cause an increase in molecular weight of the polysaccharide from its underivitized, starting molecular weight. The amount increase in molecular weight can depend on one or more factors, including the type of polysaccharide derivatized, the level of derivation, and, for example, the type or types of groups attached to the polysaccharide to provide the hydrophobic portion.
- In some aspects, the addition of hydrophobic portion causes an increase in molecular weight of the polysaccharide of about 20% or greater, about 50% or greater, about 75% or greater, about 100% or greater, or about 125%, the increase in relation to the underivitized form of the polysaccharide.
- As an example, a maltodextrin having a starting weight of about 3000 Da is derivitized to provide pendent hexanoate groups that are coupled to the polysaccharide via ester linkages to provide a degree of substitution (DS) of about 2.5. This provides a hydrophobic polysaccharide having a theoretical molecular weight of about 6000 Da.
- In forming the hydrophobic polysaccharide, and as an example, a compound having a hydrocarbon segment can be covalently coupled to one or more portions of the polysaccharide.
- For example, the compound can be coupled to monomeric units along the length of the polysaccharide. This provides a polysaccharide derivative with one or more pendent groups. Each chemical group comprises a hydrocarbon segment. The hydrocarbon segment can constitute all of the pendent chemical group, or the hydrocarbon segment can constitute a portion of the pendent chemical group. For example, a portion of the hydrophobic polysaccharide can have the following structure:
-
[M]-[L]-[H] - wherein M is a monomeric unit of the polysaccharide, and in the pendent chemical group ([L]-[H]), H is the hydrocarbon segment, and L is a chemical group linking the hydrocarbon segment to the monomeric unit of the polysaccharide.
- The pendent group can also include an additional portion that is not a hydrocarbon segment [N] as represented by the following structure:
-
[M]-[L]-[H]-[N] - A “hydrocarbon segment” herein refers to a group of covalently bonded carbon atoms having the formula (CHn)m, wherein m is 2 or greater, and n is independently 2 or 1. A hydrocarbon segment can include saturated hydrocarbon groups or unsaturated hydrocarbon groups, and examples thereof include alkyl, alkenyl, alkynyl, cyclic alkyl, cyclic alkenyl, aromatic hydrocarbon and aralkyl groups.
- The monomeric units of the hydrophobic polysaccharides described herein typically include monomeric units having ring structures with one or more reactive groups. These reactive groups are exemplified by hydroxyl groups, such as the ones that are present on glucopyranose-based monomeric units of amylose and maltodextrin. These hydroxyl groups can be reacted with a compound that includes a hydrocarbon segment and a group that is reactive with the hydroxyl group (a hydroxyl-reactive group).
- Examples of hydroxyl reactive groups include acetal, carboxyl, anhydride, acid halide, and the like. These groups can be used to form a hydrolytically cleavable covalent bond between the hydrocarbon segment and the polysaccharide backbone. For example, the method can provide a pendent group having a hydrocarbon segment, the pendent group linked to the polysaccharide backbone with a cleavable ester bond. In these aspects, the synthesized hydrophobic polysaccharide will include chemical linkages that are both enzymatically cleavable (the polymer backbone) and non-enzymatically hydrolytically cleavable (the linkage between pendent group and the polymer backbone).
- Other cleavable chemical linkages that can be used to bond the pendent groups to the polysaccharide include peroxyester groups, disulfide groups, and hydrazone groups.
- In some cases the hydroxyl reactive groups include those such as isocyanate and epoxy. These groups can be used to form a non-cleavable covalent bond between the pendent group and the polysaccharide backbone. In these aspects, the synthesized hydrophobic polysaccharide includes chemical linkages that are enzymatically cleavable (the polymer backbone).
- Other reactive groups, such as carboxyl groups, acetyl groups, or sulphate groups, are present on the ring structure of monomeric units of other natural biodegradable polysaccharides, such as chondrotin or hyaluronic acid. These groups can also be targeted for reaction with a compound having a hydrocarbon segment to be bonded to the polysaccharide backbone.
- Various factors can be taken into consideration in the synthesis of the hydrophobic polysaccharide. These factors include the physical and chemical properties of the polysaccharide, including its size, and the number and presence of reactive groups on the polysaccharide and solubility, the physical and chemical properties of the compound that includes the hydrocarbon segment, including its the size and solubility, and the reactivity of the compound with the polysaccharide.
- In preparing the hydrophobic polysaccharide any suitable synthesis procedure can be performed. Synthesis can be carried out to provide a desired number of groups with hydrocarbon segments pendent from the polysaccharide backbone. The number and/or density of the pendent groups can be controlled, for example, by controlling the relative concentration of the compound that includes the hydrocarbon segment to the available reactive groups (e.g., hydroxyl groups) on the polysaccharide.
- The type and amount of groups having the hydrocarbon segment pendent from the polysaccharide is sufficient for the hydrophobic polysaccharide to be insoluble in water. In order to achieve this, as a general approach, a hydrophobic polysaccharide is obtained or prepared wherein the groups having the hydrocarbon segment pendent from the polysaccharide backbone in an amount in the range of 0.25 (pendent group):1 (polysaccharide monomer) by weight.
- To exemplify these levels of derivation, very low molecular weight (less than 10,000 Da) glucopyranose polymers were reacted with compounds having the hydrocarbon segment to provide low molecular weight hydrophobic glucopyranose polymers. In one mode of practice, the natural biodegradable polysaccharide maltodextrin in an amount of 10 g (MW 3000-5000 Da; ˜3 mmols) was dissolved in a suitable solvent, such as tetrahydrofuran. Next, a solution having butyric anhydride in an amount of 18 g (0.11 mols) was added to the maltodextrin solution. The reaction was allowed to proceed, effectively forming pendent butyrate groups on the pyranose rings of the maltodextrin polymer. This level of derivation resulted in a degree of substitution (DS) of butyrate group of the hydroxyl groups on the maltodextrin of about 1.
- For maltodextrin and other polysaccharides that include three hydroxyl groups per monomeric unit, on average, one of the three hydroxyl groups per glycopyranose monomeric unit becomes substituted with a butyrate group. A maltodextrin polymer having this level of substitution is referred to herein as maltodextrin-butyrate DS1. As described herein, the DS refers to the average number of reactive groups (including hydroxyl and other reactive groups) per monomeric unit that are substituted with the group having the hydrocarbon segment.
- An increase in the DS can be achieved by incrementally increasing the amount of compound that provides the hydrocarbon segment to the polysaccharide. As another example, butyrylated maltodextrin having a DS of 2.5 is prepared by reacting 10 g of maltodextrin (MW 3000-5000 Da; ˜3 mmols) with 0.32 mols butyric anhydride.
- In some modes of practice, the invention provides a hydrophobic glucopyranose polymer comprising a DS in the range of about 2-3, comprising pendent linear, branched, or cyclic a C4-C10 groups, and the polymer has a MW in the range of about 2000 to about 20000 Da.
- In some modes of practice, the invention provides a hydrophobic glucopyranose polymer comprising a DS in the range of about 2-3, comprising pendent linear, branched, or cyclic C5-C7 groups, and the polymer has a MW in the range of about 2000 to about 20000 Da
- The degree of substitution can influence the hydrophobic character of the polysaccharide. In turn, coatings formed from hydrophobic polysaccharides having a substantial amount of groups having the hydrocarbon segments bonded to the polysaccharide backbone (as exemplified by a high DS) are generally more hydrophobic and can be more resistant to degradation. For example, a matrix formed from maltodextrin-butyrate DS1 has a rate of degradation that is faster than a matrix formed from maltodextrin-butyrate DS2.
- The type of hydrocarbon segment present in the groups pendent from the polysaccharide backbone can also influence the hydrophobic properties of the polymer. In one aspect, the hydrophobic polysaccharide has pendent groups with hydrocarbon segments being short chain branched alkyl group. Exemplary short chain branched alkyl group are branched C4-C10 groups. The preparation of a hydrophobic polymer with these types of pendent groups is exemplified by the reaction of maltodextrin with valproic acid/anhydride with maltodextrin (MD-val). The reaction can be carried out to provide a relatively lower degree of substitution of the hydroxyl groups, such as is in the range of 0.5-1.5. Although these polysaccharides have a lower degree of substitution, the short chain branched alkyl group imparts considerable hydrophobic properties to the polysaccharide.
- Even at these low degrees of substitution the MD-val can form forms matrices that are very compliant and durable. Because of the low degrees of substitution, the pendent groups with the branched C8 segment can be hydrolyzed from the polysaccharide backbone at a relatively fast rate, thereby providing a matrix that can quickly degrade in vivo.
- Various synthetic schemes can be used for the preparation of a hydrophobic polysaccharide. In some modes of preparation, pendent polysaccharide hydroxyl groups are reacted with a compound that includes a hydrocarbon segment and a group that is reactive with the hydroxyl groups. This reaction can provide polysaccharide with pendent groups comprising hydrocarbon segments.
- In some aspects, the pendent group comprises a hydrocarbon segment that is a linear, branched, or cyclic C2-C18 group. More preferably the hydrocarbon segment comprises a C2-C10, or a C4-C8, linear, branched, or cyclic group. The hydrocarbon segment can be saturated or unsaturated, and can comprise alkyl groups or aromatic groups, respectively. The hydrocarbon segment can be linked to the polysaccharide backbone via a hydrolyzable bond or a non-hydrolyzable bond.
- In some aspects the compound having a hydrocarbon segment that is reacted with the polysaccharide backbone is derived from a natural compound. Natural compounds with hydrocarbon segments include fatty acids, fats, oils, waxes, phospholipids, prostaglandins, thromboxanes, leukotrienes, terpenes, steroids, and lipid soluble vitamins.
- Exemplary natural compounds with hydrocarbon segments include fatty acids and derivatives thereof, such as fatty acid anhydrides and fatty acid halides. Exemplary fatty acids and anhydrides include acetic, propionic, butyric, isobutyric, valeric, caproic, caprylic, capric, and lauric acids and anhydrides, respectively. The hydroxyl group of a polysaccharide can be reacted with a fatty acid or anhydride to bond the hydrocarbon segment of the compound to the polysaccharide backbone via an ester group.
- The hydroxyl group of a polysaccharide can also cause the ring opening of lactones to provide pendent open-chain hydroxy esters. Exemplary lactones that can be reacted with the polysaccharide include caprolactone and glycolides.
- Generally, if compounds having large hydrocarbon segments are used for the synthesis of the hydrophobic polysaccharide, a smaller amount of the compound may be needed for its synthesis. For example, as a general rule, if a compound having a hydrocarbon segments with an alkyl chain length of Cx is used to prepare a hydrophobic polysaccharide with a DS of 1, a compound having a hydrocarbon segment with an alkyl chain length of C(x X 2) is reacted in an amount to provide a hydrophobic polysaccharide with a DS of 0.5.
- The hydrophobic polysaccharide can also be synthesized having combinations of pendent groups with two or more different hydrocarbon segments, respectively. For example, the hydrophobic polysaccharide can be synthesized using compounds having hydrocarbon segments with different alkyl chain lengths. In one mode of practice, a polysaccharide is reacted with a mixture of two or more fatty acids (or derivatives thereof) selected from the group of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, caprylic acid, capric acid, and lauric acid to generate the hydrophobic polysaccharide.
- In other cases the hydrophobic polysaccharide is synthesized having a non-hydrolyzable bond linking the hydrocarbon segment to the polysaccharide backbone. Exemplary non-hydrolyzable bonds include urethane bonds.
- The hydrophobic polysaccharide can also be synthesized so that hydrocarbon segments are individually linked to the polysaccharide backbone via both hydrolyzable and non-hydrolyzable bonds. As another example, a hydrophobic polysaccharide is prepared by reacting a mixture of butyric acid anhydride and butyl isocyanate with maltodextrin. This yields a hydrophobic polysaccharide of maltodextrin with pendent butyric acid groups that are individually covalently bonded to the maltodextrin backbone with hydrolyzable ester linkages and non-hydrolyzable urethane linkages. The degradation of a coating having this type of hydrophobic polysaccharide can occur by loss of the butyrate groups from hydrolysis of the ester linkages. However, a portion of the butyrate groups (the ones that are bonded via the urethane groups) are not removed from the polysaccharide backbone and therefore the polysaccharide can maintain a desired degree of hydrophobicity, prior to enzymatic degradation of the polysaccharide backbone.
- In some aspects, the group that is pendent from the polysaccharide backbone has properties of a bioactive agent. In this regard, the coating comprises polysaccharide-coupled bioactive agent. In some aspects, a bioactive agent which has a hydrocarbon segment can be hydrolyzed from the hydrophobic polysaccharide and released from the matrix to provide a therapeutic effect in a subject. One example of a therapeutically useful compound having a hydrocarbon segments is butyric acid, which has been shown to elicit tumor cell differentiation and apoptosis, and is thought to be useful for the treatment of cancer and other blood diseases.
- Other illustrative compounds comprising hydrocarbon segments include valproic acid and retinoic acid. These compounds can be coupled to a polysaccharide backbone, and then cleaved from the polysaccharide backbone in a subject. Retinoic acid is known to possess antiproliferative effects and is thought to be useful for treatment of proliferative vitreoretinopathy (PVR). The pendent group that provides a therapeutic effect can also be a natural compound (such as butyric acid, valproic acid, and retinoic acid).
- Other illustrative compound that can be coupled to the polysaccharide backbone is a corticosteroid. An exemplary corticosteroid is triamcinolone. One method of coupling triamcinolone to a natural biodegradable polymer is by employing a modification of the method described in Cayanis, E. et al., Generation of an Auto-anti-idiotypic Antibody that Binds to Glucocorticoid Receptor, The Journal of Biol. Chem., 261(11):5094-5103 (1986). Triamcinolone hexanoic acid is prepared by reaction of triamcinolone with ketohexanoic acid; an acid chloride of the resulting triamcinolone hexanoic acid can be formed and then reacted with the polysaccharide, such as maltodextrin or polyalditol, resulting in pendent triamcinolone groups coupled via ester bonds to the polysaccharide.
- The hydrophobic polysaccharide can also be synthesized having two or more different pendent groups, wherein at least one of the pendent groups comprises a bioactive agent. The hydrophobic polysaccharide can be synthesized with an amount of a pendent groups comprising a bioactive agent, that when released from the polysaccharide, provides a therapeutic effect to a subject. An example of such a hydrophobic polysaccharide is maltodextrin-caproate-triamcinolone. This hydrophobic polysaccharide can be prepared by reacting a mixture including triamcinolone hexanoic acid and an excess of caproic anhydride (n-hexanoic anhydride) with maltodextrin to provide a derivative with a DS of 2.5.
- In some aspects, the group that is pendent from the polysaccharide includes a hydrocarbon segment that is an aromatic group, such as a phenyl group. As one example, o-acetylsalicylic acid is reacted with a polysaccharide such as maltodextrin to provide pendent chemical group having a hydrocarbon segment that is a phenyl group, and a non-hydrocarbon segment that is an acetate group wherein the pendent group is linked to the polysaccharide via an ester bond.
- It has been discovered that these hydrophobic polysaccharides can be used to form articles that are wholly or partially degradable. A partially degradable article can be an article that has a biostable portion, such as a biostable body member, and a biodegradable portion, such as a biodegradable coating. The articles of the invention have desirable and beneficial physical properties. For example, the hydrophobic polysaccharides can be used to form biodegradable coatings that demonstrate excellent durability, compliance, and rate of degradation. Furthermore, these coatings offer advantages for the controlled release of bioactive agents, if included in the coating. Advantageously, these articles can be formed without requiring the covalent crosslinking of the polysaccharide polymers.
- The hydrophobic polysaccharides of the invention can be used in many applications, including systems and methods wherein the hydrophobic polysaccharide is contacted with a carbohydrase. Interestingly, it has also been discovered some of the hydrophobic polysaccharides can be formed into coatings or articles that have a substantially slow rate of degradation. This is desirable in a variety of applications where it desired that the article (or coating) maintain its integrity for a protracted period of time, such as a period of months to years, but that it eventually degrades. Given this, the hydrophobic polysaccharides have utility in a broad range of applications. Such applications include medical applications, including implantable medical articles and coatings for implantable medical articles for the long-term treatment of various conditions. These hydrophobic polysaccharides can also be used in the preparation of disposable consumer items. In these applications the structural integrity of the item is maintained for a period of use. However, following disposal, the item loses its structural integrity as the hydrophobic polysaccharide degrades.
- Generally, the hydrophobic polysaccharide is used to form an article, or a portion of an article, that can be degraded. In some aspects, the article is a disposable consumer item. A disposable consumer item broadly refers to any sort of article that is utilized by an individual and then disposed of after use. Following disposal, the article can be degraded in an appropriate waste environment. For example, the article can be disposed of in a landfill wherein the article is exposed to conditions that promote its degradation. For example, the article is exposed to carbohydrases present in the soil or water. These carbohydrases can be produced from environmental microorganisms and promote the degradation of the article over a period of time.
- Examples of disposable consumer items include packaging materials, paper products, tissues, towels, wipes, food containers, beverage containers, utensils, plates, cups, boxes, food wrap, food bags, garbage bags, personal care items, feminine hygiene products, restroom supplies, seat covers, child and infant care products.
- In some aspects, the hydrophobic polysaccharide is used to form the body member, or a portion of a body member, of an implantable medical article. In these aspects, a degradable body member, or portion thereof, can provide mechanical properties at the implantation site and can maintain these mechanical properties until they are no longer needed. After a period of time has elapsed, the body member is degraded to an extent that the mechanical properties are no longer provided, and the degraded components of the article are processed by the body.
- In some embodiments, the body member of the medical article slowly degrades and transfers stress at the appropriate rate to surrounding tissues as these tissues heal and can accommodate the stress once borne by the body member of the medical article. The medical article can optionally include a coating or a bioactive agent to provide one or more additional functional features, however, these are not required in order for the article to be of use at the treatment site.
- A biodegradable stent structure formed from the hydrophobic polysaccharide is an example of a body member of an implantable device. Other body members are exemplified herein.
- The article can also comprise fibers, such as microfibers and/or nanofibers that are formed from the hydrophobic polysaccharide. The fibers can be included in or associated with various articles including implantable medical articles and cell culture articles.
- In another aspect of the invention, the hydrophobic polysaccharide is used to form a coating on the surface of a medical article. The hydrophobic polysaccharide can be present in one or more coated layers all or a portion of the surface of the device. A “coating” as used herein can include one or more “coated layers”, each coated layer including one or more coating materials. In some cases, the coating can be formed of a single layer of material that includes the hydrophobic polysaccharide, such as hydrophobic amylose or maltodextrin. In other cases, the coating includes more than one coated layer, at least one of the coated layers including the hydrophobic polysaccharide. If more than one layer is present in the coating, the layers can be composed of the same or different materials.
- Bioactive agents can also be included in the coating. The bioactive agent can be in the same coated layer as the hydrophobic polysaccharide, or in a different coated layer. The bioactive agent can be released from the coating upon degradation of the coated layer that includes the hydrophobic polysaccharide. Alternatively, or additionally, the coated layer that includes the hydrophobic polysaccharide can modulate bioactive agent release. In this aspect some or no degradation of the coated layer that includes the hydrophobic polysaccharide may occur.
- The following list of medical articles is provided to illustrate various medical articles that can be fabricated from the hydrophobic polysaccharide to form the body member of the medical articles. This list of various medical articles also exemplifies various body members that can be provided with a coating that includes the hydrophobic polysaccharide.
- These types of articles are typically introduced temporarily or permanently into a mammal for the prophylaxis or treatment of a medical condition. For example, these articles can be introduced subcutaneously, percutaneously or surgically to rest within an organ, tissue, or lumen of an organ, such as arteries, veins, ventricles, or atria of the heart.
- Exemplary medical articles include vascular implants and grafts, grafts, surgical devices; synthetic prostheses; vascular prosthesis including endoprosthesis, stent-graft, and endovascular-stent combinations; small diameter grafts, abdominal aortic aneurysm grafts; wound dressings and wound management device; hemostatic barriers; mesh and hernia plugs; patches, including uterine bleeding patches, atrial septic defect (ASD) patches, patent foramen ovale (PFO) patches, ventricular septal defect (VSD) patches, and other generic cardiac patches; ASD, PFO, and VSD closures; percutaneous closure devices, mitral valve repair devices; left atrial appendage filters; valve annuloplasty devices, catheters; central venous access catheters, vascular access catheters, abscess drainage catheters, drug infusion catheters, parenteral feeding catheters, intravenous catheters (e.g., treated with antithrombotic agents), stroke therapy catheters, blood pressure and stent graft catheters; anastomosis devices and anastomotic closures; aneurysm exclusion devices; biosensors; cardiac sensors; birth control devices; breast implants; infection control devices; membranes; tissue scaffolds; tissue-related materials; shunts including cerebral spinal fluid (CSF) shunts, glaucoma drain shunts; dental devices and dental implants; ear devices such as ear drainage tubes, tympanostomy vent tubes; ophthalmic devices; cuffs and cuff portions of devices including drainage tube cuffs, implanted drug infusion tube cuffs, catheter cuff, sewing cuff; spinal and neurological devices; nerve regeneration conduits; neurological catheters; neuropatches; orthopedic devices such as orthopedic joint implants, bone repair/augmentation devices, cartilage repair devices; urological devices and urethral devices such as urological implants, bladder devices, renal devices and hemodialysis devices, colostomy bag attachment devices; biliary drainage products.
- In some aspects the hydrophobic polysaccharide is utilized in an ophthalmic article. Compositions including the hydrophobic polysaccharide can be used for the formation of a coating on the surface of an ophthalmic article, in the construction of the body member of the ophthalmic article, or both. The ophthalmic article can be configured for placement at an external or internal site of the eye. In some aspects, the articles can be utilized to deliver a bioactive agent to an anterior segment of the eye (in front of the lens), and/or a posterior segment of the eye (behind the lens). Suitable ophthalmic devices can also be utilized to provide bioactive agent to tissues in proximity to the eye, when desired.
- Suitable external articles can be configured for topical administration of bioactive agent. Such external devices can reside on an external surface of the eye, such as the cornea (for example, contact lenses) or bulbar conjunctiva. In some embodiments, suitable external devices can reside in proximity to an external surface of the eye.
- Articles configured for placement at an internal site of the eye can reside within any desired area of the eye. In some aspects, the ophthalmic article can be configured for placement at an intraocular site, such as the vitreous. Illustrative intraocular devices include, but are not limited to, those described in U.S. Pat. No. 6,719,750 B2 (“Devices for Intraocular Drug Delivery,” Varner et al.) and U.S. Pat. No. 5,466,233 (“Tack for Intraocular Drug Delivery and Method for Inserting and Removing Same,” Weiner et al.); U.S. Publication Nos. 2005/0019371 A1 (“Controlled Release Bioactive Agent Delivery Device,” Anderson et al.), 2004/0133155 A1 (“Devices for Intraocular Drug Delivery,” Varner et al.), 2005/0059956 A1 (“Devices for Intraocular Drug Delivery,” Varner et al.), and U.S. application Ser. Nos. 11/204,195 (filed Aug. 15, 2005, Anderson et al.), Ser. No. 11/204,271 (filed Aug. 15, 2005, Anderson et al.), Ser. No. 11/203,981 (filed Aug. 15, 2005, Anderson et al.), Ser. No. 11/203,879 (filed Aug. 15, 2005, Anderson et al.), Ser. No. 11/203,931 (filed Aug. 15, 2005, Anderson et al.); and related applications.
- In some aspects of the invention, a coating including the hydrophobic polysaccharide is formed on a non-linear intraocular device.
- In some aspects, the ophthalmic article can be configured for placement, or can be formed, at a subretinal area within the eye. Illustrative ophthalmic devices for subretinal application include, but are not limited to, those described in U.S. Patent Publication No. 2005/0143363 (“Method for Subretinal Administration of Therapeutics Including Steroids; Method for Localizing Pharmacodynamic Action at the Choroid and the Retina; and Related Methods for Treatment and/or Prevention of Retinal Diseases,” de Juan et al.); U.S. application Ser. No. 11/175,850 (“Methods and Devices for the Treatment of Ocular Conditions,” de Juan et al.); and related applications.
- Ophthalmic articles can also be configured for placement within any desired tissues of the eye. For example, ophthalmic devices can be configured for placement at a subconjunctival area of the eye, such as devices positioned extrasclerally but under the conjunctiva, such as glaucoma drainage devices and the like.
- A coating that includes the hydrophobic polysaccharide can be formed on the body member of a medical article, including those listed herein, wherein the medical article is formed of a non-biodegradable material. For example, a coating can be formed on a body member of a medical article that is partially or entirely fabricated from a plastic polymer. Plastic polymers include those formed of synthetic polymers, including oligomers, homopolymers, and copolymers resulting from either addition or condensation polymerizations. Examples of suitable addition polymers include, but are not limited to, acrylics such as those polymerized from methyl acrylate, methyl methacrylate, hydroxyethyl methacrylate, hydroxyethyl acrylate, acrylic acid, methacrylic acid, glyceryl acrylate, glyceryl methacrylate, methacrylamide, and acrylamide; vinyls such as ethylene, propylene, vinyl chloride, vinyl acetate, vinyl pyrrolidone, vinylidene difluoride, and styrene. Examples of condensation polymers include, but are not limited to, nylons such as polycaprolactam, polylauryl lactam, polyhexamethylene adipamide, and polyhexamethylene dodecanediamide, and also polyurethanes, polycarbonates, polyamides, polysulfones, poly(ethylene terephthalate), polydimethylsiloxanes, and polyetherketone.
- Other suitable polymers that can be used to construct the body member include polyamides, polyimides, polyolefins, polystyrenes, polyesters, polycarbonates, polyketones, polyureas, acrylonitrile butadiene, butadiene rubber, chlorinated and chloro-sulfonated polyethylene, chloroprene, EPM, EPDM, PE-EPDM, PP-EPDM, EVOH, epichlorihydrin, isobutylene isoprene, isoprene, polysulfides, silicones, NBR/PVC, styrene butadienes, and vinyl acetate ethylenes, and combinations thereof.
- In some cases the coating of the invention is formed on an implantable medical article is partially or entirely fabricated from a degradable polymer. The article can degrade in an aqueous environment, such as by simple hydrolysis, or can be enzymatically degraded.
- Examples of classes of synthetic polymers that can be used to form the structure of the article include polyesters, polyamides, polyurethanes, polyorthoesters, polycaprolactone (PCL), polyiminocarbonates, aliphatic carbonates, polyphosphazenes, polyanhydrides, and copolymers thereof. Specific examples of biodegradable materials that can be used in connection with the device of the invention include polylactide, polygylcolide, polydioxanone, poly(lactide-co-glycolide), poly(glycolide-co-polydioxanone), polyanhydrides, poly(glycolide-co-trimethylene carbonate), and poly(glycolide-co-caprolactone). As an example, the hydrophobic polysaccharide can provide a barrier coating to articles fabricated from PLA or copolymers thereof. The coating can shield the article during a portion or all of a desired period of treatment. The coating article can still be fully degradable.
- Blends of these polymers with other biodegradable polymers can also be used.
- Coatings that include the hydrophobic polysaccharide can also be formed on medical devices that are partially or entirely fabricated from a metal. Although many devices or articles are constructed from substantially all metal materials, such as alloys, some may be constructed from both non-metal and metal materials, where at least a portion of the surface of the device is metal.
- Commonly used metals include platinum, gold, or tungsten, as well as other metals such as rhenium, palladium, rhodium, ruthenium, titanium, nickel, and alloys of these metals, such as stainless steel, titanium/nickel, nitinol alloys, cobalt chrome alloys, non-ferrous alloys, and platinum/iridium alloys. One exemplary alloy is MP35. These metals, including other alloys or combinations, can be suitable substrates for a coating composition that includes the hydrophobic polysaccharide.
- In some aspects the biodegradable coating is formed on the surface of an erodable implantable medical device formed from of a metal. For example, the biodegradable coating can be formed on a magnesium alloy stent that can be corroded following placement in a subject (see, for example, De Mario, C. et al. (2004) J. Interv. Cardiol., 17(6):391-395, and Heublein, B., et al. (2003) Heart; 89:651-656). The erodable implantable medical device can also include a bioactive agent, if desired.
- In aspects where the structure of the implantable medical article is fabricated from a material that is erodable or degradable, an in vivo lifetime of the article can be determined. The biodegradable coatings of the present invention can be applied to the surface of these erodable or degradable articles to prolong their in vivo lifetime. The in vivo lifetime is a period of time starting upon placement of the coated article at a target location, and ending when the coated article is completely degraded at the target location.
- Other surfaces that can be coated include those that include human tissue such as bone, cartilage, skin and teeth; or other organic materials such as wood, cellulose, compressed carbon, and rubber. Other contemplated biomaterials include ceramics including, but not limited to, silicon nitride, silicon carbide, zirconia, and alumina, as well as glass, silica, and sapphire. Combinations of ceramics and metals can also be coated.
- The hydrophobic polysaccharide can be formed into, or can be present in a coated layer on, an article having a porous structure. In many cases the porous structure of the article is a fabric or has fabric-like qualities. The porous structure can be formed from textiles, which include woven materials, knitted materials, and braided materials. Particularly useful textile materials are woven materials which can be formed using any suitable weave pattern known in the art.
- The porous structure can be that of a graft, sheath, cover, patch, sleeve, wrap, casing, and the like, including many of the medical articles described herein. These types of articles can function as the medical article itself or be used in conjunction with another part of a medical article.
- Other particular contemplated porous structures include grafts, particularly grafts having textured exterior portions. Examples of textured grafts include those that have velour-textured exteriors, with textured or smooth interiors. Grafts constructed from woven textile products are well known in the art and have been described in numerous documents, for example, U.S. Pat. No. 4,047,252; U.S. Pat. No. 5,178,630; U.S. Pat. No. 5,282,848; and U.S. Pat. No. 5,800,514.
- A medical article having a biodegradable coating including the hydrophobic polysaccharide, or a medical article that is formed using the hydrophobic polysaccharide can be prepared by assembling an article having two or more “parts.” These parts can be pieces of a medical article that can be put together to form the article. All or a portion of the part of the medical article can include the hydrophobic polysaccharide. In this regard, the invention also contemplates parts of medical article (for example, not the fully assembled article) that include the hydrophobic polysaccharide.
- In one aspect, the invention provides coatings that include a coated layer comprising the hydrophobic polysaccharide, wherein the coating is also capable of releasing one or more bioactive agents.
- In one aspect of the invention, a bioactive agent is present in association with a hydrophobic coated layer that includes the hydrophobic polysaccharide. In these aspects, the bioactive agent generally has poor or no solubility in water. Depending on the properties of the hydrophobic layer and the bioactive agent associated with the hydrophobic layer, the coating can demonstrate a particular release mechanism.
- In one aspect, the bioactive agent may be released from the coated layer with little or no degradation of the hydrophobic polysaccharide. For example, a coated layer that includes maltodextrin-butyrate having a high degree of substitution (such as in the range of DS 2-DS 3) and a hydrophobic bioactive agent that is not covalently bonded to the maltodextrin-butyrate may release the bioactive agent with little or no degradation of the coating. That is, release of the bioactive agent is primarily driven by diffusion of the bioactive agent from the coated layer.
- In other aspect, degradation of the coated layer containing the hydrophobic polysaccharide contributes to release of the bioactive agent. In these aspects, the coated layer is weaker and more susceptible to degradation. For example, the coated layer can be formed from a maltodextrin-butyrate having a lower degree of substitution (such as about DS 1) and that includes a bioactive agent. Degradation of the coated layer can proceed by hydrolysis of the butyrate group and enzymatic degradation of the maltodextrin. Depending on the properties of the bioactive agent, release can occur by degradation of the coated layer; however, diffusion of the bioactive agent from the coated layer may also occur.
- The bioactive agent may be covalently bonded to the natural biodegradable polysaccharide. In some aspects the bioactive agent is a group pendent from the hydrophobic polysaccharide, such as a butyrate group. Preferably, if the bioactive agent is covalently bonded, it is cleavable from the polysaccharide. Cleavable chemical linkages that can be used to bond the bioactive agent to the polysaccharide include ester group, peroxyester groups, disulfide groups, and hydrazone groups. Alternatively, the cleavable linking group can be enzymatically cleaved, for example, by proteases or by carbohydrases.
- Another aspect relates to the ability of the hydrophobic polysaccharide to control release of a bioactive agent from another portion of the coating. In these aspects the coating includes more than one coated layer of material, wherein a bioactive agent is present in a first coated layer, and second coated layer of material that includes the hydrophobic polysaccharide. The second coated layer is able to control the release of the bioactive agent from the coating.
- For example, a first coated layer that includes a polymeric material and a bioactive agent can be formed between the device surface and a second coated layer that includes the hydrophobic polysaccharide. The bioactive agent diffuses from the first coated layer, but the second coated layer controls its release from the surface of the device in a more effective therapeutic profile.
- This arrangement of coated materials has been advantageously used to control the release of a hydrophilic bioactive agent from the coating. In one mode of practice, a first coated layer is prepared that includes a synthetic polymer and a hydrophilic bioactive agent. For example, the synthetic polymer can be a non-biodegradable polymer. Exemplary synthetic polymers include poly(alkyl(meth)acrylates) such as poly(butylmethacrylate); secondary polymers can be included in the first coated layer. A hydrophilic bioactive agent is included in the first coated layer. A second coated layer that includes the hydrophobic polysaccharide is formed. The second coated layer can be in direct contact with the first coated layer. Upon implantation, the second coated layer slows the release of the hydrophilic bioactive agent, which is otherwise typically released very rapidly.
- The term “bioactive agent,” refers to an inorganic or organic molecule, which can be synthetic or natural, that causes a biological effect when administered in vivo to an animal, including but not limited to birds and mammals, including humans.
- A partial list of bioactive agents is provided below. According to embodiments of the present invention, one may choose one or more of the bioactive agents to be included in an article or coating that comprises the hydrophobic polysaccharide. A comprehensive listing of bioactive agents, in addition to information of the water solubility of the bioactive agents, can be found in The Merck Index, Thirteenth Edition, Merck & Co. (2001).
- Articles and coatings prepared according to the invention can be used to release bioactive agents falling within one or more of the following classes include, but are not limited to: ACE inhibitors, actin inhibitors, analgesics, anesthetics, anti-hypertensives, anti polymerases, antisecretory agents, anti-AIDS substances, antibiotics, anti-cancer substances, anti-cholinergics, anti-coagulants, anti-convulsants, anti-depressants, anti-emetics, antifungals, anti-glaucoma solutes, antihistamines, antihypertensive agents, anti-inflammatory agents (such as NSAIDs), anti metabolites, antimitotics, antioxidizing agents, anti-parasite and/or anti-Parkinson substances, antiproliferatives (including antiangiogenesis agents), anti-protozoal solutes, anti-psychotic substances, anti-pyretics, antiseptics, anti-spasmodics, antiviral agents, calcium channel blockers, cell response modifiers, chelators, chemotherapeutic agents, dopamine agonists, extracellular matrix components, fibrinolytic agents, free radical scavengers, growth hormone antagonists, hypnotics, immunosuppressive agents, immunotoxins, inhibitors of surface glycoprotein receptors, microtubule inhibitors, miotics, muscle contractants, muscle relaxants, neurotoxins, neurotransmitters, polynucleotides and derivatives thereof, opioids, photodynamic therapy agents, prostaglandins, remodeling inhibitors, statins, steroids, thrombolytic agents, tranquilizers, vasodilators, and vasospasm inhibitors.
- Antibiotics are art recognized and are substances which inhibit the growth of or kill microorganisms. Examples of antibiotics include penicillin, tetracycline, chloramphenicol, minocycline, doxycycline, vancomycin, bacitracin, kanamycin, neomycin, gentamycin, erythromycin, cephalosporins, geldanamycin, and analogs thereof. Examples of cephalosporins include cephalothin, cephapirin, cefazolin, cephalexin, cephradine, cefadroxil, cefamandole, cefoxitin, cefaclor, cefuroxime, cefonicid, ceforanide, cefotaxime, moxalactam, ceftizoxime, ceftriaxone, and cefoperazone.
- Antiseptics are recognized as substances that prevent or arrest the growth or action of microorganisms, generally in a nonspecific fashion, e.g., by inhibiting their activity or destroying them. Examples of antiseptics include silver sulfadiazine, chlorhexidine, glutaraldehyde, peracetic acid, sodium hypochlorite, phenols, phenolic compounds, iodophor compounds, quaternary ammonium compounds, and chlorine compounds.
- Anti-viral agents are substances capable of destroying or suppressing the replication of viruses. Examples of anti-viral agents include α-methyl-P-adamantane methylamine, hydroxy-ethoxymethylguanine, adamantanamine, 5-iodo-2′-deoxyuridine, trifluorothymidine, interferon, and adenine arabinoside.
- Enzyme inhibitors are substances that inhibit an enzymatic reaction. Examples of enzyme inhibitors include edrophonium chloride, N-methylphysostigmine, neostigmine bromide, physostigmine sulfate, tacrine HCl, tacrine, 1-hydroxymaleate, iodotubercidin, p-bromotetramisole, 10-(α-diethylaminopropionyl)-phenothiazine hydrochloride, calmidazolium chloride, hemicholinium-3,3,5-dinitrocatechol, diacylglycerol kinase inhibitor I, diacylglycerol kinase inhibitor II, 3-phenylpropargylamine, N-monomethyl-L-arginine acetate, carbidopa, 3-hydroxybenzylhydrazine HCl, hydralazine HCl, clorgyline HCl, deprenyl HCl, L(−), deprenyl HCl, D(+), hydroxylamine HCl, iproniazid phosphate, 6-MeO-tetrahydro-9H-pyrido-indole, nialamide, pargyline HCl, quinacrine HCl, semicarbazide HCl, tranylcypromine HCl, N,N-diethylaminoethyl-2,2-diphenylvalerate hydrochloride, 3-isobutyl-1-methylxanthine, papaverine HCl, indomethacin, 2-cyclooctyl-2-hydroxyethylamine hydrochloride, 2,3-dichloro-α-methylbenzylamine (DCMB), 8,9-dichloro-2,3,4,5-tetrahydro-1H-2-benzazepine hydrochloride, p-aminoglutethimide, p-aminoglutethimide tartrate, R(+), p-aminoglutethimide tartrate, S(−), 3-iodotyrosine, alpha-methyltyrosine, L(−) alpha-methyltyrosine, D L(−), cetazolamide, dichlorphenamide, 6-hydroxy-2-benzothiazolesulfonamide, and allopurinol.
- Anti-pyretics are substances capable of relieving or reducing fever. Anti-inflammatory agents are substances capable of counteracting or suppressing inflammation. Examples of such agents include aspirin (salicylic acid), indomethacin, sodium indomethacin trihydrate, salicylamide, naproxen, colchicine, fenoprofen, sulindac, diflunisal, diclofenac, indoprofen and sodium salicylamide. Local anesthetics are substances that have an anesthetic effect in a localized region. Examples of such anesthetics include procaine, lidocaine, tetracaine and dibucaine.
- Examples of statins include lovastatin, pravastatin, simvastatin, fluvastatin, atorvastatin, cerivastatin, rosuvastatin, and superstatin.
- Examples of steroids include glucocorticoids such as cortisone, hydrocortisone, dexamethasone, betamethasone, prednisone, prednisolone, methylprednisolone, triamcinolone, beclomethasone, fludrocortisone, and aldosterone; sex steroids such as testostersone, dihydrotestosterone, estradiol, diethylstilbestrol, progesterone, and progestins.
- The bioactive agent can be an immunosuppressive agent, for example, rapamycin, ABT-578, cyclosporine, everolimus, mycophenolic acid, sirolimus, tacrolimus, and the like.
- In order to prepare a coating on the surface of a body member, or an article formed from the hydrophobic polysaccharide, a composition that includes the hydrophobic polysaccharide can be prepared. The natural biodegradable polysaccharide is dissolved in a suitable solvent and the composition is used in a desired process.
- Examples of solvents that can be used to prepare a composition include aromatic compounds such as toluene and xylene, and ethers such as tetrahydrofuran. Other suitable solvents include halogenated alkanes such as methylene chloride and chloroform; and amides such as dimethylformamide (DMF). Combinations of one or more of these or other solvents can also be used. The type of solvent system used can be chosen according to the hydrophobic polysaccharide, and any other optional component present in the composition.
- In preparing the article, the concentration of the hydrophobic polysaccharide in a composition can be chosen to provide an article or coating with desired physical and functional properties. In some cases a coating composition, such as one for a spray coating process, can be prepared having the hydrophobic polysaccharide composition at a concentration in the range of about 5 mg/mL to about 500 mg/mL. In one modes of practice the hydrophobic polysaccharide is present in the composition at about 50 mg/mL and the composition is used for coating a surface.
- The hydrophobic polysaccharide can be blended with one or more other hydrophobic compounds in a composition for preparation of an article. The other hydrophobic compounds can be hydrophobic polysaccharides. For example, mixtures of hydrophobic polysaccharides of different molecular weights can be blended in a composition and used to prepare an article.
- In some aspects, the composition used to form the coating or article can include a radiopacifying agent. The presence of a radiopacifying agent in the formed coating or article can promote detection of the location of a device following implantation.
- The composition can also include a bioactive agent, such as one or more of those described herein. The bioactive agent can be present in the composition at a concentration, which allows formation of a coating or an article with therapeutically useful properties. The amount and type of bioactive agent may be chosen based on the type of hydrophobic polysaccharide present in the composition.
- Compositions of the invention that include the hydrophobic polysaccharide in an organic solvent can be used to coat the surface of a variety of implantable medical devices. The coating composition (with or without bioactive agent) can be applied to a medical device using standard techniques to cover the entire surface of the device, or a portion of the device surface. If more than one coated layer is applied to a surface, it is typically applied successively. For example, a natural biodegradable polysaccharide coated layer can be formed by, for example, dipping, spraying, bushing, or swabbing the coating material on the article to form a layer, and then drying the coated layer. The process can be repeated to provide a coating having multiple coated layers, wherein at least one layer includes the natural biodegradable polysaccharide. The compositions of the present invention are particularly suitable for use in spray coating processes.
- An exemplary spray coating process and apparatus that can be used for coating implantable medical articles using the compositions of the present invention is described in U.S. Patent Publication No. 2004-0062875-A1 (filed Sep. 27, 2002).
- A composition that includes the hydrophobic polysaccharide can be spray coated directly onto the surface of a body member of a medical article, or can be spray coated onto a surface that includes one or more coated layers of material previously formed on the body member. The composition may be spray coated onto a coated layer of material that includes a bioactive agent.
- Other coated layers can include polymers such as methacrylate, acrylate, alkylacrylate, acrylamide, vinylpyrrolidinone, vinylacetamide, or vinyl formamide polymers. These polymers can also include latent reactive groups, such as photoreactive groups.
- In some cases the coated layer that includes the hydrophobic polysaccharide is formed on a base layer. The base layer can serve one or more functions, for example, it can provide an improved surface for the formation of a coated layer that includes the hydrophobic polysaccharide.
- Components of the biodegradable coating can be applied to the medical device using standard techniques to cover the entire surface of the device, or a portion of the device surface. As indicated, the components can be applied to the medical device independently or together, for example, in a composition. The coating formed on the device can be a single layer coating, or a multiple layer coating.
- In other aspects, the hydrophobic polysaccharide is used to form a medical implant that includes a bioactive agent. The implant may not have any distinct mechanical properties, such as would be apparent with an intravascular prosthesis, but rather provides a mechanism to deliver the bioactive agent to a particular portion of the body. The implant can have a defined structure and size that is appropriate for its use at a desired location in the body.
- A medical implant having a defined structure can be formed by any suitable process, including molding, extruding, shaping, cutting, casting, and the like. In forming a medical implant, the concentration of the natural biodegradable polysaccharide may be higher to provide a more structurally rigid implant.
- In other aspects, the hydrophobic polysaccharide is used to form a microparticle. The microparticle can also include a bioactive agent, and it can be used to deliver this bioactive agent from a coating on a medical article. Generally, microparticles have a size in the range of 5 nm to 100 μm in diameter, and are spherical or somewhat spherical in shape. Microparticles that include a hydrophobic polysaccharide can be prepared by established techniques, for example, by solvent evaporation (see, for example, Wichert, B. and Rohdewald, P. (1993) J. Microencapsul. 10:195). Bioactive agents can also be incorporated into the microparticles using these techniques and can be formulated to release a desired amount of the agent over a predetermined period of time. The bioactive agent can be released from the biodegradable microparticle upon degradation of the biodegradable microparticle in vivo.
- Medical articles formed from the hydrophobic polysaccharide, or that include a biodegradable coating can be treated to sterilize one or more parts of the article, or the entire medical article. Sterilization can take place prior to using the medical article and/or, in some cases, during implantation of the medical article.
- In some aspects, the invention provides a method for delivering a bioactive agent from coating or article formed from a hydrophobic polysaccharide. In performing this method, the article is placed in a subject. Upon exposure to body fluid the bioactive agent is released from the coating. The coating can be formulated, as described herein, to release the bioactive agent over a prolonged period of time.
- In some cases, depending on the properties of the article or coating formed from the hydrophobic polysaccharide, a carbohydrase can promote the degradation of the biodegradable coating. The carbohydrase that contacts the coating or article can specifically degrade the natural biodegradable polysaccharide. This may occur before, during, or after the release of the bioactive agent. Examples of carbohydrases that can specifically degrade natural biodegradable polysaccharide coatings include α-amylases, such as salivary and pancreatic α-amylases; disaccharidases, such as maltase, lactase and sucrase; trisaccharidases; and glucoamylase (amyloglucosidase).
- Serum concentrations for amylase are estimated to be in the range of about 50-100 U per liter, and vitreal concentrations also fall within this range (Varela, R. A., and Bossart, G. D. (2005) J Am Vet Med Assoc 226:88-92).
- In some aspects, the carbohydrase can be administered to a subject to increase the local concentration, for example in the serum or the tissue surrounding the implanted device, so that the carbohydrase may promote the degradation of the coating. Exemplary routes for introducing a carbohydrase include local injection, intravenous (IV) routes, and the like. Alternatively, degradation can be promoted by indirectly increasing the concentration of a carbohydrase in the vicinity of the coated article, for example, by a dietary process, or by ingesting or administering a compound that increases the systemic levels of a carbohydrase.
- In other cases, the carbohydrase can be provided on a portion of the article. For example the carbohydrase may be eluted from a portion of the article that does not include hydrophobic polysaccharide. In this aspect, as the carbohydrase is released it locally acts upon the coating to cause its degradation and promote the release of the bioactive agent.
- The invention will be further described with reference to the following non-limiting Examples.
- 11 g of dried maltodextrin (GPC, Grain Processing Corporation, Muscatine, Iowa) was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 20 g (0.244 moles, 19.32 mls, Sigma-Aldrich) of 1-methylimidizole followed by 50 g (0.32 moles, 52 mls, Sigma-Aldrich, Milwaukee, Wis.) of butyric anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then quenched with deionized water. The taffy-like material that precipitated from the quenched reaction mixture was placed in 1,000 MWCO dialysis tubing and dialyzed vs. continuous flow deionized water for three days. After this time the solid product was lyophilized. 23.169 g of a white powdery solid was obtained. The theoretical degree of substitution (DS) was 2.5.
- 10 g of dried MD was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 23.7 g (0.29 moles, 22.9 mls) of 1-methylimidizole followed by 29.34 g (0.29 moles, 27.16 mls) of acetic anhydride (Sigma-Aldrich, Milwaukee, Wis.) were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid was collected via filtration and dried in vacuo. 15.92 g of a yellow powdery solid was obtained. The theoretical DS was 2.5
- 10 g of dried MD was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 9.49 g (0.11 moles, 9.17 mls) of 1-methylimidizole followed by 18.19 g (0.11 moles, 18.81 mls) of butyric anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid was collected via filtration and dried in vacuo. 16.11 g of a white powdery solid was obtained. The theoretical DS was 1.
- 10 g of dried MD was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 14.24 g (0.17 moles, 13.76 mls) of 1-methylimidizole followed by 27.32 g (0.17 moles, 28.25 mls) of butyric anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid was collected via filtration and dried in vacuo. 18.95 g of a white powdery solid was obtained. The theoretical DS was 1.5.
- 10 g of dried MD was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 18.97 g (0.23 moles, 18.33 mls) of 1-methylimidizole followed by 36.39 g (0.23 moles, 37.63 mls) of butyric anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid was collected via filtration and dried in vacuo. 19.78 g of a white powdery solid was obtained. The theoretical DS was 2.
- 10 g of dried polyalditol (GPC, Grain Processing Corporation, Muscatine, Iowa) was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 28.46 g (0.35 moles, 27.5 mls) of 1-methylimidizole followed by 54.58 g (0.35 moles, 56.44 mls) of butyric anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then quenched with deionized water. The reaction mixture was placed in 1,000 MWCO dialysis tubing and dialyzed vs. continuous flow deionized water for three days. After this time the solution was lyophilized. 11.55 g of a white powdery solid was obtained. The theoretical DS was 2.
- 1 g of dried β-cyclodextrin (Sigma-Aldrich, Milwaukee, Wis.) was dissolved in 10 mls of dimethyl sulfoxide with stirring. When the solution was complete, 5.02 g (0.061 moles, 4.85 mls) of 1-methylimidizole followed by 9.62 g (0.061 moles, 9.95 mls) of butyric anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then quenched with deionized water. The reaction mixture was placed in 1,000 MWCO dialysis tubing and dialyzed vs. continuous flow deionized water for three days. After this time the solution was lyophilized. 234 mg of a white powdery solid was obtained. The theoretical DS was 2.
- 10 g of dried MD was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 23.7 g (0.29 moles, 22.9 mls) of 1-methylimidizole followed by 37.38 g (0.29 moles, 36.8 mls) of propionoic anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid was collected via filtration and dried in vacuo. 18.49 g of a white powdery solid was obtained. The theoretical DS was 2.5.
- 10 g of dried MD was dissolved in 100 mls of dimethyl sulfoxide with stirring. When the solution was complete, 9.48 g (0.12 moles, 9.16 mls) of 1-methylimidizole followed by 14.95 g (0.12 moles, 14.73 mls) of propionoic anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid was collected via filtration and dried in vacuo. 14.32 g of a white powdery solid was obtained. The theoretical DS was 1.
- 4 g of dried MD was dissolved in 40 mls of dimethyl sulfoxide with stirring. When the solution was complete, 9.48 g (0.12 moles, 9.16 mls) of 1-methylimidizole followed by 24.63 g (0.12 moles, 26.6 mls) of caproic anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid obtained was taffy-like and collected via filtration and dried in vacuo. 7.18 g of a white solid was obtained. The theoretical DS was 2.5.
- 4 g of dried MD was dissolved in 40 mls of dimethyl sulfoxide with stirring. When the solution was complete, 3.79 g (0.046 moles, 3.7 mls) of 1-methylimidizole followed by 9.85 g (0.046 moles, 10.64 mls) of caproic anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid was collected via filtration and dried in vacuo. 9.02 g of a white powdery solid was obtained. The theoretical DS was 1.
- 2.0 g of dried MD was dissolved in 10 mls of dimethyl sulfoxide with stirring. 0.751 g (2.3 mmole) decanoic anhydride was dissolved in 3 ml of chloroform. When the solutions were complete 0.188 g (2.3 mmoles, 0.183 mls) of 1-methylimidizole was added to the DMSO/MD solution followed by the addition of the chloroform/anhydride solution and 7.0 ml DMSO. The reaction was stirred for 1 hour at room temperature. The reaction mixture was placed in 1,000 MWCO dialysis tubing and dialyzed vs. continuous flow deionized water for three days. The dialysis tube and contents were placed in 1 liter of acetone/methanol-50/50 (volume) three times for more than 1 hour for each solvent change. The dialysis tube and contents were then placed in 4 liters of acetone/methanol-50/50 (volume) three times for 1 day for each solvent change. The solid from the dialysis tube was dried in vacuo. 1.69 g of a white solid was obtained. The theoretical DS was 0.1.
- 5.0 g of dried MD was dissolved in 10 mls of dimethyl sulfoxide with stirring. 3.15 g (5.75 mmole) stearic anhydride was dissolved in 3 ml of chloroform. When the solutions were complete 0.472 g (5.75 mmoles, 0.458 mls) of 1-methylimidizole was added to the DMSO/MD solution followed by the addition of the chloroform/anhydride solution and 7.0 ml DMSO. The reaction was stirred for 1 hour at room temperature. The reaction mixture was placed in 1,000 MWCO dialysis tubing and dialyzed vs. continuous flow deionized water for three days. The dialysis tube and contents were placed in 1 liter of acetone/methanol-50/50 (volume) three times for more than 1 hour for each solvent change. The dialysis tube and contents were then placed in 4 liters of acetone/methanol-50/50 (volume) three times for 1 day for each solvent change. The solid from the dialysis tube was dried in vacuo. 6.58 g of a white powdery solid was obtained. The theoretical DS was 0.1.
- 4 g of dried MD was dissolved in 40 mls of dimethyl sulfoxide with stirring. When the solution was complete, 9.48 g (0.12 moles, 9.16 mls) of 1-methylimidizole followed by 24.63 g (0.12 moles, 26.6 mls) of caproic anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid obtained was taffy-like and collected via filtration and dried in vacuo. 7.18 g of a white solid was obtained. The theoretical DS was 2.5.
- 4 g of dried MD was dissolved in 40 mls of dimethyl sulfoxide with stirring. When the solution was complete, 9.48 g (0.12 moles, 9.16 mls) of 1-methylimidizole followed by 24.63 g (0.12 moles, 26.6 mls) of heptanoic anhydride were added with stirring at room temperature. The reaction solution was stirred for one hour and was then slowly add to 750 mls of deionized water in a Waring blender. The precipitated solid was collected via filtration, re-suspended in 1 L of deionized water and stirred for one hour. The solid obtained was taffy-like and collected via filtration and dried in vacuo. 7.18 g of a white solid was obtained. The theoretical DS was 2.5.
- Vacuum oven-dried Polyalditol PD60 (4.10 g), N-hydroxysuccinimide (0.38 g), 4-di(methylamino)pyridine (0.39 g), and 2-propylpentanoic acid (9.01 g; valproic acid) were weighed into a 120 mL amber vial. Anhydrous dimethyl sulfoxide, DMSO, (50 mL) was poured into the vial, purged with nitrogen, and placed on a rotary shaker to dissolve. N,N′-diisopropylcarbodiimide, DIC, (9.47 g) was weighed into a 30 mL amber vial and dissolved with 10 mL of anhydrous DMSO. The DIC solution was poured into the 120 mL amber vial and purged with nitrogen gas. A Teflon stir bar was inserted into the 120 mL vial before being capped and placed on a stir plate to stir overnight at room temperature. After overnight stirring, no visible product was seen and the reaction was placed in a 55° C. oven to stir overnight. The reaction formed two layers after heating overnight and was precipitated into 2 L deionized water while stirring. The yellowish/white solid was vacuum-filtered using a water aspirator and rinsed three times with deionized water (100 mL). The solid precipitate was collected and dried in a vacuum oven at 40° C. overnight. The dried solid was organic soluble (tetrahydrofuran, methylene chloride). A 50 mg/mL solution in THF was prepared and tested by dip coating onto a clean Pebax rod giving a uniform, off-white coating.
- Vacuum oven-dried Polyalditol PD60 (4.10 g), N-hydroxysuccinimide (0.38 g), 4-di(methylamino)pyridine (0.39 g), and o-acetylsalicylic acid, ASA, (11.26 g) were weighed into a 120 mL amber vial. Anhydrous dimethyl sulfoxide (50 mL) was poured into the vial, purged with nitrogen, and placed on a rotary shaker to dissolve. N,N′-diisopropylcarbodiimide, DIC, (9.47 g) was weighed into a 30 mL amber vial and dissolved with 10 mL of anhydrous DMSO. The DIC solution was poured into the 120 mL amber vial and purged with nitrogen gas. A Teflon stir bar was inserted into the 120 mL vial before being capped and placed on a stir plate to stir overnight at room temperature. After overnight stirring, no visible product was seen and the reaction was placed in a 55° C. oven to stir overnight. The reaction formed a viscous, orange material after heating overnight and was precipitated into 2 L deionized water while stirring. The orange solid was vacuum-filtered using a water aspirator and rinsed once with acetone (25 mL) followed by three times with deionized water (100 mL). The solid precipitate was collected and dried in a vacuum oven at 40° C. overnight. The dried solid was organic soluble (tetrahydrofuran, methylene chloride).
- A solution was prepared in 15 mls of THF containing 200 mgs of poly(butylmethacrylate) (PBMA) with an approximate weight average molecular weight of 337 kD, 200 mgs poly (ethylene-co-vinyl acetate) (PEVA) with a vinyl acetate content of 33% (w/w), and 200 mgs lidocaine.
- Stainless steel stents were prepared for coating as follows. The stents were cleaned by soaking in a 6% (by volume) solution of ENPREP-160SE (Cat. #2108-100, Enthone-OMI, Inc., West Haven, Conn.) in deionized water for 1 hour. After soaking, the parts were then rinsed several times with deionized water. After rinsing, the stents were soaked for 1 hour at room temperature in 0.5% (by volume) methacryloxypropyltrimethoxy silane (Cat.#M6514, Sigma Aldrich, St. Louis, Mo.) made in a 50% (by volume) solution of deionized water and isopropyl alcohol. The stainless steel wires were allowed to drain and air dry. The dried stents were then placed in a 100° C. oven for 1 hour.
- After oven-drying, the stents were placed in a parylene coating reactor (PDS 2010
LABCOTER™ 2, Specialty Coating Systems, Indianapolis, Ind.) and coated with 2 g of Parylene C (Specialty Coating Systems, Indianapolis, Ind.) by following the operating instructions for the LABCOTER™ system. The resulting Parylene C coating was approximately 1-2 μm thickness. - Solutions for coatings were sprayed onto the Parylene C treated stents using an IVEK sprayer (IVEK Dispenser 2000, IVEK Corp., North Springfield, Vt.) mounting a nozzle with a 1.0 mm (0.04 inch) diameter orifice and pressurized at 421.84 g/cm.sup.2 (6 psi). The distance from the nozzle to the stent surface during coating application was 5 to 5.5 cm. A coating application consisted of spraying 40 μL of the coating solution back and forth on the stent for 7 seconds. The spraying process of the coating was repeated until the amount of lidocaine on the stent was estimated to be around 200 micrograms. The coating compositions on the stents were dried by evaporation of solvent, approximately 8-10 hours, at room temperature (approximately 20° C. to 22° C.). After drying, the coated stents were re-weighed. From this weight, the mass of the coating was calculated, which in turn permitted the mass of the coated polymer(s) and lidocaine to be determined.
- Three solutions were prepared in THF; each solution was prepared at 50 mg/mL. The three solutions were comprised of maltodextrin-propionate (MD-Prop) (from Example 8), maltodextrin-acetate (MD-Ace) (from Example 2), and maltodextrin-caproate (MD-Cap) (from Example 10). Each of these solutions was coated onto PBMA/PEVA/lidocaine coated stents as described above. The spraying process was repeated until the amount of MD polymer was estimated to be around 500 micrograms.
- The Elution Assay utilized herein was as follows. Phosphate buffered saline (PBS, 10 mM phosphate, 150 mM NaCl, pH 7.4, aqueous solution) was pipetted in an amount of 3 mL to 10 mL into an amber vial with a Teflon™ lined cap. A wire or coil treated with the coating composition was immersed into the PBS. A stir bar was placed into the vial and the cap was screwed tightly onto the vial. The PBS was stirred with the use of a stir plate, and the temperature of the PBS was maintained at 37° C. with the use of a water bath. The sampling times were chosen based upon the expected or desired elution rate. At the sampling time point, the stent was removed from the vial and placed into a new vial containing fresh PBS. A UV/VIS spectrophotometer was used to determine the concentration of the drug in the PBS solution that previously contained the stent treated with the coating composition. The cumulative amount of drug eluted versus time was plotted to obtain an elution profile. The elution profiles are illustrated graphically in
FIG. 1 . - 1 cm×0.75 cm strips were cut from a sheet of magnesium alloy (96% magnesium, 3% aluminum, 1% zinc; Goodfellow Cambridge Lmtd., Huntington, England). 1000 mg of MD-Cap DS 2.5 (from Example 10) was dissolved in THF at room temperature. Half of the magnesium alloy strips were coated with MD-Cap DS 2.5 by dipping the bottom half of each strip into the polymer solution, removing the strip, allowing the strip to dry, dipping the top half of the strip into the polymer solution, removing the strip and allowing the strip to dry. This procedure was repeated 4 times. Both the coated and uncoated strips were subsequently weighed. Coated and uncoated strips are placed individually into vials and 2 mls of phosphate buffered saline (PBS) pH 7.4 is added to each vial. The vials were sealed and placed in a 37° C. environmental chamber. At various time points the vials were removed from the chamber and the strips visually observed; approximate estimates of the amount of each strip remaining were made and are shown in Table 1.
-
TABLE 1 Time Strip Observations 0 uncoated 100% remaining 0 coated 100% remaining 8 hrs uncoated Slight pitting of surface 8 hrs coated Nothing discernable 24 hrs uncoated Clear pitting of surface 24 hrs coated Nothing discernable 48 hrs uncoated Heavy pitting, edges dissolving 48 hrs coated Slight pitting of surface 5 days uncoated Approx. 30% dissolved 5 days coated Clear pitting of surface 6 days uncoated Approx. 40% dissolved 6 days coated Edges dissolving 7 days uncoated Approx. 80% dissolved 7 days coated Approx 5% dissolved 8 days uncoated Approx. 90% dissolved 8 days coated Approx 10% dissolved 9 days uncoated 100% dissolved 9 days coated Approx 35% dissolved - Triamcinolone acetonide-releasing medical implants were prepared by combining various hydrophobic maltodextrin (MD) polymers with triamcinolone acetonide (TA) in various ratios. In some cases a hydrophilic polymer was added to the hydrophobic MD and TA. Implants were prepared using hydrophobic MDs, TA, and hydrophilic polymers in the amounts as shown in Table 2.
- The ingredients were heated and mixed in an extruder (DACA™ Microcompounder; DACA Instruments, Santa Barbara Calif.). Total batch size for an individual preparation was 4 grams. For example 2 g of MD-Hex (DS 2.5)˜3 kDa was mixed with 2 g of triamcinolone acetonide (Pharmacia & Upjohn Company) the preparation of implant sample A. Ingredients were fed in dry (powder of pellet) form to the feed section of the heated extruder. For preparations containing MD-But 2.0 the extruder was heated to a temperature of approximately 150° C. For preparations containing MD-But 2.0 the extruder was heated to a temperature of approximately 150° C. For preparations containing MD-Hex 2.5, MD-Hep 2.5, or if the preparation included a hydrophilic polymer, the extruder was heated to a temperature of approximately 110° C. The extruder heated, mixed, and recirculated the ingredients to create a uniform mixture. The polymeric ingredients melted and blended together, and the TA is uniformly blended into the polymer melt. Processing temperatures did not melt PVP in the PVP-containing mixtures. The ingredients were mixed for an average of about 6 minutes before being extruded. Solvent was not added, so the original polymorphic form of the TA during the extrusion process was maintained. After melting and mixing, the mixture was extruded out of a die and elongated into a cylindrical shape with diameter in the range of about 250 μm to about 650 μm. Other diameters, such in the range of about 100 μm to 1000 μm, can be prepared. Upon cooling and solidification, the resulting cylinders were cut to the desired length, typically 3-6 mm, to create the implant.
-
TABLE 2 Hydrophobic Polymeric Polysaccharide TA Additive Sample Type amount amount type Amount A MD-Hex 50% wt/wt 50% wt/wt (—) (DS 2.5) DE5 B MD-Hep 50% wt/wt 50% wt/wt (—) (DS 2.5) DE5 C MD-Hex 50% wt/wt 50% wt/wt (—) (DS 2.5) DE10 traD MD-Hex 50% wt/wt 40% wt/wt PVP 10% wt/wt (DS 2.5) DE5 30 kDa E MD-Hep 50% wt/wt 40% wt/wt PVP 10% wt/wt (DS 2.5) DE5 30 kDa F MD-Hex 50% wt/wt 40% wt/wt PEG 10% wt/wt (DS 2.5) DE5 20 kDa G MD-Hep 50% wt/wt 40% wt/wt PEG 10% wt/wt (DS 2.5) DE5 20 kDa H MD-Hex 50% wt/wt 40% wt/wt PEG 10% wt/wt (DS 2.5) DE10 20 kDa I MD-Pro 70% wt/wt 30% wt/wt (—) (DS 2.5) DE5 J MD-But 50% wt/wt 50% wt/wt (—) (DS 2.0) DE5 K MD-But 70% wt/wt 30% wt/wt (—) (DS 2.0) DE5 L MD-Hex 70% wt/wt 30% wt/wt (—) (DS 2.5) DE5
Claims (27)
1. A hydrophobic derivative of a natural biodegradable polysaccharide comprising:
a non-cyclic poly-α(1→4)glucopyranose backbone; and
a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone, the groups comprising a hydrocarbon segment comprising two or more carbon atoms;
wherein the hydrophobic derivative has a molecular weight of 100,000 Da or less.
2. The hydrophobic derivative of claim 1 having a molecular weight 50,000 Da or less.
3. The hydrophobic derivative of claim 2 wherein the hydrophobic derivative has a molecular weight of 25,000 Da or less.
4. The hydrophobic derivative of claim 3 wherein the hydrophobic derivative has a molecular weight in the range of 2000 Da to 20,000 Da.
5. The hydrophobic derivative of claim 4 wherein the hydrophobic derivative has a molecular weight in the range of 4000 Da to 10,000 Da.
6. The hydrophobic derivative of claim 1 wherein the hydrocarbon segment is selected from the group consisting of linear, branched, and cyclic C2-C18 groups.
7. The hydrophobic derivative of claim 6 wherein the hydrocarbon segment is selected from the group consisting of linear, branched, and cyclic C4-C10 groups.
8. The hydrophobic derivative of claim 7 wherein the plurality of groups pendent from the poly-α(1→4)glucopyranose backbone provide a degree of substitution in the range of 2-3.
9. The hydrophobic derivative of claim 7 wherein the hydrocarbon segment is selected from the group consisting of linear, branched, and cyclic C5-C7 groups.
10. The hydrophobic derivative of claim 7 wherein the hydrocarbon segment is selected from the group consisting of branched C4-C8 alkyl groups.
11. The hydrophobic derivative of claim 10 wherein the plurality of groups pendent from the poly-α(1→4)glucopyranose backbone provide a degree of substitution in the range of 0.5-1.5.
12. The hydrophobic derivative of claim 7 wherein the hydrocarbon segment is an aromatic C6 group.
13. The hydrophobic derivative of claim 1 wherein the groups pendent from the poly-α(1→4)glucopyranose backbone are coupled to the backbone via hydrolyzable covalent bonds.
14. The hydrophobic derivative of claim 1 wherein the groups pendent from the poly-α(1 →4)glucopyranose backbone are coupled to the backbone via hydrolyzable ester bonds.
15. A hydrophobic derivative of a natural biodegradable polysaccharide comprising:
a non-cyclic poly-α(1→4)glucopyranose backbone; and
a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone,
wherein the hydrophobic derivative has a molecular weight of 100,000 Da or less and a Tg of 35° C. or greater.
16. The hydrophobic derivative of claim 15 having a Tg in the range of 40° C. to 65° C.
17. A hydrophobic derivative of a natural biodegradable polysaccharide comprising:
a hydrophilic portion comprising a non-cyclic poly-α(1→4)glucopyranose backbone; and
a hydrophobic portion comprising a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone,
wherein the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 5:1 to 1:1.25, and wherein the hydrophobic derivative has a molecular weight of 100,000 Da or less.
18. The hydrophobic derivative of claim 17 wherein the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 2:1 to 1:1.25
19. The hydrophobic derivative of claim 18 wherein the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 1:0.75 to 1:1.25
20. The hydrophobic derivative of claim 19 wherein the weight ratio between the hydrophilic portion and the hydrophobic portion in the range of 1:1 to 1:1.25
21. A hydrophobic derivative of a natural biodegradable polysaccharide comprising:
a non-cyclic poly-α(1→4)glucopyranose backbone; and
a plurality of groups pendent from the poly-α(1→4)glucopyranose backbone, the groups comprising a hydrocarbon segment, wherein at least a portion of the groups comprise a bioactive agent that is cleavable from the poly-α(1→4)glucopyranose backbone,
wherein the hydrophobic derivative has a molecular weight of 100,000 Da or less.
22. The hydrophobic derivative of claim 21 wherein the bioactive agent is an anti-inflammatory agent.
23. The hydrophobic derivative of claim 21 wherein the bioactive agent is an antiproliferative.
24. The hydrophobic derivative of claim 21 wherein the bioactive agent is a steroid.
25. The hydrophobic derivative of claim 21 wherein the bioactive agent comprises a carboxylate group.
26. A hydrophobic derivative of a natural biodegradable polysaccharide comprising:
a polymeric backbone comprising non-reducing disaccharides; and
a plurality of groups pendent from the polymeric backbone,
wherein the hydrophobic derivative has a molecular weight of 100,000 Da or less.
27. The hydrophobic derivative of claim 26 wherein the polymeric backbone is selected from the group consisting of polytrehalose, polysucrose, and polyalditol.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/724,553 US20070260054A1 (en) | 2006-03-15 | 2007-03-15 | Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US78295706P | 2006-03-15 | 2006-03-15 | |
| US90085307P | 2007-02-10 | 2007-02-10 | |
| US11/724,553 US20070260054A1 (en) | 2006-03-15 | 2007-03-15 | Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070260054A1 true US20070260054A1 (en) | 2007-11-08 |
Family
ID=38461027
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/724,555 Abandoned US20070218102A1 (en) | 2006-03-15 | 2007-03-15 | Biodegradable hydrophobic polysaccharide-based coatings |
| US11/724,554 Expired - Fee Related US7919111B2 (en) | 2006-03-15 | 2007-03-15 | Biodegradable hydrophobic polysaccharide-based drug delivery implants |
| US11/724,553 Abandoned US20070260054A1 (en) | 2006-03-15 | 2007-03-15 | Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/724,555 Abandoned US20070218102A1 (en) | 2006-03-15 | 2007-03-15 | Biodegradable hydrophobic polysaccharide-based coatings |
| US11/724,554 Expired - Fee Related US7919111B2 (en) | 2006-03-15 | 2007-03-15 | Biodegradable hydrophobic polysaccharide-based drug delivery implants |
Country Status (5)
| Country | Link |
|---|---|
| US (3) | US20070218102A1 (en) |
| EP (1) | EP2004252A2 (en) |
| JP (1) | JP2009529967A (en) |
| CA (1) | CA2645324A1 (en) |
| WO (1) | WO2007109069A2 (en) |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070218102A1 (en) * | 2006-03-15 | 2007-09-20 | Surmodics, Inc. | Biodegradable hydrophobic polysaccharide-based coatings |
| US20080020045A1 (en) * | 2006-06-28 | 2008-01-24 | Chappa Ralph A | Combination Degradable and Non-Degradable Matrices for Active Agent Delivery |
| US20080038354A1 (en) * | 2006-06-28 | 2008-02-14 | Joram Slager | Active agent eluting matrices with particulates |
| US20080075779A1 (en) * | 2006-09-27 | 2008-03-27 | Chappa Ralph A | Additives And Methods For Enhancing Active Agent Elution Kinetics |
| US20080171087A1 (en) * | 2006-08-16 | 2008-07-17 | Chappa Ralph A | Methods and materials for increasing the adhesion of elution control matrices to substrates |
| US20090022805A1 (en) * | 2007-06-28 | 2009-01-22 | Joram Slager | Polypeptide microparticles having sustained release characteristics, methods and uses |
| US20090246252A1 (en) * | 2008-03-28 | 2009-10-01 | James Howard Arps | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
| US20090280181A1 (en) * | 2008-05-07 | 2009-11-12 | Joram Slager | Delivery of nucleic acid complexes from particles |
| US20090280155A1 (en) * | 2008-04-18 | 2009-11-12 | Chappa Ralph A | Coating systems for the controlled delivery of hydrophilic bioactive agents |
| WO2010118213A2 (en) | 2009-04-08 | 2010-10-14 | Surmodics, Inc. | Particles for delivery of nucleic acids and related devices and methods |
| US20100260850A1 (en) * | 2009-04-08 | 2010-10-14 | Surmodics, Inc. | Controlled Release Devices and Methods for Delivery of Nucleic Acids |
| US20100303879A1 (en) * | 2009-06-02 | 2010-12-02 | Kurdyumov Aleksey V | SILANE-FUNCTIONALIZED HYDROPHOBIC a(1-4)GLUCOPYRANOSE POLYMERS AND POLYMERIC MATRICES FOR IMPLANTATION OR INJECTION |
| US20100316687A1 (en) * | 2009-06-11 | 2010-12-16 | Swan Dale G | Hydrophobic polysaccharides with diester- or carbonate ester-containing linkages having enhanced degradation |
| US20110008526A1 (en) * | 2006-09-25 | 2011-01-13 | Surmodics, Inc. | Multi-layered coatings and methods for controlling elution of active agents |
| US20110076337A1 (en) * | 2009-09-30 | 2011-03-31 | Joram Slager | Emulsions containing arylboronic acids and medical articles made therefrom |
| US20110076314A1 (en) * | 2009-09-30 | 2011-03-31 | Kurdyumov Aleksey V | Hydrophobic polysaccharides with silyl ether linkages having enhanced degradation and medical articles made therefrom |
| US20110159067A1 (en) * | 2009-12-30 | 2011-06-30 | Rolfes Meyering Emily R | Hydrophobic polysaccharides with pendent groups having terminal reactive functionalities and medical uses thereof |
| WO2011112996A2 (en) | 2010-03-12 | 2011-09-15 | Surmodics, Inc. | Injectable drug delivery system |
| US20110238149A1 (en) * | 2010-03-26 | 2011-09-29 | Boston Scientific Scimed, Inc. | Endoprosthesis |
| WO2011143237A1 (en) | 2010-05-10 | 2011-11-17 | Surmodics, Inc. | Glycerol ester active agent delivery systems and methods |
| WO2012003296A1 (en) | 2010-06-30 | 2012-01-05 | Surmodics, Inc. | Catheter assembly |
| WO2012003293A1 (en) | 2010-06-30 | 2012-01-05 | Surmodics, Inc. | Lipid coating for medical devices delivering bioactive agent |
| WO2012006169A2 (en) | 2010-06-29 | 2012-01-12 | Surmodics, Inc. | Compositions and methods for enhancement of nucleic acid delivery |
| WO2012044913A1 (en) | 2010-09-30 | 2012-04-05 | Suromdics, Inc. | Catheter assembly with guard |
| WO2012092421A2 (en) | 2010-12-30 | 2012-07-05 | Surmodics, Inc. | Composition for intravascular delivery of therapeutic composition |
| US8246576B2 (en) | 2009-05-18 | 2012-08-21 | Surmodics, Inc. | Method and apparatus for delivery of a therapeutic agent with an expandable medical device |
| US8697105B2 (en) | 2010-03-29 | 2014-04-15 | Surmodics, Inc. | Injectable drug delivery formulation |
| WO2014071387A1 (en) | 2012-11-05 | 2014-05-08 | Surmodics, Inc. | Composition and method for delivery of hydrophobic active agents |
| WO2014186729A1 (en) | 2013-05-16 | 2014-11-20 | Surmodics, Inc. | Compositions and methods for delivery of hydrophobic active agents |
| US8901092B2 (en) | 2010-12-29 | 2014-12-02 | Surmodics, Inc. | Functionalized polysaccharides for active agent delivery |
| US8927004B1 (en) | 2014-06-11 | 2015-01-06 | Silver Bullet Therapeutics, Inc. | Bioabsorbable substrates and systems that controllably release antimicrobial metal ions |
| US9108051B2 (en) | 2010-11-12 | 2015-08-18 | Silver Bullet Therapeutics, Inc. | Bone implant and systems that controllably releases silver |
| US9114197B1 (en) | 2014-06-11 | 2015-08-25 | Silver Bullett Therapeutics, Inc. | Coatings for the controllable release of antimicrobial metal ions |
| US9248254B2 (en) | 2009-08-27 | 2016-02-02 | Silver Bullet Therapeutics, Inc. | Bone implants for the treatment of infection |
| WO2016123480A1 (en) | 2015-01-29 | 2016-08-04 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| US9452242B2 (en) | 2014-06-11 | 2016-09-27 | Silver Bullet Therapeutics, Inc. | Enhancement of antimicrobial silver, silver coatings, or silver platings |
| US9757497B2 (en) | 2011-05-20 | 2017-09-12 | Surmodics, Inc. | Delivery of coated hydrophobic active agent particles |
| WO2017172922A1 (en) | 2016-03-31 | 2017-10-05 | Surmodics, Inc. | Localized treatment of tissues through transcatheter delivery of active agents |
| US9821094B2 (en) | 2014-06-11 | 2017-11-21 | Silver Bullet Therapeutics, Inc. | Coatings for the controllable release of antimicrobial metal ions |
| US9861727B2 (en) | 2011-05-20 | 2018-01-09 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| WO2018118671A1 (en) | 2016-12-20 | 2018-06-28 | Surmodics, Inc. | Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces |
| US10213529B2 (en) | 2011-05-20 | 2019-02-26 | Surmodics, Inc. | Delivery of coated hydrophobic active agent particles |
| US10265435B2 (en) | 2009-08-27 | 2019-04-23 | Silver Bullet Therapeutics, Inc. | Bone implant and systems and coatings for the controllable release of antimicrobial metal ions |
| WO2019114406A1 (en) * | 2017-12-15 | 2019-06-20 | 先健科技(深圳)有限公司 | Absorbable iron-based implantable device |
| US11246963B2 (en) | 2012-11-05 | 2022-02-15 | Surmodics, Inc. | Compositions and methods for delivery of hydrophobic active agents |
| US11478815B2 (en) | 2020-01-16 | 2022-10-25 | Surmodics, Inc. | Coating systems for medical devices |
| US12226552B2 (en) | 2019-09-30 | 2025-02-18 | Surmodics, Inc. | Active agent depots formed in situ |
Families Citing this family (58)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2861734B1 (en) | 2003-04-10 | 2006-04-14 | Corneal Ind | CROSSLINKING OF LOW AND HIGH MOLECULAR MASS POLYSACCHARIDES; PREPARATION OF INJECTABLE SINGLE PHASE HYDROGELS; POLYSACCHARIDES AND HYDROGELS OBTAINED |
| AU2007235232B2 (en) * | 2006-04-06 | 2013-07-11 | Nupathe Inc. | Implants for the treatment of dopamine associated states |
| BRPI0811784A2 (en) | 2007-05-23 | 2011-05-10 | Allergan Inc | cross-linked collagen and use thereof |
| US8318695B2 (en) * | 2007-07-30 | 2012-11-27 | Allergan, Inc. | Tunably crosslinked polysaccharide compositions |
| US8961589B2 (en) * | 2007-08-01 | 2015-02-24 | Abbott Cardiovascular Systems Inc. | Bioabsorbable coating with tunable hydrophobicity |
| US20090214601A1 (en) * | 2007-09-28 | 2009-08-27 | Chappa Ralph A | Porous Drug Delivery Devices and Related Methods |
| US8697044B2 (en) | 2007-10-09 | 2014-04-15 | Allergan, Inc. | Crossed-linked hyaluronic acid and collagen and uses thereof |
| US8642062B2 (en) | 2007-10-31 | 2014-02-04 | Abbott Cardiovascular Systems Inc. | Implantable device having a slow dissolving polymer |
| BRPI0819075A2 (en) | 2007-11-16 | 2014-10-07 | Vicept Therapeutics Inc | METHOD FOR TREATING PURPOSE IN AN INDIVIDUAL AND METHOD FOR REDUCING PURPOSE IN AN INDIVIDUAL BEFORE SURGICAL PROCEDURE |
| US8394782B2 (en) | 2007-11-30 | 2013-03-12 | Allergan, Inc. | Polysaccharide gel formulation having increased longevity |
| US8394784B2 (en) | 2007-11-30 | 2013-03-12 | Allergan, Inc. | Polysaccharide gel formulation having multi-stage bioactive agent delivery |
| US20090143348A1 (en) * | 2007-11-30 | 2009-06-04 | Ahmet Tezel | Polysaccharide gel compositions and methods for sustained delivery of drugs |
| CA2711490A1 (en) * | 2008-01-14 | 2009-07-23 | Surmodics, Inc. | Devices and methods for elution of nucleic acid delivery complexes |
| US20090286907A1 (en) * | 2008-01-23 | 2009-11-19 | Beltz Mark W | Fumaric Acid/Diol Polyesters and Their Manufacture and Use |
| PT2280720T (en) | 2008-03-27 | 2019-05-17 | Purdue Research Foundation | Collagen-binding synthetic peptidoglycans, preparation, and methods of use |
| WO2009126830A2 (en) * | 2008-04-09 | 2009-10-15 | Surmodics, Inc. | Delivery of nucleic acid complexes from materials including negatively charged groups |
| US8916188B2 (en) | 2008-04-18 | 2014-12-23 | Abbott Cardiovascular Systems Inc. | Block copolymer comprising at least one polyester block and a poly (ethylene glycol) block |
| US9877973B2 (en) | 2008-05-12 | 2018-01-30 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
| US9095404B2 (en) | 2008-05-12 | 2015-08-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
| CN102026599A (en) | 2008-05-12 | 2011-04-20 | 犹他大学研究基金会 | Intraocular drug delivery device and associated methods |
| US10064819B2 (en) | 2008-05-12 | 2018-09-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
| EP2306929A1 (en) * | 2008-07-14 | 2011-04-13 | SurModics, Inc. | Medical devices and methods for delivery of nucleic acids |
| US8450475B2 (en) | 2008-08-04 | 2013-05-28 | Allergan, Inc. | Hyaluronic acid-based gels including lidocaine |
| WO2010028025A1 (en) | 2008-09-02 | 2010-03-11 | Gurtner Geoffrey C | Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof |
| US9078712B2 (en) | 2009-04-15 | 2015-07-14 | Warsaw Orthopedic, Inc. | Preformed drug-eluting device to be affixed to an anterior spinal plate |
| US9414864B2 (en) | 2009-04-15 | 2016-08-16 | Warsaw Orthopedic, Inc. | Anterior spinal plate with preformed drug-eluting device affixed thereto |
| US9114188B2 (en) | 2010-01-13 | 2015-08-25 | Allergan, Industrie, S.A.S. | Stable hydrogel compositions including additives |
| US20110172180A1 (en) | 2010-01-13 | 2011-07-14 | Allergan Industrie. Sas | Heat stable hyaluronic acid compositions for dermatological use |
| AU2010200485A1 (en) | 2010-02-10 | 2011-08-25 | Cochlear Limited | Percutaneous implant |
| CA2792729C (en) | 2010-03-12 | 2016-06-28 | Allergan Industrie, Sas | Fluid compositions for improving skin conditions |
| DK2550027T4 (en) | 2010-03-22 | 2019-05-13 | Allergan Inc | CROSS-BAND POLYSACCHARID AND PROTEIN POLYSACCHARID HYDROCHLORIC PRODUCTS |
| JP5813297B2 (en) * | 2010-07-02 | 2015-11-17 | 株式会社ブリヂストン | Tire manufacturing method |
| US8883139B2 (en) | 2010-08-19 | 2014-11-11 | Allergan Inc. | Compositions and soft tissue replacement methods |
| US8889123B2 (en) | 2010-08-19 | 2014-11-18 | Allergan, Inc. | Compositions and soft tissue replacement methods |
| US8697057B2 (en) | 2010-08-19 | 2014-04-15 | Allergan, Inc. | Compositions and soft tissue replacement methods |
| US9005605B2 (en) | 2010-08-19 | 2015-04-14 | Allergan, Inc. | Compositions and soft tissue replacement methods |
| US20120100187A1 (en) | 2010-10-26 | 2012-04-26 | Surmodics, Inc. | Coatings and methods for controlled elution of hydrophilic active agents |
| EP3208278B1 (en) | 2011-05-24 | 2018-10-31 | Symic IP, LLC | Hyaluronic acid-binding synthetic peptidoglycans, preparation, and methods of use |
| US9149422B2 (en) | 2011-06-03 | 2015-10-06 | Allergan, Inc. | Dermal filler compositions including antioxidants |
| US9393263B2 (en) | 2011-06-03 | 2016-07-19 | Allergan, Inc. | Dermal filler compositions including antioxidants |
| US9408797B2 (en) | 2011-06-03 | 2016-08-09 | Allergan, Inc. | Dermal filler compositions for fine line treatment |
| US20130096081A1 (en) | 2011-06-03 | 2013-04-18 | Allergan, Inc. | Dermal filler compositions |
| US9662422B2 (en) | 2011-09-06 | 2017-05-30 | Allergan, Inc. | Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation |
| US20130244943A1 (en) | 2011-09-06 | 2013-09-19 | Allergan, Inc. | Hyaluronic acid-collagen matrices for dermal filling and volumizing applications |
| CN102872481A (en) * | 2012-10-22 | 2013-01-16 | 天津市赛宁生物工程技术有限公司 | Reconstructable biological bone lamella |
| JP6603650B2 (en) | 2013-03-15 | 2019-11-06 | パーデュー・リサーチ・ファウンデーション | Extracellular matrix-bound synthetic peptidoglycan |
| US10758421B2 (en) | 2013-08-21 | 2020-09-01 | Children's National Medical Center | Dissolvable on-command implant |
| US10293044B2 (en) | 2014-04-18 | 2019-05-21 | Auburn University | Particulate formulations for improving feed conversion rate in a subject |
| ES2782428T3 (en) | 2014-04-18 | 2020-09-15 | Univ Auburn | Particle Vaccine Formulations for Induction of Innate and Adaptive Immunity |
| US10772931B2 (en) | 2014-04-25 | 2020-09-15 | Purdue Research Foundation | Collagen binding synthetic peptidoglycans for treatment of endothelial dysfunction |
| AU2015306630B2 (en) * | 2014-08-26 | 2018-12-13 | C.R. Bard, Inc | Urinary catheter |
| EP3620184A1 (en) | 2014-09-30 | 2020-03-11 | Allergan Industrie, SAS | Stable hydrogel compositions including additives |
| WO2016128783A1 (en) | 2015-02-09 | 2016-08-18 | Allergan Industrie Sas | Compositions and methods for improving skin appearance |
| EP3653232A1 (en) | 2015-02-13 | 2020-05-20 | Allergan Industrie, SAS | Implants for sculpting, augmenting or correcting facial features such as the chin |
| US10583199B2 (en) | 2016-04-26 | 2020-03-10 | Northwestern University | Nanocarriers having surface conjugated peptides and uses thereof for sustained local release of drugs |
| WO2019010484A2 (en) | 2017-07-07 | 2019-01-10 | Symic Ip, Llc | Synthetic bioconjugates |
| US20210121534A1 (en) * | 2018-06-19 | 2021-04-29 | Cella Therapeutics, Llc | Sustained-release drug delivery systems comprising an intraocular pressure lowering agent, a cnp compound, an npr-b compound, a tie-2 agonist, or neurotrophic agent for use for treating glaucoma or ocular hypertension |
| CN115197899B (en) * | 2022-07-20 | 2023-06-30 | 淮阴工学院 | A method for preparing a coating layer that can regulate the differentiation trend of endothelial progenitor cells |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4011392A (en) * | 1975-09-02 | 1977-03-08 | The Sherwin-Williams Company | Mixed starch esters and the use thereof |
| US5459258A (en) * | 1994-03-01 | 1995-10-17 | Massachusetts Institute Of Technology | Polysaccharide based biodegradable thermoplastic materials |
| US5470581A (en) * | 1990-04-04 | 1995-11-28 | Berwind Pharmaceutical Services, Inc. | Aqueous maltodextrin and cellulosic polymer film coatings |
| US5869647A (en) * | 1993-07-27 | 1999-02-09 | Evercorn, Inc. | Method of preparing biodegradable modified-starch moldable products and films |
| US6007614A (en) * | 1997-12-30 | 1999-12-28 | National Starch And Chemical Investment Holding Corporation | Starch esters as moisture vapor barrier coatings |
| US20020123624A1 (en) * | 2001-02-23 | 2002-09-05 | Lei Qiao | Hydrophobically esterified starch products and process of making the same |
| US6645280B1 (en) * | 2000-05-26 | 2003-11-11 | Videojet Technologies Inc. | Jet ink composition for printing watermarks |
| US20040037886A1 (en) * | 2002-08-26 | 2004-02-26 | Li-Chien Hsu | Drug eluting coatings for medical implants |
| US20050019371A1 (en) * | 2003-05-02 | 2005-01-27 | Anderson Aron B. | Controlled release bioactive agent delivery device |
| US20060249705A1 (en) * | 2003-04-08 | 2006-11-09 | Xingwu Wang | Novel composition |
| US20070218102A1 (en) * | 2006-03-15 | 2007-09-20 | Surmodics, Inc. | Biodegradable hydrophobic polysaccharide-based coatings |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0405917A1 (en) | 1989-06-26 | 1991-01-02 | Sequa Chemicals Inc. | Starch polymer graft |
| JP4168545B2 (en) | 1999-08-31 | 2008-10-22 | 日油株式会社 | Bath agent and bath agent composition |
| EP1395246A1 (en) * | 2001-05-23 | 2004-03-10 | Institut National de la Recherche Scientifique | Biocompatible compositions as carriers or excipients for pharmaceutical and nutraceutical formulations and for food protection |
-
2007
- 2007-03-15 CA CA002645324A patent/CA2645324A1/en not_active Abandoned
- 2007-03-15 WO PCT/US2007/006469 patent/WO2007109069A2/en not_active Ceased
- 2007-03-15 US US11/724,555 patent/US20070218102A1/en not_active Abandoned
- 2007-03-15 JP JP2009500465A patent/JP2009529967A/en active Pending
- 2007-03-15 US US11/724,554 patent/US7919111B2/en not_active Expired - Fee Related
- 2007-03-15 US US11/724,553 patent/US20070260054A1/en not_active Abandoned
- 2007-03-15 EP EP07753120A patent/EP2004252A2/en not_active Withdrawn
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4011392A (en) * | 1975-09-02 | 1977-03-08 | The Sherwin-Williams Company | Mixed starch esters and the use thereof |
| US5470581A (en) * | 1990-04-04 | 1995-11-28 | Berwind Pharmaceutical Services, Inc. | Aqueous maltodextrin and cellulosic polymer film coatings |
| US5869647A (en) * | 1993-07-27 | 1999-02-09 | Evercorn, Inc. | Method of preparing biodegradable modified-starch moldable products and films |
| US5459258A (en) * | 1994-03-01 | 1995-10-17 | Massachusetts Institute Of Technology | Polysaccharide based biodegradable thermoplastic materials |
| US6007614A (en) * | 1997-12-30 | 1999-12-28 | National Starch And Chemical Investment Holding Corporation | Starch esters as moisture vapor barrier coatings |
| US6645280B1 (en) * | 2000-05-26 | 2003-11-11 | Videojet Technologies Inc. | Jet ink composition for printing watermarks |
| US20020123624A1 (en) * | 2001-02-23 | 2002-09-05 | Lei Qiao | Hydrophobically esterified starch products and process of making the same |
| US20040037886A1 (en) * | 2002-08-26 | 2004-02-26 | Li-Chien Hsu | Drug eluting coatings for medical implants |
| US20060249705A1 (en) * | 2003-04-08 | 2006-11-09 | Xingwu Wang | Novel composition |
| US20050019371A1 (en) * | 2003-05-02 | 2005-01-27 | Anderson Aron B. | Controlled release bioactive agent delivery device |
| US20070218102A1 (en) * | 2006-03-15 | 2007-09-20 | Surmodics, Inc. | Biodegradable hydrophobic polysaccharide-based coatings |
| US20070224247A1 (en) * | 2006-03-15 | 2007-09-27 | Chudzik Stephen J | Biodegradable hydrophobic polysaccharide-based drug delivery implants |
Cited By (92)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070224247A1 (en) * | 2006-03-15 | 2007-09-27 | Chudzik Stephen J | Biodegradable hydrophobic polysaccharide-based drug delivery implants |
| US7919111B2 (en) | 2006-03-15 | 2011-04-05 | Surmodics, Inc. | Biodegradable hydrophobic polysaccharide-based drug delivery implants |
| US20070218102A1 (en) * | 2006-03-15 | 2007-09-20 | Surmodics, Inc. | Biodegradable hydrophobic polysaccharide-based coatings |
| US7638344B2 (en) | 2006-06-28 | 2009-12-29 | Surmodics, Inc. | Active agent eluting matrices with particulates |
| US20080020045A1 (en) * | 2006-06-28 | 2008-01-24 | Chappa Ralph A | Combination Degradable and Non-Degradable Matrices for Active Agent Delivery |
| US20080038354A1 (en) * | 2006-06-28 | 2008-02-14 | Joram Slager | Active agent eluting matrices with particulates |
| US8968782B2 (en) | 2006-06-28 | 2015-03-03 | Surmodics, Inc. | Combination degradable and non-degradable matrices for active agent delivery |
| US8241921B2 (en) | 2006-06-28 | 2012-08-14 | Surmodics, Inc. | Active agent eluting matrices with particulates |
| US20100166829A1 (en) * | 2006-06-28 | 2010-07-01 | Surmodics, Inc. | Active agent eluting matrices with particulates |
| US20080171087A1 (en) * | 2006-08-16 | 2008-07-17 | Chappa Ralph A | Methods and materials for increasing the adhesion of elution control matrices to substrates |
| US8142836B2 (en) | 2006-09-25 | 2012-03-27 | Surmodics, Inc. | Multi-layered coatings and methods for controlling elution of active agents |
| US20110008526A1 (en) * | 2006-09-25 | 2011-01-13 | Surmodics, Inc. | Multi-layered coatings and methods for controlling elution of active agents |
| US20080075779A1 (en) * | 2006-09-27 | 2008-03-27 | Chappa Ralph A | Additives And Methods For Enhancing Active Agent Elution Kinetics |
| US20090022805A1 (en) * | 2007-06-28 | 2009-01-22 | Joram Slager | Polypeptide microparticles having sustained release characteristics, methods and uses |
| US9669192B2 (en) | 2008-03-28 | 2017-06-06 | Surmodics, Inc. | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
| EP2689789A1 (en) | 2008-03-28 | 2014-01-29 | SurModics, Inc. | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
| US8951545B2 (en) | 2008-03-28 | 2015-02-10 | Surmodics, Inc. | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
| US9895516B2 (en) | 2008-03-28 | 2018-02-20 | Surmodics, Inc. | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
| US11020513B2 (en) | 2008-03-28 | 2021-06-01 | Surmodics, Inc. | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
| US20090246252A1 (en) * | 2008-03-28 | 2009-10-01 | James Howard Arps | Insertable medical devices having microparticulate-associated elastic substrates and methods for drug delivery |
| US8496954B2 (en) | 2008-04-18 | 2013-07-30 | Surmodics, Inc. | Coating systems for the controlled delivery of hydrophilic bioactive agents |
| US20090280155A1 (en) * | 2008-04-18 | 2009-11-12 | Chappa Ralph A | Coating systems for the controlled delivery of hydrophilic bioactive agents |
| US20090280181A1 (en) * | 2008-05-07 | 2009-11-12 | Joram Slager | Delivery of nucleic acid complexes from particles |
| US8936811B2 (en) | 2008-05-07 | 2015-01-20 | Surmodics, Inc. | Device coated with glycogen particles comprising nucleic acid complexes |
| WO2010118213A2 (en) | 2009-04-08 | 2010-10-14 | Surmodics, Inc. | Particles for delivery of nucleic acids and related devices and methods |
| US8883208B2 (en) | 2009-04-08 | 2014-11-11 | Surmodics, Inc. | Particles for delivery of nucleic acids and related devices and methods |
| US20100260850A1 (en) * | 2009-04-08 | 2010-10-14 | Surmodics, Inc. | Controlled Release Devices and Methods for Delivery of Nucleic Acids |
| US20100260846A1 (en) * | 2009-04-08 | 2010-10-14 | Surmodics, Inc. | Particles for delivery of nucleic acids and related devices and methods |
| US8246576B2 (en) | 2009-05-18 | 2012-08-21 | Surmodics, Inc. | Method and apparatus for delivery of a therapeutic agent with an expandable medical device |
| US20100303879A1 (en) * | 2009-06-02 | 2010-12-02 | Kurdyumov Aleksey V | SILANE-FUNCTIONALIZED HYDROPHOBIC a(1-4)GLUCOPYRANOSE POLYMERS AND POLYMERIC MATRICES FOR IMPLANTATION OR INJECTION |
| US8802121B2 (en) | 2009-06-02 | 2014-08-12 | Surmodics, Inc. | Silane-functionalized hydrophobic α(1→4)glucopyranose polymers and polymeric matrices for implantation or injection |
| US8586731B2 (en) | 2009-06-11 | 2013-11-19 | Surmodics, Inc. | Hydrophobic polysaccharides with diester- or carbonate ester-containing linkages having enhanced degradation |
| US20100316687A1 (en) * | 2009-06-11 | 2010-12-16 | Swan Dale G | Hydrophobic polysaccharides with diester- or carbonate ester-containing linkages having enhanced degradation |
| US11925723B2 (en) | 2009-08-27 | 2024-03-12 | Silver Bullet Therapeutics, Inc. | Bone implant and systems and coatings for the controllable release of antimicrobial metal ions |
| US11020508B2 (en) | 2009-08-27 | 2021-06-01 | Silver Bullet Therapeutics, Inc. | Bone implant and systems and coatings for the controllable release of antimicrobial metal ions |
| US10004548B2 (en) | 2009-08-27 | 2018-06-26 | Silver Bullet Therapeutics, Inc. | Bone implants for the treatment of infection |
| US10368929B2 (en) | 2009-08-27 | 2019-08-06 | Silver Bullet Therapeutics, Inc. | Bone implants for the treatment of infection |
| US10265435B2 (en) | 2009-08-27 | 2019-04-23 | Silver Bullet Therapeutics, Inc. | Bone implant and systems and coatings for the controllable release of antimicrobial metal ions |
| US9889284B2 (en) | 2009-08-27 | 2018-02-13 | Silver Bullet Therapeutics, Inc. | Bone implant and systems that controllably releases silver |
| US11224471B2 (en) | 2009-08-27 | 2022-01-18 | Silver Bullet Therapeutics, Inc. | Bone implants for the treatment of infection |
| US9248254B2 (en) | 2009-08-27 | 2016-02-02 | Silver Bullet Therapeutics, Inc. | Bone implants for the treatment of infection |
| US20110076314A1 (en) * | 2009-09-30 | 2011-03-31 | Kurdyumov Aleksey V | Hydrophobic polysaccharides with silyl ether linkages having enhanced degradation and medical articles made therefrom |
| US8709489B2 (en) * | 2009-09-30 | 2014-04-29 | Surmodics, Inc. | Emulsions containing arylboronic acids and medical articles made therefrom |
| US20110076337A1 (en) * | 2009-09-30 | 2011-03-31 | Joram Slager | Emulsions containing arylboronic acids and medical articles made therefrom |
| US8932616B2 (en) | 2009-09-30 | 2015-01-13 | Surmodics, Inc. | Hydrophobic polysaccharides with silyl ether linkages having enhanced degradation and medical articles made therefrom |
| US20110159067A1 (en) * | 2009-12-30 | 2011-06-30 | Rolfes Meyering Emily R | Hydrophobic polysaccharides with pendent groups having terminal reactive functionalities and medical uses thereof |
| US8568760B2 (en) | 2009-12-30 | 2013-10-29 | Surmodics, Inc. | Hydrophobic polysaccharides with pendent groups having terminal reactive functionalities and medical uses thereof |
| US20110229457A1 (en) * | 2010-03-12 | 2011-09-22 | Surmodics, Inc. | Injectable drug delivery system |
| WO2011112996A2 (en) | 2010-03-12 | 2011-09-15 | Surmodics, Inc. | Injectable drug delivery system |
| US20110238149A1 (en) * | 2010-03-26 | 2011-09-29 | Boston Scientific Scimed, Inc. | Endoprosthesis |
| US8895099B2 (en) * | 2010-03-26 | 2014-11-25 | Boston Scientific Scimed, Inc. | Endoprosthesis |
| US8697105B2 (en) | 2010-03-29 | 2014-04-15 | Surmodics, Inc. | Injectable drug delivery formulation |
| WO2011143237A1 (en) | 2010-05-10 | 2011-11-17 | Surmodics, Inc. | Glycerol ester active agent delivery systems and methods |
| US8871819B2 (en) | 2010-05-10 | 2014-10-28 | Surmodics, Inc. | Glycerol ester active agent delivery systems and methods |
| WO2012006169A2 (en) | 2010-06-29 | 2012-01-12 | Surmodics, Inc. | Compositions and methods for enhancement of nucleic acid delivery |
| WO2012003296A1 (en) | 2010-06-30 | 2012-01-05 | Surmodics, Inc. | Catheter assembly |
| US10596355B2 (en) | 2010-06-30 | 2020-03-24 | Surmodics, Inc. | Catheter assembly |
| WO2012003293A1 (en) | 2010-06-30 | 2012-01-05 | Surmodics, Inc. | Lipid coating for medical devices delivering bioactive agent |
| US8927000B2 (en) | 2010-06-30 | 2015-01-06 | Surmodics, Inc. | Lipid coating for medical devices delivering bioactive agent |
| WO2012044913A1 (en) | 2010-09-30 | 2012-04-05 | Suromdics, Inc. | Catheter assembly with guard |
| US8961457B2 (en) | 2010-09-30 | 2015-02-24 | Surmodics, Inc. | Catheter assembly with guard |
| US9108051B2 (en) | 2010-11-12 | 2015-08-18 | Silver Bullet Therapeutics, Inc. | Bone implant and systems that controllably releases silver |
| US9789298B2 (en) | 2010-11-12 | 2017-10-17 | Silver Bullet Therapeutics, Inc. | Bone implant and systems that controllably releases silver |
| US8901092B2 (en) | 2010-12-29 | 2014-12-02 | Surmodics, Inc. | Functionalized polysaccharides for active agent delivery |
| WO2012092421A2 (en) | 2010-12-30 | 2012-07-05 | Surmodics, Inc. | Composition for intravascular delivery of therapeutic composition |
| US11318204B2 (en) | 2010-12-30 | 2022-05-03 | Surmodics, Inc. | Composition for intravascular delivery of therapeutic composition |
| US11529440B2 (en) | 2011-05-20 | 2022-12-20 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| US9861727B2 (en) | 2011-05-20 | 2018-01-09 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| US10213529B2 (en) | 2011-05-20 | 2019-02-26 | Surmodics, Inc. | Delivery of coated hydrophobic active agent particles |
| US9757497B2 (en) | 2011-05-20 | 2017-09-12 | Surmodics, Inc. | Delivery of coated hydrophobic active agent particles |
| US10617793B2 (en) | 2011-05-20 | 2020-04-14 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| US12083249B2 (en) | 2011-05-20 | 2024-09-10 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| US10213528B2 (en) | 2011-05-20 | 2019-02-26 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| US11246963B2 (en) | 2012-11-05 | 2022-02-15 | Surmodics, Inc. | Compositions and methods for delivery of hydrophobic active agents |
| WO2014071387A1 (en) | 2012-11-05 | 2014-05-08 | Surmodics, Inc. | Composition and method for delivery of hydrophobic active agents |
| US9555119B2 (en) | 2012-11-05 | 2017-01-31 | Surmodics, Inc. | Composition and method for delivery of hydrophobic active agents |
| US9999675B2 (en) | 2012-11-05 | 2018-06-19 | Surmodics, Inc. | Composition and method for delivery of hydrophobic active agents |
| WO2014186729A1 (en) | 2013-05-16 | 2014-11-20 | Surmodics, Inc. | Compositions and methods for delivery of hydrophobic active agents |
| US8999367B1 (en) | 2014-06-11 | 2015-04-07 | Silver Bullet Therapeutics, Inc. | Bioabsorbable substrates and systems that controllably release antimicrobial metal ions |
| US8927004B1 (en) | 2014-06-11 | 2015-01-06 | Silver Bullet Therapeutics, Inc. | Bioabsorbable substrates and systems that controllably release antimicrobial metal ions |
| US9821094B2 (en) | 2014-06-11 | 2017-11-21 | Silver Bullet Therapeutics, Inc. | Coatings for the controllable release of antimicrobial metal ions |
| US9114197B1 (en) | 2014-06-11 | 2015-08-25 | Silver Bullett Therapeutics, Inc. | Coatings for the controllable release of antimicrobial metal ions |
| US9452242B2 (en) | 2014-06-11 | 2016-09-27 | Silver Bullet Therapeutics, Inc. | Enhancement of antimicrobial silver, silver coatings, or silver platings |
| WO2016123480A1 (en) | 2015-01-29 | 2016-08-04 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
| WO2017172922A1 (en) | 2016-03-31 | 2017-10-05 | Surmodics, Inc. | Localized treatment of tissues through transcatheter delivery of active agents |
| WO2018118671A1 (en) | 2016-12-20 | 2018-06-28 | Surmodics, Inc. | Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces |
| US10898446B2 (en) | 2016-12-20 | 2021-01-26 | Surmodics, Inc. | Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces |
| EP4541386A2 (en) | 2016-12-20 | 2025-04-23 | Surmodics, Inc. | Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces |
| CN109925536A (en) * | 2017-12-15 | 2019-06-25 | 先健科技(深圳)有限公司 | It can absorb iron-based implantable device |
| WO2019114406A1 (en) * | 2017-12-15 | 2019-06-20 | 先健科技(深圳)有限公司 | Absorbable iron-based implantable device |
| US12226552B2 (en) | 2019-09-30 | 2025-02-18 | Surmodics, Inc. | Active agent depots formed in situ |
| US11478815B2 (en) | 2020-01-16 | 2022-10-25 | Surmodics, Inc. | Coating systems for medical devices |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2009529967A (en) | 2009-08-27 |
| EP2004252A2 (en) | 2008-12-24 |
| US20070224247A1 (en) | 2007-09-27 |
| US20070218102A1 (en) | 2007-09-20 |
| WO2007109069A3 (en) | 2008-12-24 |
| CA2645324A1 (en) | 2007-09-27 |
| US7919111B2 (en) | 2011-04-05 |
| WO2007109069A2 (en) | 2007-09-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070260054A1 (en) | Hydrophobic derivatives of natural biodegradable polysaccharides and uses thereof | |
| US8512736B2 (en) | Coatings including natural biodegradable polysaccharides and uses thereof | |
| US8241655B2 (en) | Coatings for medical articles including natural biodegradable polysaccharides | |
| US8663674B2 (en) | Microparticle containing matrices for drug delivery | |
| US20080154241A1 (en) | Latent stabilization of bioactive agents releasable from implantable medical articles | |
| CA2621657C (en) | In situ occluding compositions comprising natural biodegradable polysaccharides polymerized by a redox pair | |
| CA2664879C (en) | Biodegradable ocular implants and methods for treating ocular conditions | |
| US8568760B2 (en) | Hydrophobic polysaccharides with pendent groups having terminal reactive functionalities and medical uses thereof | |
| US8932616B2 (en) | Hydrophobic polysaccharides with silyl ether linkages having enhanced degradation and medical articles made therefrom |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SURMODICS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHUDZIK, STEPHEN J.;REEL/FRAME:019097/0393 Effective date: 20070315 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |