US20070112467A1 - Systems and Methods for Powering Devices with a Thermoelectric System - Google Patents
Systems and Methods for Powering Devices with a Thermoelectric System Download PDFInfo
- Publication number
- US20070112467A1 US20070112467A1 US11/461,620 US46162006A US2007112467A1 US 20070112467 A1 US20070112467 A1 US 20070112467A1 US 46162006 A US46162006 A US 46162006A US 2007112467 A1 US2007112467 A1 US 2007112467A1
- Authority
- US
- United States
- Prior art keywords
- micro
- robot
- thermoelectric
- temperature gradient
- thermoelectric system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 7
- 230000005611 electricity Effects 0.000 claims abstract description 18
- 230000007613 environmental effect Effects 0.000 claims abstract description 14
- 239000003990 capacitor Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000004378 air conditioning Methods 0.000 claims 2
- 239000000463 material Substances 0.000 description 8
- 230000005678 Seebeck effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D71/00—Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans or pop bottles; Bales of material
- B65D71/06—Packaging elements holding or encircling completely or almost completely the bundle of articles, e.g. wrappers
- B65D71/12—Packaging elements holding or encircling completely or almost completely the bundle of articles, e.g. wrappers the packaging elements, e.g. wrappers being formed by folding a single blank
- B65D71/36—Packaging elements holding or encircling completely or almost completely the bundle of articles, e.g. wrappers the packaging elements, e.g. wrappers being formed by folding a single blank having a tubular shape, e.g. tubular wrappers, with end walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/005—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J7/00—Micromanipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D5/00—Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
- B65D5/02—Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding or erecting a single blank to form a tubular body with or without subsequent folding operations, or the addition of separate elements, to close the ends of the body
- B65D5/0227—Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper by folding or erecting a single blank to form a tubular body with or without subsequent folding operations, or the addition of separate elements, to close the ends of the body with end closures formed by inward folding of flaps and securing them by heat-sealing, by applying adhesive to the flaps or by staples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D5/00—Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
- B65D5/42—Details of containers or of foldable or erectable container blanks
- B65D5/54—Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing
- B65D5/5405—Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing for opening containers formed by erecting a blank in tubular form
- B65D5/542—Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing for opening containers formed by erecting a blank in tubular form the lines of weakness being provided in the container body
- B65D5/5425—Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing for opening containers formed by erecting a blank in tubular form the lines of weakness being provided in the container body and defining after rupture a lid hinged to the upper edge of the container body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2571/00—Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
- B65D2571/00123—Bundling wrappers or trays
- B65D2571/00129—Wrapper locking means
- B65D2571/00135—Wrapper locking means integral with the wrapper
- B65D2571/00141—Wrapper locking means integral with the wrapper glued
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2571/00—Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
- B65D2571/00123—Bundling wrappers or trays
- B65D2571/00555—Wrapper opening devices
- B65D2571/00561—Lines of weakness
- B65D2571/00574—Lines of weakness whereby contents can still be carried after the line has been torn
- B65D2571/0058—The tear line defining a dispensing aperture provided with means for preventing the articles from freely exiting the wrapper, e.g. by rolling out
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2571/00—Bundles of articles held together by packaging elements for convenience of storage or transport, e.g. portable segregating carrier for plural receptacles such as beer cans, pop bottles; Bales of material
- B65D2571/00123—Bundling wrappers or trays
- B65D2571/00555—Wrapper opening devices
- B65D2571/00561—Lines of weakness
- B65D2571/00598—The tearable part having a specific use
- B65D2571/00604—The tearable part having a specific use for supporting the wrapper in a dispensing position, e.g. inclined
Definitions
- thermoelectric generators BACKGROUND OF THE INVENTION
- Micro-robots may be used in numerous situations and locations to receive and transmit data communications and perform various other requirements.
- Micro-robots may be positioned in remote locations to either transmit images or sounds or other types of data.
- Micro-robots may be used for commercial or military applications. For instance, in a commercial application, micro-robots may be used to locate and identify personnel trapped within buildings as a result of earthquake or terrorist attack. The micro-robots are sufficiently small enough to maneuver within the collapsed structure and navigate within very small confinements.
- Micro-robots may use various methods for maneuvering to its destination, including but not limited to hopping, vibrating, and rolling. Micro-robots currently rely upon “button batteries” for power supplies.
- micro-robots The operational time for which such traditional button batteries can supply power is measured in hours. Therefore, without an improved system or method for providing extended power to the micro-robots, the use of micro-robots becomes extremely limited. In order for the micro-robots to operate over a long period of time, it will be necessary for the micro-robots to be able to recharge their batteries within the environment for which they are located. For example, within a collapsed structure, the only source of reliable power is heat. Optimally, a number of potential heat sources should be available to ensure rapid location of such power supplies.
- FIG. 1 is a diagram of the Seebeck Effect for thermoelectric systems according to an exemplary embodiment of the present invention.
- FIG. 2 is a thermopile of the thermoelectric system according to an exemplary embodiment of the present invention.
- FIG. 3 is an exemplary plot of ground and atmospheric temperatures.
- FIG. 4 is a hopping micro-robot for use with the thermoelectric system according to an exemplary embodiment of the present invention.
- FIG. 5 is a flow chart of the operation of a thermoelectric system integrated with a micro-robot according to an exemplary embodiment of the present invention.
- FIG. 6 is a vibrating micro-robot according to an exemplary embodiment of the present invention.
- FIG. 7 is a vibrating micro-robot for use with the thermoelectric system according to an exemplary embodiment of the present invention.
- FIG. 8 is a mini-WHEGS micro-robot according to an exemplary embodiment of the present invention.
- FIG. 9 is a scout micro-robot according to an exemplary embodiment of the present invention.
- FIG. 10 is an infrared sensor for a micro-robot according to an exemplary embodiment of the present invention.
- thermoelectric system is one that operates on a circuit that incorporates both thermal and electrical effects to convert heat energy into electrical energy or electrical energy to a decreasing temperature gradient.
- the combination of the two or more wires creates a thermopile 10 that is integrated into a thermoelectric system.
- the voltage generated is a function of the temperature difference and the materials of the two wires used.
- thermoelectric generator has a power cycle closely related to a heat engine cycle with electrons serving as the working fluid and can be employed as power generators. Heat is transferred from a high temperature source to a hot junction and then rejected to a low temperature sink from a cold junction or directly to the atmosphere. A temperature gradient between the temperatures of the hot junction and the cold junction generates a voltage potential and the generation of electrical power. Semi-conductors may be used to significantly increase the voltage output of thermoelectric generators.
- FIG. 2 illustrates a thermopile 20 constructed with an n-typed semiconductor material 22 and a p-type semiconductor material 24 .
- the n-type materials 22 are heavily doped to create excess electrons, while p-type materials 24 are used to create a deficiency of electrons.
- the thermopile 20 is not limited to this configuration and may be any thermopile sufficient to generate electricity from a temperature gradient.
- Thermoelectric generator technology is a functional, viable and continuous long-term electrical power source.
- Thermoelectric generators may be coupled with rechargeable battery technology, capacitor technology, or a combination of rechargeable batteries and capacitors to provide extended power supplies to micro-robots and other micro-devices.
- thermoelectric generators Due to the accessibility of temperature gradients occurring in natural and man-made environments, thermoelectric generators can provide a continuous power supply for devices in need of a power source.
- One of the most abundant, common, and accessible sources of energy is environmental heat. In buried hardened target environments, environmental heat may be the only feasible source of energy.
- Micro-robots may be used in numerous commercial and military conditions in environments which are very difficult to access, including hardened target environments, for payload delivery or other reconnaissance operations.
- Micro-robots include numerous and varying forms including but not limited to hopping micro-robots, vibrating micro-robots, walking micro-robots, and rolling micro-robots. Due to the remote operational location of many micro-robots, recharging of the batteries of a micro-robot may prove difficult.
- Thermoelectric systems may be employed to provide power to micro-robots.
- the thermoelectric system may include a thermoelectric generator that may be integrated with a micro-robot to provide electrical power.
- the thermoelectric generator includes a thermopile.
- the thermopile is of the configuration of FIG. 2 . Again, the thermopile is not limited to the configuration of FIG. 2 and may be any thermopile sufficient to generate electricity from a temperature gradient.
- Heat energy may be extracted from a number of environmental sources thereby allowing for a number of potential “power stations” for the micro-robot.
- Table 1 illustrates numerous heat sources that the thermoelectric system of a micro-robot may employ.
- MAXIMUM ENVIRONMENTAL HEAT SOURCE TEMPERATURE F. °/C. °
- OFFICE SOURCES Computer Power Unit (internal) 100/40 Computer Screen (CRT) (internal) 110/45 Coffee Makers 195/91 AC Units 80/30 Generators (Electrical) 140/60 Heaters (i.e.
- thermoelectric generator may use the thermal differential between the earth's surface and the earth's temperature as low as a foot below the earth's surface for a temperature gradient sufficient to create adequate electrical energy for a micro-robot.
- FIG. 3 illustrates a plot of a temperature differential between the atmosphere at the earth's surface and 30 centimeters below the earth's surface. The plot of FIG. 3 illustrates temperatures present at Royston, Hertfordshire in March 2000.
- FIG. 3 is for illustrative purposes only and does not represent the temperature gradient at all locations on earth and at all times.
- thermoelectric generator At certain times the atmospheric temperature is greater than the subsurface temperature and at other times the atmospheric temperature is less than the subsurface temperature.
- thermoelectric generator for the thermoelectric generator to produce electricity only a temperature differential is required and, therefore, can produce electricity in either scenario.
- the temperature of the earth tends to decrease with depth.
- higher amounts of energy can be generated due to an increased temperature gradient with the earth's atmospheric conditions at the surface.
- the temperature gradient used to generate electrical energy may also be obtained from extreme conditions at the location of the micro-robot. For example, if a building is collapsed or on fire, the micro-robot may use the heat from the building or fire to create a temperature gradient to power the micro-robot.
- the micro-robot may use the heat from the building or fire to create a temperature gradient to power the micro-robot.
- any high heat source may be used to generate a temperature gradient to power the micro-robot.
- FIG. 4 illustrates an exemplary embodiment of a hopping micro-robot 40 .
- the hopping micro-robot 40 navigates and maneuvers through use of a hopping mechanism including a bottom leg 42 and a top leg 44 .
- the hopping micro-robot may include a rechargeable battery 46 to provide electrical power.
- the rechargeable battery 46 may be located on the top leg 44 or any other location on the hopping micro-robot to supply power thereto.
- a thermopile 48 may be integrated with the micro-robot.
- the rechargeable battery may be recharged through the use of the thermopile of a thermoelectric system integrated with the micro-robot.
- the thermopile 52 contacts a heat source 51 such that a temperature gradient is formed within the wires of the thermopile at step 52 .
- the thermopile 52 then generates electricity by converting the thermal energy in the temperature gradient to electricity at step 53 .
- the electricity generated may then pass to a trickle charger at step 54 and the trickle charger then charges the rechargeable battery at step 55 .
- the battery can provide sufficient power to the needs of the micro-robot including the steps of mobility at step 56 , navigation at step 57 , or any other desired operation, such as pay load delivery at step 59 .
- the thermoelectric generator also may be used to charge an on board super capacitor of the micro-robot device at 58 .
- the super capacitor may be configured to store an abundance of electrical energy and also may expel the electrical energy in a slow controlled manner or in a burst of electricity.
- the super capacitor may supply power to the micro-robot and also may provide power for any potential weapon (i.e. explosive initiator) in a hard/overt kill capacity or to act as a weapon itself in a covert/soft kill capacity as well.
- the super capacitor may operate as a weapon by short circuiting a Central Processing Unit, overloading a circuit of a desired device, and initiating a fire by expelling the abundance of electrical energy with a burst of electricity.
- thermoelectric generator also may be used to provide electrical energy to power any required devices on a micro-robot, including but not limited to sensors, processors, and mechanical operations.
- the recharging of the battery is not limited to the steps of FIG. 5 and may include a system for recharging the battery that uses a thermopile.
- a capacitor may be used in place of a rechargeable battery to provide power to the micro-robot.
- the thermoelectric generator may be used to charge the capacitor with electrical energy.
- any number of rechargeable batteries, capacitors, or combination of a rechargeable batteries and a capacitors are contemplated herein.
- thermoelectric system may be affixed in any location on the micro-robot that allows for a temperature gradient to be exposed to the thermopile of the thermoelectric system.
- the thermoelectric system is affixed to the bottom leg 44 such that the thermoelectric system interfaces a hot surface to expose itself to the temperature gradient between the hot surface and the atmosphere.
- the hot surface may include any material or substance that has a temperature higher than the atmosphere, including the items listed in Table 1.
- thermoelectric system also may include a stake (not shown) that can be inserted into the ground to increase the thermal gradient with the hot surface.
- the thermopile may be integrated with the stake to produce electricity from the temperature gradient.
- the thermoelectric system may be affixed anywhere on the micro-robot that is exposed to a temperature gradient.
- thermoelectric system may provide electrical energy to a vibrating micro-robot 60 as illustrated in FIG. 6 .
- the vibrating micro-robot employs vibration (or micro-hopping) as a locomotion mechanism. Similar to the hopping micro-robot embodiment, thermoelectric system may be used to provide electrical energy to operate the locomotion of a vibrating micro-robot.
- the micro-robot 60 may employ a rechargeable battery 62 that powers vibrating motors 64 .
- the vibrating motors 64 vibrate to move the micro-robot 60 in a desired direction.
- a sensor 66 and related microprocessor and circuitry may be integrated in the vibrating micro-robot 60 to instruct the micro-robot on its destination.
- the sensor 66 may be any sensor capable of detecting a heat source such as an infrared sensor, heat sensor, or other light sensor.
- FIG. 7 illustrates an embodiment of a vibrating micro-robot 70 with an integrated thermoelectric system 72 .
- the thermoelectric system 72 may be positioned on a surface of the micro-robot that interfaces the heat source. A thermopile of the thermoelectric system could then generate electricity from the temperature gradient between a heat source and the atmosphere.
- the vibrating micro-robot 70 may further include at least one microcapacitor 74 to hold the electricity generated by the thermopile. It should be understood that the vibrating micro-robot may also include a rechargeable battery or any other type of battery or capacitor.
- the vibrating micro-robot may further include a radiator 78 for maximizing heat dissipation and increasing the heat difference between the hot side and cold side of the thermopile.
- thermoelectric generators may be used to provide electrical power to any micro-robot including mini-WHEGS micro-robots 80 shown in FIG. 8 , Scout micro-robots 90 shown in FIG. 9 , or any other type of micro-robots or micro device where power can be generated with a thermoelectric generator.
- any micro-robot including mini-WHEGS micro-robots 80 shown in FIG. 8 , Scout micro-robots 90 shown in FIG. 9 , or any other type of micro-robots or micro device where power can be generated with a thermoelectric generator.
- thermoelectric systems to provide sufficient power to micro-robots is not limited to the types of micro-robots disclosed herein but is applicable to any micro-robot or micro device.
- the thermoelectric system also may include a sensor for locating thermal conditions to allow for recharging the batteries or charging the capacitors.
- the sensors may include heat sensors, light detecting sensors, or any other sensing device operable to determine a thermal source.
- the thermoelectric system may incorporate a light tracking sensor which allows the micro-robot to track a source of light in a dark environment.
- FIG. 10 illustrates an embodiment of a micro infrared seeker which can be used to identify potential heat sources.
- the micro infrared sensor of the micro-robot may direct the micro-robot to move to the light.
- the source of light may provide a sufficient temperature gradient for the thermoelectric generator to generate electricity.
- thermoelectric system may be integrated with the thermoelectric system to allow the micro-robot to autonomously locate a heat source for recharging the battery or capacitor.
- the thermoelectric generator may be used to power the sensor as well as locomotive components of the micro-robot.
- the sensors alternatively may be powered by an auxiliary battery.
- the thermoelectric system may also include a device that determines how much power remains in the battery or capacitor that powers the micro-robot. The amount of remaining power may be used to determine if recharging of the battery or capacitor is needed.
- the thermoelectric system may further include a microprocessor for guidance, command, and control of the sensors and the micro-robot.
- the microprocessor of the thermoelectric system may be programmed to determine the best available source of thermal heat in order to determine the most efficient means for recharging the batteries. If a rapid charge is required, the microprocessor may command the micro-robot to locate a thermal source that creates a large temperature gradient. Likewise, if a rapid charge is not required, the microprocessor may be programmed to command the micro-robot to find a less conspicuous location to charge the battery or capacitor.
- the microprocessor does not have to be part of the thermoelectric system.
- a microprocessor on the micro-robot may be programmed to guide, command, and control the micro-robot and the sensors.
- One of ordinary skill in the art will appreciate that standard guidance and control techniques may be implemented to guide and control the micro-robots movement to the heat source.
- thermoelectric generators may be used to power other devices that require power over extended periods of time.
- a thermoelectric system may be used to power a weather station 1100 or the individual components of a weather station. An illustration of a weather station is shown in FIG. 11 .
- the invention proposes the “seeding” of large areas with dozens (or hundreds) of individual sensors (i.e. humidity sensors, temperature sensors, wind velocity sensors, wind direction sensors, etc.) which in and of themselves consume little power.
- Micro-transmitters may be connected to sensors which may periodically send data to a central data fusion center and a broad picture of the environmental conditions over a wide area could be painted, thereby providing a more accurate weather account than an individual weather station.
- the sensors require little power and may be powered by the thermal gradient between the surface of the earth and the sub-surface of the earth.
- the thermal gradient may be achieved through a sub-surface depth of between one and three feet.
- any sub-surface depth that creates a temperature gradient is contemplated herein.
- the weather stations 1100 are often used in remote locations and may be required for use for an amount exceeding the battery life.
- the thermoelectric generator may be used to provide electrical power to the weather station.
- the weather station rests on the earth's surface.
- the thermoelectric system may include a stake that is inserted into the earth's surface.
- the temperature of the earth generally decreases with depth at depths up to 100 feet. Therefore, the temperature at the end of the stake is typically lower than the temperature at the earth's surface.
- the difference between the temperature at the end of the stake and the earth's surface provides the temperature gradient sufficient for creating electrical energy through the thermopile of the thermoelectric system.
- the temperature gradient may be attained from any source and is not limited to the use of a stake in the ground.
- thermoelectric system may be integrated with an unattended ground sensor.
- An unattended ground sensor may be used for a number of applications such as intrusion detection, sound detection, IR detection, etc.
- the sensor would be coupled with a miniature RF transmitter (as would the previously referenced weather sensors) and would transmit its data to a central data collection command post to alert authorities in the event of intrusion into restricted areas.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Cartons (AREA)
- Manipulator (AREA)
- Packages (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/461,620 US20070112467A1 (en) | 2005-08-02 | 2006-08-01 | Systems and Methods for Powering Devices with a Thermoelectric System |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US70483705P | 2005-08-02 | 2005-08-02 | |
| US11/461,620 US20070112467A1 (en) | 2005-08-02 | 2006-08-01 | Systems and Methods for Powering Devices with a Thermoelectric System |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070112467A1 true US20070112467A1 (en) | 2007-05-17 |
Family
ID=37709326
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/497,049 Expired - Fee Related US7762394B2 (en) | 2005-08-02 | 2006-08-01 | Cartons with dispensing features |
| US11/461,620 Abandoned US20070112467A1 (en) | 2005-08-02 | 2006-08-01 | Systems and Methods for Powering Devices with a Thermoelectric System |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/497,049 Expired - Fee Related US7762394B2 (en) | 2005-08-02 | 2006-08-01 | Cartons with dispensing features |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US7762394B2 (fr) |
| EP (1) | EP1937571B1 (fr) |
| JP (2) | JP2009502687A (fr) |
| AT (1) | ATE512084T1 (fr) |
| AU (1) | AU2006275412B2 (fr) |
| BR (1) | BRPI0614177A2 (fr) |
| CA (1) | CA2614879C (fr) |
| MX (1) | MX2008001143A (fr) |
| WO (1) | WO2007016588A2 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100038964A1 (en) * | 2005-09-13 | 2010-02-18 | Thomas Budmiger | Method for Supplying Energy to a Field Device in Automation Technology |
| US20140199640A1 (en) * | 2013-01-11 | 2014-07-17 | Honeywell International Inc. | Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system |
| US10700254B2 (en) * | 2016-02-18 | 2020-06-30 | Centre National De La Recherche Scientifique (Cnrs) | Thermoelectric device |
Families Citing this family (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7478743B2 (en) * | 2006-02-28 | 2009-01-20 | Holley Jr John M | Carton for tapered and cylindrical articles |
| NZ572395A (en) | 2006-05-18 | 2011-05-27 | Graphic Packaging Int Inc | Packaging article comprising at least two blanks adhered together and a liquid-tight vessel attached to the interior surface |
| CA2678056C (fr) | 2007-02-23 | 2015-02-03 | Graphic Packaging International, Inc. | Carton renforce et procedes de production de decoupes en carton |
| EP2170714A4 (fr) * | 2007-07-27 | 2011-04-06 | Graphic Packaging Int Inc | Carton muni d'un distributeur, de caracteristique d'affichage et/ou de caracteristique de coin |
| US20090065559A1 (en) * | 2007-09-12 | 2009-03-12 | Michael Parkes | Packaging box |
| GB0722246D0 (en) * | 2007-11-13 | 2007-12-27 | Altevo Ltd | Dispensing of gloves |
| WO2011060410A2 (fr) | 2009-11-16 | 2011-05-19 | Graphic Packaging International, Inc. | Plateau aéré triangulaire |
| GB201007511D0 (en) * | 2010-05-05 | 2010-06-23 | Ds Smith Packaging Ltd | Carton blank |
| MX2013006072A (es) | 2010-12-10 | 2013-07-02 | Graphic Packaging Int Inc | Caja de carton con panel expandible. |
| US9162793B2 (en) | 2011-05-25 | 2015-10-20 | The Coca-Cola Company | Carton |
| WO2012170600A2 (fr) * | 2011-06-08 | 2012-12-13 | Graphic Packaging International, Inc. | Plateau à surface inférieure incurvée |
| US20130313951A1 (en) * | 2011-11-22 | 2013-11-28 | The Coca-Cola Company | Carton based product dispenser |
| US8997987B1 (en) * | 2012-05-17 | 2015-04-07 | The C.W. Zumbiel Company | Wrap-around container carrier |
| WO2014026087A1 (fr) | 2012-08-10 | 2014-02-13 | Graphic Packaging International, Inc. | Carton comportant un distributeur |
| US9850023B2 (en) * | 2012-10-05 | 2017-12-26 | Graphic Packaging International, Inc. | Carton with dispensing feature |
| GB2511771A (en) * | 2013-03-12 | 2014-09-17 | Crown Packaging Technology Inc | Multi-pack for dispensing containers |
| AU2014268358B2 (en) | 2013-05-24 | 2018-09-27 | Graphic Packaging International, Llc | Carton for articles |
| WO2014189778A1 (fr) * | 2013-05-24 | 2014-11-27 | Meadwestvaco Packaging Systems, Llc | Carton et découpe |
| JP6324110B2 (ja) * | 2014-02-26 | 2018-05-16 | 三菱電機株式会社 | 表示装置の梱包構造 |
| EP3212523B1 (fr) * | 2014-10-27 | 2019-08-21 | Graphic Packaging International, LLC | Carton pour articles |
| WO2016073676A1 (fr) | 2014-11-07 | 2016-05-12 | Graphic Packaging International, Inc. | Barquette pour produit alimentaire |
| US10232973B2 (en) | 2014-11-07 | 2019-03-19 | Graphic Packaging International, Llc | Tray for holding a food product |
| JP6514093B2 (ja) * | 2015-11-30 | 2019-05-15 | 王子ホールディングス株式会社 | ロールシート収納紙箱 |
| AU2017260467B2 (en) * | 2016-05-06 | 2019-12-12 | Graphic Packaging International, Llc | Carton for articles |
| US10183795B2 (en) * | 2016-05-27 | 2019-01-22 | Danby Products Limited | Removable can holding refrigerator container |
| EP3538445B1 (fr) | 2016-11-14 | 2025-06-25 | Graphic Packaging International, LLC | Carton et méthode pour former un carton |
| US10440933B1 (en) * | 2017-01-31 | 2019-10-15 | Christina Saylor | Litter box enclosure |
| US10696444B2 (en) * | 2017-12-01 | 2020-06-30 | Georgia-Pacific Corrugated Llc | Container with window display panel |
| EP3883860B1 (fr) | 2018-11-20 | 2024-01-03 | Graphic Packaging International, LLC | Plateau ajustable, flan pour former un plateau et méthode pour former un plateau |
| CN109552725A (zh) * | 2018-12-17 | 2019-04-02 | 肖志坚 | 一种包装盒 |
| MX2023005268A (es) | 2020-11-06 | 2023-07-26 | Graphic Packaging Int Llc | Bandeja para productos alimenticios. |
| USD1042117S1 (en) | 2021-05-27 | 2024-09-17 | Graphic Packaging International, Llc | Tray |
| USD1042122S1 (en) | 2021-05-27 | 2024-09-17 | Graphic Packaging International, Llc | Tray |
| USD1062459S1 (en) | 2021-05-27 | 2025-02-18 | Graphic Packaging International, Llc | Tray |
| USD1042116S1 (en) | 2021-05-27 | 2024-09-17 | Graphic Packaging International, Llc | Carton |
| USD1042121S1 (en) | 2021-05-27 | 2024-09-17 | Graphic Packaging International, Llc | Tray |
| USD1044494S1 (en) | 2021-05-27 | 2024-10-01 | Graphic Packaging International, Llc | Tray |
| USD1042119S1 (en) | 2021-05-27 | 2024-09-17 | Graphic Pachaging International, LLC | Tray |
| USD1042120S1 (en) | 2021-05-27 | 2024-09-17 | Graphic Packaging International, Llc | Tray |
| USD1042118S1 (en) | 2021-05-27 | 2024-09-17 | Graphic Packaging International, Llc | Tray |
| US12365506B2 (en) | 2023-06-13 | 2025-07-22 | International Paper Company | Container for dispensing flexible sheet product and associated blank |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4292579A (en) * | 1977-09-19 | 1981-09-29 | Constant James N | Thermoelectric generator |
| US5083968A (en) * | 1988-11-29 | 1992-01-28 | Hart Frank J | Interactive toy |
| US5610488A (en) * | 1991-11-05 | 1997-03-11 | Seiko Epson Corporation | Micro robot |
| US6291760B1 (en) * | 1998-11-13 | 2001-09-18 | Seiko Instruments Inc. | Thermoelectronic generating electronic device |
| US20030230415A1 (en) * | 2001-06-20 | 2003-12-18 | Wilson John E. | Automated fire protection system |
| US20050252543A1 (en) * | 2003-05-19 | 2005-11-17 | Ingo Stark | Low power thermoelectric generator |
| US20060254638A1 (en) * | 2005-05-11 | 2006-11-16 | Ran Carmeli | Small electrical appliance driven by a thermoelectric generator |
Family Cites Families (29)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1416465A (en) | 1920-06-07 | 1922-05-16 | Harvey William Frank | Display box |
| US1434165A (en) | 1921-01-29 | 1922-10-31 | Snyder & Black Inc | Display carton |
| FR583086A (fr) | 1924-06-24 | 1925-01-06 | Wezel & Naumann Ag | Boîte repliable |
| US1732226A (en) | 1927-03-25 | 1929-10-22 | Edwin E Darragh | Display box |
| US1862685A (en) * | 1930-07-16 | 1932-06-14 | Kennett Frank | Shipping and display carton |
| US1889625A (en) | 1931-09-22 | 1932-11-29 | Purity Bakeries Service Corp | Display stand |
| US1909472A (en) | 1932-05-25 | 1933-05-16 | Brown & Bailey Company | Display box |
| US2052675A (en) | 1932-10-14 | 1936-09-01 | Arnold J Tanner | Container |
| US2294965A (en) | 1940-02-02 | 1942-09-08 | Nat Biscuit Co | Shipping and display container |
| US2312595A (en) | 1940-11-22 | 1943-03-02 | Chicago Carton Co | Display carton |
| US3178242A (en) | 1963-05-13 | 1965-04-13 | Anheuser Busch | One-piece dispensing carton for cylindrical objects |
| JPS5526493B2 (fr) * | 1971-09-02 | 1980-07-14 | ||
| US4030596A (en) * | 1976-05-24 | 1977-06-21 | Snyder Robert O | Cartons |
| US4331231A (en) | 1980-09-22 | 1982-05-25 | Champion International Corporation | Display tray with tilt platform |
| US4433778A (en) | 1982-09-17 | 1984-02-28 | Federal Paper Board Co., Inc. | Automatic tilt display carton |
| JPS63154430A (ja) * | 1986-12-18 | 1988-06-27 | Iseki & Co Ltd | 移動農機の変速装置 |
| US5375702A (en) | 1993-08-11 | 1994-12-27 | Printech Inc. | Folding display box |
| JPH10101063A (ja) * | 1996-09-26 | 1998-04-21 | Rengo Co Ltd | 包装展示兼用箱 |
| US5878947A (en) | 1997-06-19 | 1999-03-09 | Hoy; Richard W. | Multiple article beverage package |
| US6227367B1 (en) * | 2000-06-09 | 2001-05-08 | Riverwood International Corporation | Fully enclosed carton with diamond corner panels |
| US6578736B2 (en) | 2001-01-09 | 2003-06-17 | Riverwood International Corporation | Carton with an improved dispensing feature |
| JP4686058B2 (ja) * | 2001-06-18 | 2011-05-18 | 大日本印刷株式会社 | 電子レンジ用カートン |
| US6866185B2 (en) | 2002-10-01 | 2005-03-15 | Graphic Packaging International, Inc. | Dispenser carton with tilt platform |
| US6902104B2 (en) | 2003-03-26 | 2005-06-07 | Meadwestvaco Packaging Systems, Llc | Carton with dispenser |
| US6834793B2 (en) * | 2003-05-31 | 2004-12-28 | Graphic Packaging International, Inc. | Enclosed container carton convertible into a tray |
| US7147143B2 (en) * | 2003-08-01 | 2006-12-12 | Meadwestvaco Packaging Systems, Llc | Opening assist to dispensing carton |
| JP2005053555A (ja) | 2003-08-06 | 2005-03-03 | Meadwestvaco Packaging Systems Llc | ディスペンサー付パッケージ |
| US7004897B2 (en) * | 2003-10-15 | 2006-02-28 | Graphic Packaging International, Inc. | Display/vending carton |
| US7296731B2 (en) * | 2004-03-05 | 2007-11-20 | Meadwestvaco Packaging Systems, Llc | Carton with removable corner portion |
-
2006
- 2006-08-01 MX MX2008001143A patent/MX2008001143A/es active IP Right Grant
- 2006-08-01 US US11/497,049 patent/US7762394B2/en not_active Expired - Fee Related
- 2006-08-01 AU AU2006275412A patent/AU2006275412B2/en not_active Ceased
- 2006-08-01 AT AT06800631T patent/ATE512084T1/de not_active IP Right Cessation
- 2006-08-01 BR BRPI0614177-3A patent/BRPI0614177A2/pt not_active IP Right Cessation
- 2006-08-01 EP EP06800631A patent/EP1937571B1/fr not_active Not-in-force
- 2006-08-01 JP JP2008525127A patent/JP2009502687A/ja active Pending
- 2006-08-01 US US11/461,620 patent/US20070112467A1/en not_active Abandoned
- 2006-08-01 WO PCT/US2006/029985 patent/WO2007016588A2/fr not_active Ceased
- 2006-08-01 CA CA2614879A patent/CA2614879C/fr not_active Expired - Fee Related
-
2011
- 2011-12-22 JP JP2011007598U patent/JP3174334U/ja not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4292579A (en) * | 1977-09-19 | 1981-09-29 | Constant James N | Thermoelectric generator |
| US5083968A (en) * | 1988-11-29 | 1992-01-28 | Hart Frank J | Interactive toy |
| US5610488A (en) * | 1991-11-05 | 1997-03-11 | Seiko Epson Corporation | Micro robot |
| US6291760B1 (en) * | 1998-11-13 | 2001-09-18 | Seiko Instruments Inc. | Thermoelectronic generating electronic device |
| US20030230415A1 (en) * | 2001-06-20 | 2003-12-18 | Wilson John E. | Automated fire protection system |
| US20050252543A1 (en) * | 2003-05-19 | 2005-11-17 | Ingo Stark | Low power thermoelectric generator |
| US20060254638A1 (en) * | 2005-05-11 | 2006-11-16 | Ran Carmeli | Small electrical appliance driven by a thermoelectric generator |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100038964A1 (en) * | 2005-09-13 | 2010-02-18 | Thomas Budmiger | Method for Supplying Energy to a Field Device in Automation Technology |
| US20140199640A1 (en) * | 2013-01-11 | 2014-07-17 | Honeywell International Inc. | Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system |
| US10208954B2 (en) * | 2013-01-11 | 2019-02-19 | Ademco Inc. | Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system |
| US11719436B2 (en) | 2013-01-11 | 2023-08-08 | Ademco Inc. | Method and system for controlling an ignition sequence for an intermittent flame-powered pilot combustion system |
| US10700254B2 (en) * | 2016-02-18 | 2020-06-30 | Centre National De La Recherche Scientifique (Cnrs) | Thermoelectric device |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2007016588A2 (fr) | 2007-02-08 |
| BRPI0614177A2 (pt) | 2011-03-15 |
| MX2008001143A (es) | 2008-03-13 |
| US7762394B2 (en) | 2010-07-27 |
| CA2614879C (fr) | 2011-05-24 |
| ATE512084T1 (de) | 2011-06-15 |
| AU2006275412A1 (en) | 2007-02-08 |
| JP3174334U (ja) | 2012-03-15 |
| WO2007016588A3 (fr) | 2007-06-28 |
| CA2614879A1 (fr) | 2007-02-08 |
| US20070029220A1 (en) | 2007-02-08 |
| EP1937571A2 (fr) | 2008-07-02 |
| JP2009502687A (ja) | 2009-01-29 |
| EP1937571B1 (fr) | 2011-06-08 |
| AU2006275412B2 (en) | 2010-08-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20070112467A1 (en) | Systems and Methods for Powering Devices with a Thermoelectric System | |
| Kim et al. | High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator | |
| US7834263B2 (en) | Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting | |
| US10429367B2 (en) | Multi-parametric environmental diagnostics and monitoring sensor node | |
| US8749373B2 (en) | Emergency equipment power sources | |
| US7479727B1 (en) | Apparatus and method for pyroelectric and piezoelectric power generation and thermoelectric heat transfer | |
| US20080115818A1 (en) | Resonant Thermoelectric Generator | |
| Emilio | Microelectronic circuit design for energy harvesting systems | |
| Ma et al. | Energy harvesting for wireless sensor networks: applications and challenges in smart grid | |
| Rizman et al. | Smart multi-application energy harvester using Arduino | |
| Qian et al. | Design proposal of self-powered WSN node for battle field surveillance | |
| Landis et al. | Venus surface power and cooling systems | |
| Steingart | Power sources for wireless sensor networks | |
| Camboin et al. | An automatic emulation system for environmental thermal energy harvesting | |
| Sharma | Piezoelectric energy harvesting and management in WSN using MPPT algorithm | |
| Peters et al. | Harnessing Erebus volcano's thermal energy to power year-round monitoring | |
| Nguyen et al. | A novel framework of hybrid harvesting mechanisms for remote sensing devices | |
| Knight et al. | Thermal energy harvesting for wireless sensor nodes with case studies | |
| Annuar et al. | Investigation of temperature gradient between ambient air and soil to power up wireless sensor network device using a thermoelectric generator | |
| Valenzuela | Energy harvesting for no-power embedded systems | |
| Kim et al. | A robot system maintained with renewable energy | |
| Rajasekaran et al. | Portable thermoelectric refrigeration system using solar energy | |
| GB2556035A (en) | Energy harvesting method utilising the exterior of buildings | |
| Wade et al. | Investigation of power sources for the polar seismic tetwalker | |
| Obodoeze et al. | Energy harvesting alternatives for powering critical wsn-based and autonomous monitoring systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |