US20070079911A1 - Method for erasing stored data and restoring data - Google Patents
Method for erasing stored data and restoring data Download PDFInfo
- Publication number
- US20070079911A1 US20070079911A1 US11/249,171 US24917105A US2007079911A1 US 20070079911 A1 US20070079911 A1 US 20070079911A1 US 24917105 A US24917105 A US 24917105A US 2007079911 A1 US2007079911 A1 US 2007079911A1
- Authority
- US
- United States
- Prior art keywords
- selectively
- heating
- shape memory
- cooling
- memory material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000001816 cooling Methods 0.000 claims abstract description 92
- 238000010438 heat treatment Methods 0.000 claims abstract description 84
- 239000012781 shape memory material Substances 0.000 claims abstract description 83
- -1 wires Substances 0.000 claims description 38
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 33
- 229920000431 shape-memory polymer Polymers 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 26
- 239000002071 nanotube Substances 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 description 33
- 239000000956 alloy Substances 0.000 description 15
- 229910045601 alloy Inorganic materials 0.000 description 14
- 230000009466 transformation Effects 0.000 description 14
- 229910000734 martensite Inorganic materials 0.000 description 13
- 229910001566 austenite Inorganic materials 0.000 description 10
- 230000010512 thermal transition Effects 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000012217 deletion Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- OBACEDMBGYVZMP-UHFFFAOYSA-N iron platinum Chemical compound [Fe].[Fe].[Pt] OBACEDMBGYVZMP-UHFFFAOYSA-N 0.000 description 2
- 230000003446 memory effect Effects 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920001305 Poly(isodecyl(meth)acrylate) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- 229920001283 Polyalkylene terephthalate Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- TUDPMSCYVZIWFW-UHFFFAOYSA-N [Ti].[In] Chemical compound [Ti].[In] TUDPMSCYVZIWFW-UHFFFAOYSA-N 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- FZTMYIGKWQQJIX-UHFFFAOYSA-N butyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CC(=C)C(O)=O.CCCCOC(=O)C=C FZTMYIGKWQQJIX-UHFFFAOYSA-N 0.000 description 1
- WJCRZORJJRCRAW-UHFFFAOYSA-N cadmium gold Chemical compound [Cd].[Au] WJCRZORJJRCRAW-UHFFFAOYSA-N 0.000 description 1
- NCOPCFQNAZTAIV-UHFFFAOYSA-N cadmium indium Chemical compound [Cd].[In] NCOPCFQNAZTAIV-UHFFFAOYSA-N 0.000 description 1
- NSAODVHAXBZWGW-UHFFFAOYSA-N cadmium silver Chemical compound [Ag].[Cd] NSAODVHAXBZWGW-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 229920006147 copolyamide elastomer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- QRJOYPHTNNOAOJ-UHFFFAOYSA-N copper gold Chemical compound [Cu].[Au] QRJOYPHTNNOAOJ-UHFFFAOYSA-N 0.000 description 1
- HPDFFVBPXCTEDN-UHFFFAOYSA-N copper manganese Chemical compound [Mn].[Cu] HPDFFVBPXCTEDN-UHFFFAOYSA-N 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- SORXVYYPMXPIFD-UHFFFAOYSA-N iron palladium Chemical compound [Fe].[Pd] SORXVYYPMXPIFD-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000212 poly(isobutyl acrylate) Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000184 poly(octadecyl acrylate) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000129 polyhexylmethacrylate Polymers 0.000 description 1
- 229920000197 polyisopropyl acrylate Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000182 polyphenyl methacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- 229920001289 polyvinyl ether Polymers 0.000 description 1
- 229920001291 polyvinyl halide Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Definitions
- the present disclosure relates generally to stored data, and more particularly to methods for erasing stored data and for restoring data.
- Shape memory materials have been applied to a wide variety of applications, in part, because of their ability to undergo a reversible phase transformation.
- Shape memory materials include shape memory alloys (SMA) and shape memory polymers (SMP).
- Shape memory materials may also have information stored at high temperatures in its memorized form.
- the SMM may be flattened in the martensite phase (SMA) or in the high temperature phase followed by cooling while applying a flattening load (SMP). Heating followed by cooling results in the global restoration of the memorized, indented shape.
- SMA martensite phase
- SMP flattening load
- the present disclosure substantially solves at least some of the problems and/or drawbacks described above by providing a method for selectively erasing information from and/or selectively restoring information to a shape memory material.
- the method includes selectively heating and/or selectively cooling, to a predetermined temperature and for a predetermined time, at least a portion of at least one heating element or cooling element, which is positioned in an array of heating or cooling elements, adjacent a predetermined area of the shape memory material, thereby erasing the information stored therein or restoring information thereto.
- FIG. 1 is an exploded, semi-schematic perspective view of an embodiment of an array of heating/cooling elements in contact with a shape memory material;
- FIG. 2 is a schematic view of an embodiment of an array of heating/cooling elements with no heating/cooling elements heated/cooled;
- FIG. 3 is a schematic view of an embodiment of the array of heating/cooling elements shown in FIG. 2 with one heating/cooling element heated/cooled;
- FIG. 4 is a schematic view of an embodiment of the array of heating/cooling elements shown in FIG. 2 with a junction heated/cooled;
- FIG. 5 is a schematic view of an embodiment of the array of heating/cooling elements shown in FIG. 2 with a portion of the array heated/cooled;
- FIG. 6 is a schematic view of an embodiment of the array of heating/cooling elements shown in FIG. 2 with two discrete portions of the array heated/cooled;
- FIG. 7 is a schematic view of an alternate embodiment of an array of heating/cooling elements having discrete junctions heated/cooled.
- FIG. 8 is an exploded, semi-schematic perspective view of an embodiment of an array of heating/cooling elements in contact with a shape memory material having varying thicknesses and compositions.
- Shape memory materials have been used to store information. Generally there are a variety of shape memory materials and methods corresponding to the material for storing, erasing, and/or restoring information. Non-limitative examples of the shape memory materials include shape memory alloys (SMA), shape memory polymers (SMP), combinations thereof, combinations thereof mixed with non shape memory materials, or other shape memory materials that return to a memorized original state once the material is heated to a predetermined temperature. It is to be understood that the predetermined temperature may vary, depending, at least in part, on the shape memory material used, the composition of the material used, and combinations thereof.
- SMA shape memory alloys
- SMP shape memory polymers
- the predetermined temperature may vary, depending, at least in part, on the shape memory material used, the composition of the material used, and combinations thereof.
- Shape memory alloys typically exist in several different temperature-dependent phases.
- these phases include the martensite and austenite phases.
- the martensite phase refers to the more deformable (lower modulus), lower temperature phase
- the austenite phase refers to the more rigid, higher temperature phase.
- the stiffness (elastic modulus) of shape memory alloys may be significantly greater (2.5 to 3 times for common SMAs) in their austenite phase as compared to that in their martensite phase.
- suitable shape memory alloy materials include, but are not limited to copper based alloys (non-limitative examples of which include copper-zinc alloys, copper-aluminum alloys, copper-gold alloys, and copper-tin alloys), gold-cadmium based alloys, indium-titanium based alloys, indium-cadmium based alloys, iron-platinum based alloys, iron-platinum based alloys, iron-palladium based alloys, manganese-copper based alloys, nickel-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, silver-cadmium based alloys, and/or the like, and/or combinations thereof. It is to be understood that the alloys may be binary, ternary, or any higher order so long as the alloy composition exhibits a shape memory effect, e.g., change in shape orientation, damping capacity, and the like.
- the memorized shape of the SMA may be flat or may have information stored therein in the form of surface features, such as, for example, indents or bumps.
- the memorized shape of the SMA is substantially flat.
- information may be plastically indented in the SMA when it is in its cooler martensite phase. The deformed material may then be heated above its austenite transformation temperature, thereby returning it to its original structure (i.e. an undeformed state).
- the memorized shape of the SMA has information stored therein.
- the SMA may be flattened when it is in its cooler martensite phase.
- the flattened material may then be heated above its austenite transformation temperature, thereby returning it to its original structure (i.e. a deformed/indented state).
- Shape memory polymers are co-polymers including at least two different segments, each segment contributing differently to the elastic modulus properties and thermal transition temperatures of the material.
- segment refers to a block, graft, or sequence of the same or similar monomers or oligomers, which are copolymerized to form a substantially continuous, crosslinked network of these segments.
- the segments may be crystalline or amorphous materials and may be “hard” segment(s) or “soft” segment(s), where the hard segment generally has a higher glass transition temperature (Tg) or melting point than the soft segment.
- Tg glass transition temperature
- the segments contribute to the overall flexural modulus properties of the SMP and the thermal transitions thereof.
- Shape memory polymers may include thermoplastic materials, thermoset materials, interpenetrating networks, semi-interpenetrating networks, and/or mixed networks, and/or combinations thereof.
- the polymers may be a single polymer or a blend of polymers.
- the polymers may be linear or branched thermoplastic elastomers with side chains or dendritic structural elements.
- Suitable polymer components to form an SMP include, but are not limited to, polyphosphazenes, poly(vinyl alcohols), polyamides, polyester amides, poly(amino acids), polyanhydrides, polycarbonates, polyacrylates (non-limitative examples of which include poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate) and poly(octadecyl acrylate)), polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyorthoesters, polyvinyl ethers, poly
- the memorized shape of an SMP may be set by melting or processing the polymer at a temperature higher than the highest thermal transition temperature for the SMP or its melting point, followed by cooling below that thermal transition temperature.
- the temperature to set the memorized shape ranges from about 100° C. to about 300° C.
- a temporary shape may be set by heating the material to a temperature higher than any Tg of the SMP, but lower than the highest Tg or its melting point; applying an external stress or load while processing the material; and by cooling, with the load remaining applied, to fix the shape.
- the SMP may revert to its memorized shape by heating the material (with the stress/load removed) above its Tg and below the highest thermal transition temperature.
- the memorized shape of the SMP may be flat or may have information stored therein.
- the memorized shape of the SMP is substantially flat.
- information may be recorded in the SMP as a temporary shape by first indenting the SMP while it is above the Tg of its low temperature phase, and then cooling the SMP with the indenting load still applied, as previously described. The deformed material may then be heated above its Tg and below the highest thermal transition temperature with the indenting load removed, thereby returning it to its original structure (i.e. an undeformed state).
- the memorized shape of the SMP has information stored therein.
- the SMP may be flattened as a temporary shape, as previously described. The flattened material may then be heated above its Tg and below the highest thermal transition temperature, thereby returning it to its original structure (i.e. a deformed/indented state).
- Shape memory materials may also be established on (e.g. laminated on) elastic substrates. It is to be understood that power on-hold and power on-deletion techniques may be used with such substrates for erasing and restoring information in the SMM or elastic substrate.
- the elastic substrate has a modulus between either those of the martensite and austenite phases of an SMA or between the low and the high temperature states of an SMP.
- an SMA has an indented memorized shape and is established on an elastic substrate.
- the SMA is flattened through plastic deformation of the indentations while in the lower temperature martensite state.
- the elastic substrate and the SMA may be bonded, and in the martensite phase, the shape memory material and the substrate are both in a first, non-indented, state. Heating of the SMA causes the indented memorized state to be restored, thereby deforming the elastic substrate.
- the SMA may hold the indentation(s) as long as heat is applied. Once the heat is removed, both materials cool and the elastic substrate tends to pull the SMA back to a non-indented state.
- an SMP has an indented memorized shape and is established on a similarly elastically indented originally flat elastic substrate.
- the SMP relaxes to the unstressed (non-indented) shape of the elastic substrate. It is to be understood that the relaxed shape will remain as long as heat is applied. It is to be further understood that the SMP may be indented during heating, and that rapid cooling during the indent may be used to lock the information into the SMP, and thus into the elastic substrate to which it is bonded.
- an SMA has a flat memorized shape.
- the SMA may be laminated on an elastic substrate that has an indented surface geometry, so that the SMA takes on the indented shape.
- the shape memory effect in the SMA flattens its surface and flattens the indent pattern in the elastic substrate. It is to be understood that the SMA and the substrate hold this shape until heat is removed. Upon removal of the heat, the elastic substrate reverts to its original indented shape, and the dents are re-introduced in the SMA.
- Embodiments of the methods disclosed herein advantageously allow the selective erasure of data stored in a shape memory material or the selective restoration of previously stored information in the shape memory material.
- Particular areas of the shape memory material(s) may be exposed to temperatures above or below its transition temperature.
- such selective heating and/or cooling may facilitate the erasure of information from those specific areas of the shape memory material, without erasing the entire surface.
- such selective heating and/or cooling facilitates the restoration of information from those specific areas of the shape memory material, without restoring information to the entire surface.
- a shape memory material 10 is established on a substrate 12 .
- the shape memory material 10 may be established on all or a portion of the substrate 12 .
- the array of heating/cooling elements 14 may be incorporated into the shape memory material 10 (as shown in this figure), or into the substrate 12 upon which the material 10 is established, or may be a separate component capable of being positioned adjacent the material 10 .
- the heating/cooling elements 14 are to be in thermal communication with the material 10 when erasure or restoration is desired.
- area(s) of the shape memory material 10 adjacent the heating/cooling element(s) 14 are consequently heated or cooled when the temperature of the heating/cooling element(s) 14 is changed.
- any suitable substrate 12 may be selected.
- a substrate material is a sheet of low or non-thermal conductivity material. It is to be understood that a low or non-thermal conductivity material substantially isolates the heating or cooling to areas of the SMM that are adjacent the heated or cooled element(s) 14 .
- a substrate material is the previously described elastic materials.
- the predetermined areas of the shape memory material 10 are subjected to heating or cooling from an array of individual heating/cooling elements 14 that are in thermal communication with the material 10 .
- the heating/cooling elements 14 are adapted to be individually heated or cooled, so that one, a portion of one, and/or a group of elements 14 may be heated or cooled.
- Non-limitative examples of the heating/cooling elements 14 include wires, nanotubes (a non-limitative example of which includes carbon nanotubes), fluid channels (a non-limitative example of which may also include connected pores), conductive fibers, lasers, or the like, or combinations thereof. It is to be understood that the elements 14 may also be established in a stylus.
- the following non-limitative embodiment(s) may be incorporated into and/or on a substrate 12 onto which the shape memory material 10 is established.
- the elements 14 may also be established in the shape memory material 10 (an example of which includes an SMP).
- selective heating or cooling may be accomplished by directing heated or cooled fluid (e.g. liquids, gases, or mixtures thereof) through at least a portion of the nanotube(s), channels, or a flow path created by interconnected pores that is adjacent the area of the shape memory material 10 where information erasure or restoration is desirable.
- heated or cooled fluid e.g. liquids, gases, or mixtures thereof
- selective heating or cooling may be accomplished by resistively heating or cooling at least a portion of the nanotube(s) or conductive fibers that is adjacent the area of the shape memory material 10 where information erasure or restoration is desirable.
- selective heating or cooling may be accomplished by resistively heating or cooling at least a portion of the wire adjacent the area of the shape memory material 10 where information erasure or restoration is desirable.
- an embodiment of an array 100 of heating/cooling elements 14 is disclosed.
- the array 100 may be established in a substrate 12 , on a substrate 12 , in the SMM 10 , or in some other element used to heat or cool predetermined areas of a shape memory material 10 .
- each heating/cooling element 14 may be selectively activated to heat or cool specific areas of the material 10 to a predetermined temperature.
- the elements 14 shown in FIG. 2 are crossed at approximately 90°, thereby forming a junction/node 16 at each cross section.
- the elements 14 may be crossed at any non-zero angle to form the junction 16 .
- the individual element(s) 14 (or portions thereof) may be heated or cooled to a temperature suitable for erasing information from the shape memory material 10 or for restoring information to the shape memory material 10 .
- a combined temperature of the elements 14 may be suitable for delivering a sufficient amount of heat locally to erase information from the shape memory material 10 or to restore information to the shape memory material 10 .
- the entire element 14 may be heated/cooled in order to supply heat/cooling to the junction 16 .
- heating or cooling may be controlled so that the predetermined temperature is not achieved at other areas adjacent the heated/cooled element 14 .
- two crossing elements 14 may be heated so the combined amount of heat delivered by the two crossing elements 14 at the junction/node 16 is enough to raise the temperature at the junction 16 sufficiently to erase or restore information at the junction 16 .
- the elements 14 are no longer heated so that the temperature of the individual elements 14 (other than at the desired junction 16 ) does not reach the predetermined temperature.
- FIGS. 3 through 7 depict various patterns in which the heating/cooling elements 14 of the array 100 shown in FIG. 2 may be heated/cooled to selectively erase or restore information from or to the shape memory material 10 .
- a single element 14 is heated or cooled along substantially its entire length.
- This embodiment of the element 14 may erase or restore a single line of information from or to the adjacent heated portion of the shape memory material 10 . It is to be understood that when the material 10 reaches its transformation temperature, the information stored along that line will be substantially erased or information previously erased along that line will be substantially restored. It is to be further understood that the temperature of the element 14 may be adjusted so that the material 10 along the line is heated or cooled to its transformation temperature within a desirable time frame.
- two crossed elements 14 in the array 100 are activated along their entire length, substantially their entire length, or at a junction 16 where they cross.
- Approximately 50% (or any other suitable ratio, e.g. 70/30, 40/60, etc.) of the heat/cooling may be supplied by each element 14 .
- heat/cooling and the resulting temperature delivered along each element 14 alone may not be sufficient for erasing the stored data or restoring erased data, however, the combined heat or cooling delivered at the junction 16 where the two elements 14 cross will provide the temperature required for the material 10 (at the junction 16 ) to reach its transformation temperature. Therefore, in an embodiment, information stored at the junction 16 is erased, leaving the information stored in the rest of the surface intact.
- previously erased information at the junction 16 is restored, leaving the information previously erased from the rest of the surface gone.
- the area of erasure or restoration may be controlled through temporal control of the elements 14 . It is to be understood that temperature, time, proximity of the element(s) 14 , heat transfer coefficient between the element 14 and the SMM 10 , and/or the like may be optimized for the particular erasure or restoration system.
- FIGS. 5 and 6 depict still other embodiments of the array 100 used for selectively erasing or restoring information.
- predetermined portions of various elements 14 in the array 100 are selectively heated or cooled.
- information stored at a discrete area of the shape memory material 10 adjacent the heated or cooled area of the array 100 may be erased or restored.
- FIG. 6 is similar to FIG. 5 in that predetermined portions of various elements 14 are heated or cooled.
- FIG. 6 further depicts multiple discrete areas of the array 100 heated or cooled to substantially simultaneously erase or restore information adjacent the heated or cooled areas.
- FIG. 7 illustrates an alternate embodiment of the array 100 used in an embodiment of the disclosed method. Any number of heating/cooling elements 14 in the array 100 may be crossed at any angle relative to any other number of elements 14 .
- FIG. 7 shows an array 100 having elements 14 crossing at about 90° and other elements 14 crossing at about 45°.
- three elements 14 cross each other. It is to be understood that at a junction 16 where the elements 14 cross, each of the three crossing elements 14 may be activated to supply approximately 33% (or any other suitable ratio summing to about 100%) of the heat flux to reach the transformation temperature of the material 10 . As such, the combined heat/cooling from multiple elements 14 may erase or restore the information adjacent the heated/cooled area.
- one or more individual elements 14 in the array 100 may also be heated or cooled to the desired temperature to erase or restore information adjacent the heated or cooled area. Still further, discrete areas (as opposed to the junctions 16 shown in FIG. 7 ) may be heated/cooled as previously described.
- FIG. 8 an additional embodiment of the shape memory material 10 on a substrate 12 is depicted.
- changes in material 10 thickness or composition may change the temperature distribution in the material 10 , thereby changing the parameters for erasing or restoring.
- specific areas of the material 10 may be susceptible to lower temperatures, while other areas may be susceptible to higher temperatures for the same amount of heat/cooling delivered. For example, information at thinner sections of the material 10 may be erased or restored more quickly than information at thicker sections.
- different shape memory material compositions may have different transformation temperatures. Therefore, combinations of different material compositions in one device allow the user an additional degree of control over information erasure or restoration.
- those areas with lower transition temperature compositions will erase first. Information stored at areas with higher transformation temperature compositions will remain until exposed to the higher temperature.
- those areas with lower transition temperature compositions will restore first. Information previously stored at areas with higher transformation temperature compositions will remain erased until exposed to the higher temperature.
- thickness variation and/or composition variation may be used with bulk material heating to selectively erase or restore specific, predetermined areas.
- Still firther, dimensional and/or composition variations may be combined with any of the embodiments disclosed herein for additional control over selective erasing or restoring.
- a first area 20 may have a thickness TI and/or a composition (illustrated with triangles) that is different from a thickness T 2 and/or composition (illustrated with circles) of a second area 22 .
- information stored or previously stored at the first area 20 may be erased or restored at one temperature for a predetermined time, and the information stored or previously stored at the second area 22 may be erased or restored at a temperature and for a time different from that used to erase or restore information stored at the first area 20 .
- the entire shape memory material 10 may be exposed to heat or cooling; however, information stored or previously stored at those areas with a transition temperature higher (due at least in part to the thickness and/or composition) than the temperature to which the material 10 is exposed will not be erased or restored.
- the elements 14 in the array 100 may be intelligently controlled and optimized via any suitable electronic device.
- An intelligent control system may be used to heat/cool predetermined elements 14 in the array 100 , taking into account any dimensional and/or composition variations, for predetermined times such that the desired information is erased or restored.
- Embodiments of the method disclosed herein advantageously allow a user to selectively erase information from a shape memory material 10 or restore information to a shape memory material by selectively applying heat or cooling.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
- The present disclosure relates generally to stored data, and more particularly to methods for erasing stored data and for restoring data.
- Shape memory materials (SMM) have been applied to a wide variety of applications, in part, because of their ability to undergo a reversible phase transformation. Shape memory materials include shape memory alloys (SMA) and shape memory polymers (SMP).
- It has been shown that the thermally induced martensite to austenite transformation of plastically indented SMA allows for indent recovery on the microscale and nanoscale. It has also been shown that the thermally induced glass transition temperature transformation of SMP that was indented in its low modulus high temperature state allows for indent recovery on the microscale and nanoscale. When SMA or SMP (formed as a sheet, film, block, or the like) is used as an information storage medium, erasing information stored in the form of plastically deformed features of surface topography generally desirably involves relatively fast heating and cooling, so that the temperature of the indents moves above and below the martensite to austenite transformation temperature or the glass transition temperature transformation, respectively.
- Shape memory materials may also have information stored at high temperatures in its memorized form. The SMM may be flattened in the martensite phase (SMA) or in the high temperature phase followed by cooling while applying a flattening load (SMP). Heating followed by cooling results in the global restoration of the memorized, indented shape.
- However, bulk heating and cooling methods currently employed for SMM information storage generally do not achieve desirable temporal or spatial selectivity. Such heating and cooling methods also generally do not allow for quick, localized removal of stored information or restoration of previously stored information from specific areas.
- As such, it would be desirable to provide method(s) for erasing stored information from and/or restoring information to a localized area of a shape memory material.
- The present disclosure substantially solves at least some of the problems and/or drawbacks described above by providing a method for selectively erasing information from and/or selectively restoring information to a shape memory material. The method includes selectively heating and/or selectively cooling, to a predetermined temperature and for a predetermined time, at least a portion of at least one heating element or cooling element, which is positioned in an array of heating or cooling elements, adjacent a predetermined area of the shape memory material, thereby erasing the information stored therein or restoring information thereto.
- Features and advantages of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to similar, though not necessarily identical components. For the sake of brevity, reference numerals or features having a previously described function may not necessarily be described in connection with other drawings in which they appear.
-
FIG. 1 is an exploded, semi-schematic perspective view of an embodiment of an array of heating/cooling elements in contact with a shape memory material; -
FIG. 2 is a schematic view of an embodiment of an array of heating/cooling elements with no heating/cooling elements heated/cooled; -
FIG. 3 is a schematic view of an embodiment of the array of heating/cooling elements shown inFIG. 2 with one heating/cooling element heated/cooled; -
FIG. 4 is a schematic view of an embodiment of the array of heating/cooling elements shown inFIG. 2 with a junction heated/cooled; -
FIG. 5 is a schematic view of an embodiment of the array of heating/cooling elements shown inFIG. 2 with a portion of the array heated/cooled; -
FIG. 6 is a schematic view of an embodiment of the array of heating/cooling elements shown inFIG. 2 with two discrete portions of the array heated/cooled; -
FIG. 7 is a schematic view of an alternate embodiment of an array of heating/cooling elements having discrete junctions heated/cooled; and -
FIG. 8 is an exploded, semi-schematic perspective view of an embodiment of an array of heating/cooling elements in contact with a shape memory material having varying thicknesses and compositions. - Shape memory materials have been used to store information. Generally there are a variety of shape memory materials and methods corresponding to the material for storing, erasing, and/or restoring information. Non-limitative examples of the shape memory materials include shape memory alloys (SMA), shape memory polymers (SMP), combinations thereof, combinations thereof mixed with non shape memory materials, or other shape memory materials that return to a memorized original state once the material is heated to a predetermined temperature. It is to be understood that the predetermined temperature may vary, depending, at least in part, on the shape memory material used, the composition of the material used, and combinations thereof.
- Shape memory alloys (SMAs) typically exist in several different temperature-dependent phases. A non-limitative example of these phases include the martensite and austenite phases. Generally, and as used herein, the martensite phase refers to the more deformable (lower modulus), lower temperature phase, whereas the austenite phase refers to the more rigid, higher temperature phase.
- When the SMA is in the martensite phase and is heated, it begins to change into the austenite phase. When the SMA is in the austenite phase and is cooled, it begins to change into the martensite phase. It is to be understood that the stiffness (elastic modulus) of shape memory alloys may be significantly greater (2.5 to 3 times for common SMAs) in their austenite phase as compared to that in their martensite phase.
- Examples of suitable shape memory alloy materials include, but are not limited to copper based alloys (non-limitative examples of which include copper-zinc alloys, copper-aluminum alloys, copper-gold alloys, and copper-tin alloys), gold-cadmium based alloys, indium-titanium based alloys, indium-cadmium based alloys, iron-platinum based alloys, iron-platinum based alloys, iron-palladium based alloys, manganese-copper based alloys, nickel-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, silver-cadmium based alloys, and/or the like, and/or combinations thereof. It is to be understood that the alloys may be binary, ternary, or any higher order so long as the alloy composition exhibits a shape memory effect, e.g., change in shape orientation, damping capacity, and the like.
- Generally, the memorized shape of the SMA may be flat or may have information stored therein in the form of surface features, such as, for example, indents or bumps. In an embodiment, the memorized shape of the SMA is substantially flat. In this embodiment, information may be plastically indented in the SMA when it is in its cooler martensite phase. The deformed material may then be heated above its austenite transformation temperature, thereby returning it to its original structure (i.e. an undeformed state).
- In another embodiment, the memorized shape of the SMA has information stored therein. In this embodiment, the SMA may be flattened when it is in its cooler martensite phase. The flattened material may then be heated above its austenite transformation temperature, thereby returning it to its original structure (i.e. a deformed/indented state).
- Shape memory polymers (SMP) are co-polymers including at least two different segments, each segment contributing differently to the elastic modulus properties and thermal transition temperatures of the material. The term “segment,” as used herein, refers to a block, graft, or sequence of the same or similar monomers or oligomers, which are copolymerized to form a substantially continuous, crosslinked network of these segments. The segments may be crystalline or amorphous materials and may be “hard” segment(s) or “soft” segment(s), where the hard segment generally has a higher glass transition temperature (Tg) or melting point than the soft segment. The segments contribute to the overall flexural modulus properties of the SMP and the thermal transitions thereof.
- Shape memory polymers may include thermoplastic materials, thermoset materials, interpenetrating networks, semi-interpenetrating networks, and/or mixed networks, and/or combinations thereof. The polymers may be a single polymer or a blend of polymers. The polymers may be linear or branched thermoplastic elastomers with side chains or dendritic structural elements. Suitable polymer components to form an SMP include, but are not limited to, polyphosphazenes, poly(vinyl alcohols), polyamides, polyester amides, poly(amino acids), polyanhydrides, polycarbonates, polyacrylates (non-limitative examples of which include poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate) and poly(octadecyl acrylate)), polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyorthoesters, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyesters, polylactides, polyglycolides, polysiloxanes, polyurethanes, polyethers, polyether amides, polyether esters, polystyrene, polypropylene, polyvinyl phenol, polyvinylpyrrolidone, chlorinated polybutylene, poly(octadecyl vinyl ether) ethylene vinyl acetate, polyethylene, poly(ethylene oxide)-poly(ethylene terephthalate), polyethylene/nylon (graft copolymer), polycaprolactones-polyamide (block copolymer), poly(caprolactone) dimethacrylate-n-butyl acrylate, poly(norbornyl-polyhedral oligomeric silsesquioxane), polyvinyl chloride, urethane/butadiene copolymers, polyurethane block copolymers, styrene-butadiene-styrene block copolymers, and/or the like, and/or combinations thereof.
- The memorized shape of an SMP may be set by melting or processing the polymer at a temperature higher than the highest thermal transition temperature for the SMP or its melting point, followed by cooling below that thermal transition temperature. In an embodiment, the temperature to set the memorized shape ranges from about 100° C. to about 300° C. A temporary shape may be set by heating the material to a temperature higher than any Tg of the SMP, but lower than the highest Tg or its melting point; applying an external stress or load while processing the material; and by cooling, with the load remaining applied, to fix the shape. The SMP may revert to its memorized shape by heating the material (with the stress/load removed) above its Tg and below the highest thermal transition temperature.
- Generally, the memorized shape of the SMP may be flat or may have information stored therein. In an embodiment, the memorized shape of the SMP is substantially flat. In this embodiment, information may be recorded in the SMP as a temporary shape by first indenting the SMP while it is above the Tg of its low temperature phase, and then cooling the SMP with the indenting load still applied, as previously described. The deformed material may then be heated above its Tg and below the highest thermal transition temperature with the indenting load removed, thereby returning it to its original structure (i.e. an undeformed state).
- In another embodiment, the memorized shape of the SMP has information stored therein. In this embodiment, the SMP may be flattened as a temporary shape, as previously described. The flattened material may then be heated above its Tg and below the highest thermal transition temperature, thereby returning it to its original structure (i.e. a deformed/indented state).
- Shape memory materials may also be established on (e.g. laminated on) elastic substrates. It is to be understood that power on-hold and power on-deletion techniques may be used with such substrates for erasing and restoring information in the SMM or elastic substrate. Generally, the elastic substrate has a modulus between either those of the martensite and austenite phases of an SMA or between the low and the high temperature states of an SMP.
- In a non-limitative example of the power on-hold technique, an SMA has an indented memorized shape and is established on an elastic substrate. In this example, the SMA is flattened through plastic deformation of the indentations while in the lower temperature martensite state. The elastic substrate and the SMA may be bonded, and in the martensite phase, the shape memory material and the substrate are both in a first, non-indented, state. Heating of the SMA causes the indented memorized state to be restored, thereby deforming the elastic substrate. It is to be understood that the SMA may hold the indentation(s) as long as heat is applied. Once the heat is removed, both materials cool and the elastic substrate tends to pull the SMA back to a non-indented state.
- In a non-limitative example of the power deletion technique, an SMP has an indented memorized shape and is established on a similarly elastically indented originally flat elastic substrate. In this example, when heat is applied, the SMP relaxes to the unstressed (non-indented) shape of the elastic substrate. It is to be understood that the relaxed shape will remain as long as heat is applied. It is to be further understood that the SMP may be indented during heating, and that rapid cooling during the indent may be used to lock the information into the SMP, and thus into the elastic substrate to which it is bonded.
- In a non-limitative example of the power on-deletion technique, an SMA has a flat memorized shape. The SMA may be laminated on an elastic substrate that has an indented surface geometry, so that the SMA takes on the indented shape. When heat is applied, the shape memory effect in the SMA flattens its surface and flattens the indent pattern in the elastic substrate. It is to be understood that the SMA and the substrate hold this shape until heat is removed. Upon removal of the heat, the elastic substrate reverts to its original indented shape, and the dents are re-introduced in the SMA.
- Embodiments of the methods disclosed herein advantageously allow the selective erasure of data stored in a shape memory material or the selective restoration of previously stored information in the shape memory material. Particular areas of the shape memory material(s) may be exposed to temperatures above or below its transition temperature. In an embodiment, such selective heating and/or cooling may facilitate the erasure of information from those specific areas of the shape memory material, without erasing the entire surface. In another embodiment, such selective heating and/or cooling facilitates the restoration of information from those specific areas of the shape memory material, without restoring information to the entire surface.
- Referring now to
FIG. 1 , an embodiment of ashape memory material 10 is established on asubstrate 12. Theshape memory material 10 may be established on all or a portion of thesubstrate 12. It is to be understood that the array of heating/cooling elements 14 may be incorporated into the shape memory material 10 (as shown in this figure), or into thesubstrate 12 upon which thematerial 10 is established, or may be a separate component capable of being positioned adjacent thematerial 10. Generally, it is to be understood that the heating/cooling elements 14 are to be in thermal communication with the material 10 when erasure or restoration is desired. It is to be further understood that area(s) of theshape memory material 10 adjacent the heating/cooling element(s) 14 are consequently heated or cooled when the temperature of the heating/cooling element(s) 14 is changed. - In an embodiment, any
suitable substrate 12 may be selected. One non-limitative example of a substrate material is a sheet of low or non-thermal conductivity material. It is to be understood that a low or non-thermal conductivity material substantially isolates the heating or cooling to areas of the SMM that are adjacent the heated or cooled element(s) 14. Another non-limitative example of a substrate material is the previously described elastic materials. - In an embodiment of the method, the predetermined areas of the
shape memory material 10 are subjected to heating or cooling from an array of individual heating/cooling elements 14 that are in thermal communication with thematerial 10. It is to be understood that the heating/cooling elements 14 are adapted to be individually heated or cooled, so that one, a portion of one, and/or a group ofelements 14 may be heated or cooled. Non-limitative examples of the heating/cooling elements 14 include wires, nanotubes (a non-limitative example of which includes carbon nanotubes), fluid channels (a non-limitative example of which may also include connected pores), conductive fibers, lasers, or the like, or combinations thereof. It is to be understood that theelements 14 may also be established in a stylus. - The following non-limitative embodiment(s) may be incorporated into and/or on a
substrate 12 onto which theshape memory material 10 is established. As previously stated and as shown inFIG. 1 , theelements 14 may also be established in the shape memory material 10 (an example of which includes an SMP). - In a non-limitative embodiment in which the
elements 14 are nanotubes, channels, or interconnected pores, selective heating or cooling may be accomplished by directing heated or cooled fluid (e.g. liquids, gases, or mixtures thereof) through at least a portion of the nanotube(s), channels, or a flow path created by interconnected pores that is adjacent the area of theshape memory material 10 where information erasure or restoration is desirable. In another non-limitative embodiment in which theelements 14 are nanotubes or conductive fibers, selective heating or cooling may be accomplished by resistively heating or cooling at least a portion of the nanotube(s) or conductive fibers that is adjacent the area of theshape memory material 10 where information erasure or restoration is desirable. - In still another non-limitative embodiment in which the
elements 14 are wires, selective heating or cooling may be accomplished by resistively heating or cooling at least a portion of the wire adjacent the area of theshape memory material 10 where information erasure or restoration is desirable. - Referring now to
FIG. 2 , an embodiment of anarray 100 of heating/cooling elements 14 is disclosed. As previously described, thearray 100 may be established in asubstrate 12, on asubstrate 12, in theSMM 10, or in some other element used to heat or cool predetermined areas of ashape memory material 10. It is to be understood that each heating/cooling element 14 may be selectively activated to heat or cool specific areas of the material 10 to a predetermined temperature. - The
elements 14 shown inFIG. 2 are crossed at approximately 90°, thereby forming a junction/node 16 at each cross section. In this embodiment, theelements 14 may be crossed at any non-zero angle to form thejunction 16. It is to be understood that the individual element(s) 14 (or portions thereof) may be heated or cooled to a temperature suitable for erasing information from theshape memory material 10 or for restoring information to theshape memory material 10. Alternately, it is to be understood that at predetermined junction(s) 16, a combined temperature of theelements 14 may be suitable for delivering a sufficient amount of heat locally to erase information from theshape memory material 10 or to restore information to theshape memory material 10. - It is to be understood that the
entire element 14 may be heated/cooled in order to supply heat/cooling to thejunction 16. As such, heating or cooling may be controlled so that the predetermined temperature is not achieved at other areas adjacent the heated/cooledelement 14. For example, two crossingelements 14 may be heated so the combined amount of heat delivered by the two crossingelements 14 at the junction/node 16 is enough to raise the temperature at thejunction 16 sufficiently to erase or restore information at thejunction 16. In this example, once the information is erased or restored, theelements 14 are no longer heated so that the temperature of the individual elements 14 (other than at the desired junction 16) does not reach the predetermined temperature. -
FIGS. 3 through 7 depict various patterns in which the heating/cooling elements 14 of thearray 100 shown inFIG. 2 may be heated/cooled to selectively erase or restore information from or to theshape memory material 10. In the embodiment shown inFIG. 3 , asingle element 14 is heated or cooled along substantially its entire length. This embodiment of theelement 14 may erase or restore a single line of information from or to the adjacent heated portion of theshape memory material 10. It is to be understood that when thematerial 10 reaches its transformation temperature, the information stored along that line will be substantially erased or information previously erased along that line will be substantially restored. It is to be further understood that the temperature of theelement 14 may be adjusted so that thematerial 10 along the line is heated or cooled to its transformation temperature within a desirable time frame. - As depicted in
FIG. 4 , two crossedelements 14 in thearray 100 are activated along their entire length, substantially their entire length, or at ajunction 16 where they cross. Approximately 50% (or any other suitable ratio, e.g. 70/30, 40/60, etc.) of the heat/cooling may be supplied by eachelement 14. As such, heat/cooling and the resulting temperature delivered along eachelement 14 alone may not be sufficient for erasing the stored data or restoring erased data, however, the combined heat or cooling delivered at thejunction 16 where the twoelements 14 cross will provide the temperature required for the material 10 (at the junction 16) to reach its transformation temperature. Therefore, in an embodiment, information stored at thejunction 16 is erased, leaving the information stored in the rest of the surface intact. In another embodiment, previously erased information at thejunction 16 is restored, leaving the information previously erased from the rest of the surface gone. The area of erasure or restoration may be controlled through temporal control of theelements 14. It is to be understood that temperature, time, proximity of the element(s) 14, heat transfer coefficient between theelement 14 and theSMM 10, and/or the like may be optimized for the particular erasure or restoration system. -
FIGS. 5 and 6 depict still other embodiments of thearray 100 used for selectively erasing or restoring information. In the embodiment shown inFIG. 5 , predetermined portions ofvarious elements 14 in thearray 100 are selectively heated or cooled. As such, information stored at a discrete area of theshape memory material 10 adjacent the heated or cooled area of thearray 100 may be erased or restored.FIG. 6 is similar toFIG. 5 in that predetermined portions ofvarious elements 14 are heated or cooled.FIG. 6 further depicts multiple discrete areas of thearray 100 heated or cooled to substantially simultaneously erase or restore information adjacent the heated or cooled areas. -
FIG. 7 illustrates an alternate embodiment of thearray 100 used in an embodiment of the disclosed method. Any number of heating/cooling elements 14 in thearray 100 may be crossed at any angle relative to any other number ofelements 14.FIG. 7 shows anarray 100 havingelements 14 crossing at about 90° andother elements 14 crossing at about 45°. In this embodiment, at certain points in thearray 100, threeelements 14 cross each other. It is to be understood that at ajunction 16 where theelements 14 cross, each of the three crossingelements 14 may be activated to supply approximately 33% (or any other suitable ratio summing to about 100%) of the heat flux to reach the transformation temperature of thematerial 10. As such, the combined heat/cooling frommultiple elements 14 may erase or restore the information adjacent the heated/cooled area. It is to be understood however, that one or moreindividual elements 14 in thearray 100 may also be heated or cooled to the desired temperature to erase or restore information adjacent the heated or cooled area. Still further, discrete areas (as opposed to thejunctions 16 shown inFIG. 7 ) may be heated/cooled as previously described. - Referring now to
FIG. 8 , an additional embodiment of theshape memory material 10 on asubstrate 12 is depicted. It is to be understood that changes inmaterial 10 thickness or composition may change the temperature distribution in thematerial 10, thereby changing the parameters for erasing or restoring. By adjusting theshape memory material 10 thickness or composition, specific areas of the material 10 may be susceptible to lower temperatures, while other areas may be susceptible to higher temperatures for the same amount of heat/cooling delivered. For example, information at thinner sections of the material 10 may be erased or restored more quickly than information at thicker sections. - As mentioned earlier, different shape memory material compositions may have different transformation temperatures. Therefore, combinations of different material compositions in one device allow the user an additional degree of control over information erasure or restoration. In an embodiment, as heat is transferred to a surface with stored information, those areas with lower transition temperature compositions will erase first. Information stored at areas with higher transformation temperature compositions will remain until exposed to the higher temperature. In another embodiment, as heat is transferred to a surface where information was previously stored, those areas with lower transition temperature compositions will restore first. Information previously stored at areas with higher transformation temperature compositions will remain erased until exposed to the higher temperature.
- It is to be understood that both thickness variation and/or composition variation may be used with bulk material heating to selectively erase or restore specific, predetermined areas. Still firther, dimensional and/or composition variations may be combined with any of the embodiments disclosed herein for additional control over selective erasing or restoring.
- In the non-limitative example shown in
FIG. 8 , afirst area 20 may have a thickness TI and/or a composition (illustrated with triangles) that is different from a thickness T2 and/or composition (illustrated with circles) of asecond area 22. As such, information stored or previously stored at thefirst area 20 may be erased or restored at one temperature for a predetermined time, and the information stored or previously stored at thesecond area 22 may be erased or restored at a temperature and for a time different from that used to erase or restore information stored at thefirst area 20. As such, the entireshape memory material 10 may be exposed to heat or cooling; however, information stored or previously stored at those areas with a transition temperature higher (due at least in part to the thickness and/or composition) than the temperature to which thematerial 10 is exposed will not be erased or restored. - In the embodiments disclosed herein, it is to be understood that the
elements 14 in thearray 100 may be intelligently controlled and optimized via any suitable electronic device. An intelligent control system may be used to heat/coolpredetermined elements 14 in thearray 100, taking into account any dimensional and/or composition variations, for predetermined times such that the desired information is erased or restored. - Embodiments of the method disclosed herein advantageously allow a user to selectively erase information from a
shape memory material 10 or restore information to a shape memory material by selectively applying heat or cooling. - While several embodiments have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/249,171 US20070079911A1 (en) | 2005-10-12 | 2005-10-12 | Method for erasing stored data and restoring data |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/249,171 US20070079911A1 (en) | 2005-10-12 | 2005-10-12 | Method for erasing stored data and restoring data |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070079911A1 true US20070079911A1 (en) | 2007-04-12 |
Family
ID=37910141
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/249,171 Abandoned US20070079911A1 (en) | 2005-10-12 | 2005-10-12 | Method for erasing stored data and restoring data |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20070079911A1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070163686A1 (en) * | 2005-11-23 | 2007-07-19 | Gm Global Technology Operations, Inc. | Two-Way Shape Memory Surfaces |
| US20110219764A1 (en) * | 2009-10-20 | 2011-09-15 | Rolls-Royce Plc | Actuator |
| US20140186476A1 (en) * | 2007-04-13 | 2014-07-03 | Cornerstone Research Group, Inc. | Composite self-healing system |
| CN104325652A (en) * | 2013-10-11 | 2015-02-04 | 哈尔滨工程大学 | Polyurethane composite material doped by nickel-titanium memory alloy and carbon nanotube and preparation method thereof |
| US12305268B2 (en) * | 2009-08-07 | 2025-05-20 | Smarter Alloys Inc. | Methods and systems for processing materials, including shape memory materials |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1502983A (en) * | 1921-04-02 | 1924-07-29 | Firm Heinrich Lanz | Production of gray cast iron |
| US4514736A (en) * | 1982-01-13 | 1985-04-30 | Fuji Xerox Co., Ltd. | Thermal head |
| US4975546A (en) * | 1988-09-02 | 1990-12-04 | Craig Timothy R | Rotation and displacement sensing apparatus |
| US5414245A (en) * | 1992-08-03 | 1995-05-09 | Hewlett-Packard Corporation | Thermal-ink heater array using rectifying material |
| US5728240A (en) * | 1994-12-16 | 1998-03-17 | Sharp Kabushiki Kaisha | Positionally adjustable member and applications therefor |
| US6084849A (en) * | 1996-05-20 | 2000-07-04 | International Business Machines Corporation | Shape memory alloy recording medium, storage devices based thereon, and method for using these storage devices |
| US6092465A (en) * | 1998-03-03 | 2000-07-25 | United Container Machinery, Inc. | Method and apparatus for providing erasable relief images |
| US6133547A (en) * | 1996-09-05 | 2000-10-17 | Medtronic, Inc. | Distributed activator for a two-dimensional shape memory alloy |
| US6589235B2 (en) * | 2000-01-21 | 2003-07-08 | The Regents Of The University Of California | Method and apparatus for cartilage reshaping by radiofrequency heating |
| US20040032207A1 (en) * | 2002-04-26 | 2004-02-19 | Sanyo Electric Co., Ltd. | Electroluminescent display device |
| US6705868B1 (en) * | 1998-03-18 | 2004-03-16 | Purdue Research Foundation | Apparatus and methods for a shape memory spring actuator and display |
| US6718752B2 (en) * | 2002-05-29 | 2004-04-13 | The Boeing Company | Deployable segmented exhaust nozzle for a jet engine |
| US6759481B2 (en) * | 2001-01-24 | 2004-07-06 | Tat Hung Tong | Shape memory styrene copolymer |
| US6773535B1 (en) * | 2003-03-03 | 2004-08-10 | The United States Of America As Represented By The Secretary Of The Army | Article and method for controlled debonding of elements using shape memory alloy actuators |
| US6794612B2 (en) * | 2000-04-05 | 2004-09-21 | Furtwaengler Bernhard | Modeling device |
| US20050253425A1 (en) * | 2004-04-28 | 2005-11-17 | Massachusetts Institute Of Technology | Rapid heating, cooling and massaging for car seats using integrated shape memory alloy actuators and thermoelectric devices |
| US7429074B2 (en) * | 2003-12-04 | 2008-09-30 | General Motors Corporation | Airflow control devices based on active materials |
-
2005
- 2005-10-12 US US11/249,171 patent/US20070079911A1/en not_active Abandoned
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1502983A (en) * | 1921-04-02 | 1924-07-29 | Firm Heinrich Lanz | Production of gray cast iron |
| US4514736A (en) * | 1982-01-13 | 1985-04-30 | Fuji Xerox Co., Ltd. | Thermal head |
| US4975546A (en) * | 1988-09-02 | 1990-12-04 | Craig Timothy R | Rotation and displacement sensing apparatus |
| US5414245A (en) * | 1992-08-03 | 1995-05-09 | Hewlett-Packard Corporation | Thermal-ink heater array using rectifying material |
| US5728240A (en) * | 1994-12-16 | 1998-03-17 | Sharp Kabushiki Kaisha | Positionally adjustable member and applications therefor |
| US6084849A (en) * | 1996-05-20 | 2000-07-04 | International Business Machines Corporation | Shape memory alloy recording medium, storage devices based thereon, and method for using these storage devices |
| US6133547A (en) * | 1996-09-05 | 2000-10-17 | Medtronic, Inc. | Distributed activator for a two-dimensional shape memory alloy |
| US6092465A (en) * | 1998-03-03 | 2000-07-25 | United Container Machinery, Inc. | Method and apparatus for providing erasable relief images |
| US6705868B1 (en) * | 1998-03-18 | 2004-03-16 | Purdue Research Foundation | Apparatus and methods for a shape memory spring actuator and display |
| US6589235B2 (en) * | 2000-01-21 | 2003-07-08 | The Regents Of The University Of California | Method and apparatus for cartilage reshaping by radiofrequency heating |
| US6794612B2 (en) * | 2000-04-05 | 2004-09-21 | Furtwaengler Bernhard | Modeling device |
| US6759481B2 (en) * | 2001-01-24 | 2004-07-06 | Tat Hung Tong | Shape memory styrene copolymer |
| US20040032207A1 (en) * | 2002-04-26 | 2004-02-19 | Sanyo Electric Co., Ltd. | Electroluminescent display device |
| US6718752B2 (en) * | 2002-05-29 | 2004-04-13 | The Boeing Company | Deployable segmented exhaust nozzle for a jet engine |
| US6773535B1 (en) * | 2003-03-03 | 2004-08-10 | The United States Of America As Represented By The Secretary Of The Army | Article and method for controlled debonding of elements using shape memory alloy actuators |
| US7429074B2 (en) * | 2003-12-04 | 2008-09-30 | General Motors Corporation | Airflow control devices based on active materials |
| US20050253425A1 (en) * | 2004-04-28 | 2005-11-17 | Massachusetts Institute Of Technology | Rapid heating, cooling and massaging for car seats using integrated shape memory alloy actuators and thermoelectric devices |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070163686A1 (en) * | 2005-11-23 | 2007-07-19 | Gm Global Technology Operations, Inc. | Two-Way Shape Memory Surfaces |
| US7563334B2 (en) * | 2005-11-23 | 2009-07-21 | Gm Global Technology Operations, Inc. | Two-way shape memory surfaces |
| US20140186476A1 (en) * | 2007-04-13 | 2014-07-03 | Cornerstone Research Group, Inc. | Composite self-healing system |
| US9180632B2 (en) * | 2007-04-13 | 2015-11-10 | Cornerstone Research Group, Inc. | Composite self-healing system |
| US12305268B2 (en) * | 2009-08-07 | 2025-05-20 | Smarter Alloys Inc. | Methods and systems for processing materials, including shape memory materials |
| US20110219764A1 (en) * | 2009-10-20 | 2011-09-15 | Rolls-Royce Plc | Actuator |
| CN104325652A (en) * | 2013-10-11 | 2015-02-04 | 哈尔滨工程大学 | Polyurethane composite material doped by nickel-titanium memory alloy and carbon nanotube and preparation method thereof |
| CN104325652B (en) * | 2013-10-11 | 2016-06-29 | 哈尔滨工程大学 | Ultimum Ti and the composite mixed compound polyurethane material of CNT and preparation method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8227681B2 (en) | Active material apparatus with activating thermoelectric device thereon and method of fabrication | |
| US8281585B2 (en) | Controlling heat transfer in active material actuators using external elements | |
| US7188498B2 (en) | Reconfigurable tools and/or dies, reconfigurable inserts for tools and/or dies, and methods of use | |
| US8739525B2 (en) | Thermally-active material assemblies including phase change materials | |
| US7686382B2 (en) | Reversibly deployable air dam | |
| US8623490B2 (en) | Method and apparatus for temperature-compensated energy-absorbing padding | |
| US7178859B2 (en) | Method for controlling airflow | |
| US7147271B2 (en) | Airflow control devices with planar surfaces | |
| US8382192B2 (en) | Reversibly deployable spoiler | |
| CA2236522C (en) | Distributed activator for a two-dimensional shape memory alloy | |
| US20040074064A1 (en) | Releasable fastener system | |
| US7895917B2 (en) | Conformal grasp handle | |
| US9205593B2 (en) | Surface texturing using foldable structures and active material actuation | |
| CN101782178A (en) | Active material inserts for use with hollow structures | |
| US10670162B2 (en) | Fluid bypass valve with temporary flow control device to provide initially opened fluid circuit | |
| CN103203864B (en) | Use folding structure and active material actuated surface texturizing | |
| US9096012B2 (en) | Surface texturing using engineered structures | |
| US20070079911A1 (en) | Method for erasing stored data and restoring data | |
| US6920675B2 (en) | Process for attachment and/or disengagement of components | |
| US20150098769A1 (en) | Reconfigurable cutting tool | |
| US20050202248A1 (en) | Morphable body moldings, rub strips, and bumpers | |
| DE102011120963A1 (en) | Thermally-activated material assembly for actuator assembly in e.g. exhaust system of engine in automobile, has sheath surrounding portion of phase-change material element to contain element when element is in specific state | |
| EP1422484A4 (en) | Regenerator, and heat regenerative system for fluidized gas using the regenerator | |
| US20110062247A1 (en) | Flow regulating articles and methods of manufacture | |
| US20140113149A1 (en) | Shape memory polymer article |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0610 Effective date: 20081231 Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022201/0610 Effective date: 20081231 |
|
| AS | Assignment |
Owner name: CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECU Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022553/0493 Effective date: 20090409 Owner name: CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SEC Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:022553/0493 Effective date: 20090409 |
|
| AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0519 Effective date: 20090709 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:023124/0519 Effective date: 20090709 |
|
| AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0402 Effective date: 20090814 Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC.,MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:CITICORP USA, INC. AS AGENT FOR BANK PRIORITY SECURED PARTIES;CITICORP USA, INC. AS AGENT FOR HEDGE PRIORITY SECURED PARTIES;REEL/FRAME:023127/0402 Effective date: 20090814 |
|
| AS | Assignment |
Owner name: UNITED STATES DEPARTMENT OF THE TREASURY, DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023156/0142 Effective date: 20090710 Owner name: UNITED STATES DEPARTMENT OF THE TREASURY,DISTRICT Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023156/0142 Effective date: 20090710 |
|
| AS | Assignment |
Owner name: UAW RETIREE MEDICAL BENEFITS TRUST, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023162/0093 Effective date: 20090710 Owner name: UAW RETIREE MEDICAL BENEFITS TRUST,MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:023162/0093 Effective date: 20090710 |
|
| AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UNITED STATES DEPARTMENT OF THE TREASURY;REEL/FRAME:025245/0587 Effective date: 20100420 |
|
| AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS, INC., MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UAW RETIREE MEDICAL BENEFITS TRUST;REEL/FRAME:025314/0901 Effective date: 20101026 |
|
| AS | Assignment |
Owner name: WILMINGTON TRUST COMPANY, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025327/0041 Effective date: 20101027 |
|
| AS | Assignment |
Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:GM GLOBAL TECHNOLOGY OPERATIONS, INC.;REEL/FRAME:025780/0936 Effective date: 20101202 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |