US20070017706A1 - Methods of drilling and consolidating subterranean formation particulates - Google Patents
Methods of drilling and consolidating subterranean formation particulates Download PDFInfo
- Publication number
- US20070017706A1 US20070017706A1 US11/526,181 US52618106A US2007017706A1 US 20070017706 A1 US20070017706 A1 US 20070017706A1 US 52618106 A US52618106 A US 52618106A US 2007017706 A1 US2007017706 A1 US 2007017706A1
- Authority
- US
- United States
- Prior art keywords
- resins
- mixtures
- drilling
- group
- consolidating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 45
- 239000012530 fluid Substances 0.000 claims abstract description 42
- 239000000463 material Substances 0.000 claims abstract description 41
- 229920005989 resin Polymers 0.000 claims description 73
- 239000011347 resin Substances 0.000 claims description 73
- 239000007788 liquid Substances 0.000 claims description 31
- 239000003795 chemical substances by application Substances 0.000 claims description 30
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 claims description 29
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 22
- 239000002904 solvent Substances 0.000 claims description 22
- 239000004094 surface-active agent Substances 0.000 claims description 15
- 239000004593 Epoxy Substances 0.000 claims description 14
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 11
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 claims description 10
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 10
- 229920001568 phenolic resin Polymers 0.000 claims description 9
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 claims description 7
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 6
- CKOYRRWBOKMNRG-UHFFFAOYSA-N Furfuryl acetate Chemical compound CC(=O)OCC1=CC=CO1 CKOYRRWBOKMNRG-UHFFFAOYSA-N 0.000 claims description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 6
- -1 aliphatic amines Chemical class 0.000 claims description 6
- 239000007849 furan resin Substances 0.000 claims description 6
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 5
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 claims description 4
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 claims description 4
- CUDYYMUUJHLCGZ-UHFFFAOYSA-N 2-(2-methoxypropoxy)propan-1-ol Chemical compound COC(C)COC(C)CO CUDYYMUUJHLCGZ-UHFFFAOYSA-N 0.000 claims description 4
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 claims description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 4
- 239000003093 cationic surfactant Substances 0.000 claims description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 4
- 239000000839 emulsion Substances 0.000 claims description 4
- 235000019387 fatty acid methyl ester Nutrition 0.000 claims description 4
- 239000002736 nonionic surfactant Substances 0.000 claims description 4
- 229920003986 novolac Polymers 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 239000004645 polyester resin Substances 0.000 claims description 4
- 229920001225 polyester resin Polymers 0.000 claims description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 4
- 125000005600 alkyl phosphonate group Chemical group 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 3
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 claims description 3
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 claims description 3
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 claims description 3
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 claims description 3
- UUIPAJHTKDSSOK-UHFFFAOYSA-N (2-nonylphenyl) dihydrogen phosphate Chemical class CCCCCCCCCC1=CC=CC=C1OP(O)(O)=O UUIPAJHTKDSSOK-UHFFFAOYSA-N 0.000 claims description 2
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 claims description 2
- VATRWWPJWVCZTA-UHFFFAOYSA-N 3-oxo-n-[2-(trifluoromethyl)phenyl]butanamide Chemical compound CC(=O)CC(=O)NC1=CC=CC=C1C(F)(F)F VATRWWPJWVCZTA-UHFFFAOYSA-N 0.000 claims description 2
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical compound CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 claims description 2
- 229920003232 aliphatic polyester Polymers 0.000 claims description 2
- 150000004982 aromatic amines Chemical class 0.000 claims description 2
- 239000001191 butyl (2R)-2-hydroxypropanoate Substances 0.000 claims description 2
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 claims description 2
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims description 2
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 2
- 239000004626 polylactic acid Substances 0.000 claims description 2
- 229920001897 terpolymer Polymers 0.000 claims description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 2
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 claims 2
- 230000000149 penetrating effect Effects 0.000 abstract description 4
- 238000005755 formation reaction Methods 0.000 description 39
- 238000007596 consolidation process Methods 0.000 description 13
- 230000008901 benefit Effects 0.000 description 7
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 229940087305 limonene Drugs 0.000 description 3
- 235000001510 limonene Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- OQUIHNRSFOIOFU-UHFFFAOYSA-N 1-methoxy-2-(2-methoxypropoxy)propane Chemical class COCC(C)OCC(C)OC OQUIHNRSFOIOFU-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QCVAFEQJWDOJLG-UHFFFAOYSA-N 1,1,3-trichloro-1,3,3-trifluoropropan-2-one Chemical compound FC(F)(Cl)C(=O)C(F)(Cl)Cl QCVAFEQJWDOJLG-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical class CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/506—Compositions based on water or polar solvents containing organic compounds
- C09K8/508—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/06—Clay-free compositions
- C09K8/12—Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/56—Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
- C09K8/57—Compositions based on water or polar solvents
- C09K8/575—Compositions based on water or polar solvents containing organic compounds
- C09K8/5751—Macromolecular compounds
Definitions
- gravel packing to reduce the migration of unconsolidated formation particulates.
- One common gravel packing operation involves placing a gravel pack screen in the well bore and packing the surrounding annulus between the screen and the well bore with particulates referred to as “gravel” that have a specific size designed to prevent the passage of formation sand.
- the gravel pack screen is generally a filter assembly used, inter alia, to support and retain the gravel placed during gravel pack operations. A wide range of sizes and screen configurations are available to suit the characteristics of the gravel pack sand used.
- gravel pack When installing the gravel pack, the gravel is carried to the formation in the form of a slurry by mixing the gravel with a transport fluid. Gravel packs act, inter alia, to stabilize the formation while causing minimal impairment to well productivity. The gravel, inter alia, acts to prevent the particulates from occluding the screen or migrating with the produced fluids, and the screen, inter alia, acts to prevent the gravel from entering the production tubing. While gravel packs have been successfully used to control the migration of formation sands, their placement generally reduces the available diameter of a well bore due to the physical size of the screen and the resulting gravel annulus.
- the screen assembly referred to in the gravel packing operation may also be used as an independent sand control means.
- the present invention describes improved methods for drilling and treating well bores. More particularly, the present invention relates to improved methods for drilling well bores penetrating producing zones while controlling formation particulates.
- inventions of the present invention provide methods of consolidating a subterranean formation surrounding a well bore comprising the steps of providing a drilling composition comprising a drilling fluid and a consolidating material; and, using the drilling composition while drilling the well bore and allowing the consolidating material in the drilling composition to penetrate into the walls of the well bore as it is formed.
- Drilling fluids suitable or use in the present invention may be water-based fluids or oil-based invert emulsion fluids.
- any drilling fluid suitable for a drilling application may be used in accordance with the present invention, including aqueous gels, emulsions, and other suitable fluids.
- Suitable aqueous gels are generally comprised of water and one or more gelling agents and may further comprise weighting agents.
- Suitable emulsions may be comprised of two immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous fluid, such as nitrogen.
- the drilling fluid may comprise a drill-in fluid, which is a fluid designed specifically for drilling through the reservoir section of a well bore.
- Drill-in fluids are often used, inter alia, to minimize damage and maximize production of exposed zones and to facilitate later well completion procedures.
- additives essential for fluid loss control and cuttings carrying are present in a drill-in fluid. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a drilling fluid suitable for use in the drilling compositions of the present invention.
- the particulate fluid loss control material is preferably a material that will degrade in the well bore.
- Suitable such degradable fluid loss control material's include, but are not limited to, aliphatic polyesters, polylactic acid, poly(lactides), poly(orthoesters) and combinations thereof.
- One consolidation material suitable for use in the methods of the present invention is a low-temperature epoxy based resin comprising a hardenable resin component and a hardening agent component.
- the hardenable resin component is comprised of a hardenable resin and an optional solvent.
- the solvent may be added to the resin to reduce its viscosity for ease of handling, mixing and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent may be needed to achieve a viscosity suitable to the subterranean conditions, e.g. a low enough viscosity to permeate into the formation being drilled. Factors that may affect this decision include geographic location of the well and the surrounding weather conditions.
- the second component is the liquid hardening agent component, which is comprised of a hardening agent, a silane coupling agent, a surfactant, an optional hydrolyzable ester for, inter alia, breaking gelled fracturing fluid films on the proppant particles, and an optional liquid carrier fluid for, inter alia, reducing the viscosity of the liquid hardening agent component. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions.
- hardenable resins that can be utilized in the liquid hardenable resin component include, but are not limited to, organic resins such as bisphenol A-epichlorohydrin resins, polyepoxide resins, novolak resins, polyester resins, phenol-aldehyde resins, urea-aldehyde resins, furan resins, urethane resins, glycidyl ethers and mixtures thereof.
- the resin utilized is included in the liquid hardenable resin component in an amount sufficient to consolidate the coated particulates. In some embodiments of the present invention, the resin utilized is included in the liquid hardenable resin component in the range of from about 70% to about 100% by weight of the liquid hardenable resin component.
- any solvent that is compatible with the hardenable resin and achieves the desired viscosity effect is suitable for use in the present invention.
- Preferred solvents are those having high flash points (most preferably about 125° F.) because of, inter alia, environmental factors.
- use of a solvent in the hardenable resin composition is optional but may be desirable to reduce the viscosity of the hardenable resin component for a variety of reasons including ease of handling, mixing, and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent is needed to achieve a suitable viscosity.
- Solvents suitable for use in the present invention include, but are not limited to, butylglycidyl ethers, dipropylene glycol methyl ethers, dipropylene glycol dimethyl ethers, dimethyl formamides, diethyleneglycol methyl ethers, ethyleneglycol butyl ethers, diethyleneglycol butyl ethers, propylene carbonates, methanols, butyl alcohols, d'limonene and fatty acid methyl esters.
- hardening agents that can be utilized in the liquid hardening agent component of the low-temperature epoxy-based resins include, but are not limited to, amines, aromatic amines, polyamines, aliphatic amines, cyclo-aliphatic amines, amides, polyamides, 2-ethyl-4-methyl imidazole and 1,1,3-trichlorotrifluoroacetone. Selection of a preferred hardening agent depends, in part, on the temperature of the formation in which the hardening agent will be used. By way of example and not of limitation, in subterranean formations having a temperature from about 60° F.
- amines and cyclo-aliphatic amines such as piperidine, triethylamine, N,N-dimethylaminopyridine, benzyldimethylamine, tris(dimethylaminomethyl) phenol, and 2-(N 2 N-dimethylaminomethyl)phenol are preferred with N,N-dimethylaminopyridine most preferred.
- 4,4-diaminodiphenyl sulfone may be a suitable hardening agent.
- the hardening agent utilized is included in the liquid hardening agent component in an amount sufficient to consolidate the coated particulates.
- the hardening agent used is included in the liquid hardenable resin component in the range of from about 40% to about 60% by weight of the liquid hardening agent component.
- the silane coupling agent may be used, inter alia, to act as a mediator to help bond the resin to the formation particulate surfaces.
- Examples of silane coupling agents that can be utilized in the liquid hardening agent component of the low-temperature epoxy-based resins include, but are not limited to, n-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane.
- the silane coupling agent used is included in the liquid hardening agent component in an amount capable of sufficiently bonding the resin to the formation particulates. In some embodiments of the present invention, the silane coupling agent used is included in the liquid hardenable resin component in the range of from about 0.1% to about 3% by weight of the liquid hardening agent component.
- any surfactant compatible with the liquid hardening agent may be used with the low-temperature epoxy-based resins.
- Such surfactants include, but are not limited to, ethoxylated nonyl phenol phosphate esters, mixtures of one or more cationic surfactants, and one or more non-ionic surfactants and alkyl phosphonate surfactants.
- the mixtures of one or more cationic and nonionic surfactants are described in U.S. Pat. No. 6,311,773, the relevant disclosure of which is incorporated herein by reference.
- a C 12 -C 22 alkyl phosphonate surfactant is preferred.
- the surfactant or surfactants utilized are included in the liquid hardening agent component in an amount in the range of from about 2% to about 15% by weight of the liquid hardening agent component.
- a diluent or liquid carrier fluid in the hardenable resin composition may be used to reduce the viscosity of the hardenable resin component for ease of handling, mixing and transferring. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions. Any suitable carrier fluid that is compatible with the hardenable resin and achieves the desired viscosity effects is suitable for use in the present invention.
- the liquid carrier fluids that can be utilized in the liquid hardening agent component low-temperature epoxy-based resins preferably include those having high flash points (most preferably above about 125° F.).
- liquid carrier fluids suitable for use in the present invention include, but are not limited to, dipropylene glycol methyl ethers, dipropylene glycol dimethyl ethers, dimethyl formamides, diethyleneglycol methyl ethers, ethyleneglycol butyl ethers, diethyleneglycol butyl ethers, propylene carbonates, d'limonene and fatty acid methyl esters.
- furan-based resin Another consolidation material suitable for use in the methods of the present invention is a furan-based resin.
- Suitable furan-based resins include, but are not limited to, furfuryl alcohol resins, mixtures furfuryl alcohol resins and aldehydes, and a mixture of furan resins and phenolic resins.
- a furan-based resin may be combined with a solvent to control viscosity, if desired.
- Suitable solvents for use in the furan-based consolidation fluids of the present invention include, but are not limited to 2-butoxy ethanol, butyl acetate, and furfuryl acetate.
- Suitable phenolic-based resins include, but are not limited to, terpolymers of phenol, phenolic formaldehyde resins, and a mixture of phenolic and furan resins.
- a phenolic-based resin may be combined with a solvent to control viscosity if desired.
- Suitable solvents for use in the phenolic-based consolidation fluids of the present invention include, but are not limited to butyl acetate, butyl lactate, furfuryl acetate, and 2-butoxy ethanol.
- HT epoxy-based resin Another consolidation material suitable for use in the methods of the present invention is a HT epoxy-based resin.
- Suitable HT epoxy-based components include, but are not limited to, bisphenol A-epichlorohydrin resins, polyepoxide resins, novolac resins, polyester resins, glycidyl ethers and mixtures thereof.
- An HT epoxy-based resin may be combined with a solvent to control viscosity if desired.
- Suitable solvents for use with the HT epoxy-based resins of the present invention are those solvents capable of substantially dissolving the HT epoxy-resin chosen for use in the consolidation fluid.
- Such solvents include, but are not limited to, dimethyl sulfoxide, dimethyl formamide, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, diethylene glycol methyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, propylene carbonate, d'limonene, and fatty acid methyl esters.
- Yet another consolidation material suitable for use in the methods of the present invention is a phenol/phenol formaldehyde/furfuryl alcohol resin comprising from about 5% to about 30% phenol, from about 40% to about 70%% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant.
- suitable silane coupling agents include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane.
- Suitable surfactants include, but are not limited to, an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, and one or more non-ionic surfactants and an alkyl phosphonate surfactant.
- Suitable solvents for use with phenol/phenol formaldehyde/furfuryl alcohol resins include, but are not limited to, 2-butoxy ethanol, butyl acetate, furfuryl acetate, and combinations thereof
- the consolidation material chosen its viscosity should preferably be controlled to ensure that it is able to sufficiently penetrate the subterranean formation.
- a preferred depth of treatment may be from about one to about three well bore diameters; however, the laminate and/or non-uniform makeup of the formation, i.e. shale-sandstone-shale-sandstone, etc., may make reaching such a depth unrealistic.
- the consolidation fluid penetrates at least about 0.5 inches into the walls of the well bore.
- One embodiment of a method of the present invention provides a method of drilling a well bore with a drilling composition comprising a drilling fluid component and a consolidating material component, and allowing the consolidating material to penetrate into the walls of the well bore.
- Another embodiment of a method of the present invention provides a method of consolidating a subterranean formation surrounding a well bore comprising the steps of drilling a well bore with a drilling composition comprising a drilling fluid component and a consolidating material component, and allowing the consolidating material to penetrate into the subterranean formation surrounding the well bore.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention relates to improved methods for drilling well bores penetrating producing zones while controlling formation particulates. Some embodiments of the present invention provide methods of drilling a well bore into a subterranean formation comprising the steps of providing a drilling composition comprising a drilling fluid and a consolidating material; and, using the drilling composition while drilling the well bore and allowing the consolidating material in the drilling composition to penetrate into the walls of the well bore.
Description
- This application is a divisional application of commonly-owned U.S. patent application Ser. No. 10/650,065, filed Aug. 26, 2003, entitled “Methods of Drilling and Consolidating Subterranean Formation Particulates,” by Philip D. Nguyen, which is incorporated by reference herein for all purposes.
- The present invention describes improved methods for drilling and treating well bores. More particularly, the present invention relates to improved methods for drilling well bores penetrating producing zones while controlling formation particulates.
- Often, well bores are drilled into weakly consolidated formations wherein the walls of the well bore may be sensitive to degradation by the force of mobile fluids within the formation. Often, such well bores are subjected to some form of sand control operation such as gravel packing to reduce the migration of unconsolidated formation particulates. One common gravel packing operation involves placing a gravel pack screen in the well bore and packing the surrounding annulus between the screen and the well bore with particulates referred to as “gravel” that have a specific size designed to prevent the passage of formation sand. The gravel pack screen is generally a filter assembly used, inter alia, to support and retain the gravel placed during gravel pack operations. A wide range of sizes and screen configurations are available to suit the characteristics of the gravel pack sand used. Similarly, a wide range of sizes of gravel is available to suit the characteristics of the unconsolidated or poorly consolidated particulates in the subterranean formation. The resulting structure presents a barrier to migrating sand from the formation while still permitting fluid flow. When installing the gravel pack, the gravel is carried to the formation in the form of a slurry by mixing the gravel with a transport fluid. Gravel packs act, inter alia, to stabilize the formation while causing minimal impairment to well productivity. The gravel, inter alia, acts to prevent the particulates from occluding the screen or migrating with the produced fluids, and the screen, inter alia, acts to prevent the gravel from entering the production tubing. While gravel packs have been successfully used to control the migration of formation sands, their placement generally reduces the available diameter of a well bore due to the physical size of the screen and the resulting gravel annulus.
- The screen assembly referred to in the gravel packing operation may also be used as an independent sand control means. Some of the early screen technology dictated that the screens had to be small enough to pass through the smallest diameter of the well bore on the way to its desired placement location where the diameter of the well bore may actually be larger. Developments in technology have lead to deformable and expandable screens such that a relatively small size or small diameter screen may be placed in a desired location along the well bore and then expanded to accommodate the actual size of the well bore at the point of placement.
- While the sand control methods mentioned above are routinely used in the completion of well bores, particularly those drilled into weakly consolidated formations, they increase the expense of installing a well bore by requiring separate steps to drill the well bore and then to control the formation sands.
- The present invention describes improved methods for drilling and treating well bores. More particularly, the present invention relates to improved methods for drilling well bores penetrating producing zones while controlling formation particulates.
- Some embodiments of the present invention provide methods of drilling a well bore into a subterranean formation comprising the steps of providing a drilling composition comprising a drilling fluid and a consolidating material; and, using the drilling composition while drilling the well bore and allowing the consolidating material in the drilling composition to penetrate into the walls of the well bore.
- Other embodiments of the present invention provide methods of consolidating a subterranean formation surrounding a well bore comprising the steps of providing a drilling composition comprising a drilling fluid and a consolidating material; and, using the drilling composition while drilling the well bore and allowing the consolidating material in the drilling composition to penetrate into the walls of the well bore as it is formed.
- Other and further objects, features and advantages of the present invention will be readily apparent to those skilled in the art upon a reading of the description of preferred embodiments which follows.
- The present invention describes improved methods for drilling and treating well bores. More particularly, the present invention relates to improved methods for drilling well bores penetrating producing zones while controlling formation particulates.
- In some embodiments of the methods of the present invention, a well bore is drilled with a drilling composition comprising a drilling fluid and a consolidating material. The consolidating material is allowed to penetrate into the formation and substantially cure, thus consolidating the formation sands along the wall of the well bore. The methods of the present invention provide, inter alia, a means for stabilizing weakly consolidated formations surrounding a well bore during drilling, preventing the formation from collapsing during production, and producing through the treated interval.
- Drilling fluids suitable or use in the present invention may be water-based fluids or oil-based invert emulsion fluids. Essentially any drilling fluid suitable for a drilling application may be used in accordance with the present invention, including aqueous gels, emulsions, and other suitable fluids. Suitable aqueous gels are generally comprised of water and one or more gelling agents and may further comprise weighting agents. Suitable emulsions may be comprised of two immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous fluid, such as nitrogen. In some embodiments of the present invention where the well bore is drilled into a producing zone, the drilling fluid may comprise a drill-in fluid, which is a fluid designed specifically for drilling through the reservoir section of a well bore. Drill-in fluids are often used, inter alia, to minimize damage and maximize production of exposed zones and to facilitate later well completion procedures. Often, additives essential for fluid loss control and cuttings carrying are present in a drill-in fluid. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a drilling fluid suitable for use in the drilling compositions of the present invention.
- Traditional drilling operations add solid particulate matter to the drilling fluid to help control fluid loss to the surrounding formation. In the methods of the present invention, use of such additives can be greatly reduced or eliminated due to the fact that the consolidation material added to the drilling fluid may act as a fluid loss control agent. Thus, drilling compositions suitable for use in the present invention preferably comprise only a small amount of particulate fluid loss control material. In some embodiments of the present invention, particularly in those applications where the formation being drilled has a low permeability, e.g. a chalk formation, the drilling fluid composition may contain little if any particulate fluid loss control material. In other embodiments of the present invention, a fluid loss control material is present in the drilling fluid composition in an amount ranging from 0.1% to about 10% by weight of the overall drilling fluid composition. When used, the particulate fluid loss control material is preferably a material that will degrade in the well bore. Suitable such degradable fluid loss control material's include, but are not limited to, aliphatic polyesters, polylactic acid, poly(lactides), poly(orthoesters) and combinations thereof.
- Consolidation materials suitable for use in the present invention include, but are not limited to, low-temperature epoxy-based resins, furan-based resins, phenolic-based resins, high-temperature (HT) epoxy-based resins, and phenol/phenol formaldehyde/furfuryl alcohol resins.
- The temperature of the subterranean formation being drilled may affect selection of a consolidation material. By way of example, for subterranean formations exhibiting a temperature ranging from about 60° F. to about 250° F., low-temperature epoxy-based resins comprising a hardenable resin component and a hardening agent component containing specific hardening agents may be preferred. For subterranean formations exhibiting a temperature ranging from about 300° F. to about 600° F., a furan-based resin may be preferred. For subterranean formations exhibiting a temperature ranging from about 200° F. to about 400° F., either a phenolic-based resin or a HT epoxy-based resin may be suitable. For subterranean formations exhibiting a temperature of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin may also be suitable.
- One consolidation material suitable for use in the methods of the present invention is a low-temperature epoxy based resin comprising a hardenable resin component and a hardening agent component. The hardenable resin component is comprised of a hardenable resin and an optional solvent. The solvent may be added to the resin to reduce its viscosity for ease of handling, mixing and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent may be needed to achieve a viscosity suitable to the subterranean conditions, e.g. a low enough viscosity to permeate into the formation being drilled. Factors that may affect this decision include geographic location of the well and the surrounding weather conditions. An alternate way to reduce the viscosity of the liquid hardenable resin is to heat it. This method avoids the use of a solvent altogether, which may be desirable in certain circumstances. The second component is the liquid hardening agent component, which is comprised of a hardening agent, a silane coupling agent, a surfactant, an optional hydrolyzable ester for, inter alia, breaking gelled fracturing fluid films on the proppant particles, and an optional liquid carrier fluid for, inter alia, reducing the viscosity of the liquid hardening agent component. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions.
- Examples of hardenable resins that can be utilized in the liquid hardenable resin component include, but are not limited to, organic resins such as bisphenol A-epichlorohydrin resins, polyepoxide resins, novolak resins, polyester resins, phenol-aldehyde resins, urea-aldehyde resins, furan resins, urethane resins, glycidyl ethers and mixtures thereof. The resin utilized is included in the liquid hardenable resin component in an amount sufficient to consolidate the coated particulates. In some embodiments of the present invention, the resin utilized is included in the liquid hardenable resin component in the range of from about 70% to about 100% by weight of the liquid hardenable resin component.
- Any solvent that is compatible with the hardenable resin and achieves the desired viscosity effect is suitable for use in the present invention. Preferred solvents are those having high flash points (most preferably about 125° F.) because of, inter alia, environmental factors. As described above, use of a solvent in the hardenable resin composition is optional but may be desirable to reduce the viscosity of the hardenable resin component for a variety of reasons including ease of handling, mixing, and transferring. It is within the ability of one skilled in the art with the benefit of this disclosure to determine if and how much solvent is needed to achieve a suitable viscosity. Solvents suitable for use in the present invention include, but are not limited to, butylglycidyl ethers, dipropylene glycol methyl ethers, dipropylene glycol dimethyl ethers, dimethyl formamides, diethyleneglycol methyl ethers, ethyleneglycol butyl ethers, diethyleneglycol butyl ethers, propylene carbonates, methanols, butyl alcohols, d'limonene and fatty acid methyl esters.
- Examples of the hardening agents that can be utilized in the liquid hardening agent component of the low-temperature epoxy-based resins include, but are not limited to, amines, aromatic amines, polyamines, aliphatic amines, cyclo-aliphatic amines, amides, polyamides, 2-ethyl-4-methyl imidazole and 1,1,3-trichlorotrifluoroacetone. Selection of a preferred hardening agent depends, in part, on the temperature of the formation in which the hardening agent will be used. By way of example and not of limitation, in subterranean formations having a temperature from about 60° F. to about 250° F., amines and cyclo-aliphatic amines such as piperidine, triethylamine, N,N-dimethylaminopyridine, benzyldimethylamine, tris(dimethylaminomethyl) phenol, and 2-(N2N-dimethylaminomethyl)phenol are preferred with N,N-dimethylaminopyridine most preferred. In subterranean formations having higher temperatures, 4,4-diaminodiphenyl sulfone may be a suitable hardening agent. The hardening agent utilized is included in the liquid hardening agent component in an amount sufficient to consolidate the coated particulates. In some embodiments of the present invention, the hardening agent used is included in the liquid hardenable resin component in the range of from about 40% to about 60% by weight of the liquid hardening agent component.
- The silane coupling agent may be used, inter alia, to act as a mediator to help bond the resin to the formation particulate surfaces. Examples of silane coupling agents that can be utilized in the liquid hardening agent component of the low-temperature epoxy-based resins include, but are not limited to, n-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane. The silane coupling agent used is included in the liquid hardening agent component in an amount capable of sufficiently bonding the resin to the formation particulates. In some embodiments of the present invention, the silane coupling agent used is included in the liquid hardenable resin component in the range of from about 0.1% to about 3% by weight of the liquid hardening agent component.
- Any surfactant compatible with the liquid hardening agent may be used with the low-temperature epoxy-based resins. Such surfactants include, but are not limited to, ethoxylated nonyl phenol phosphate esters, mixtures of one or more cationic surfactants, and one or more non-ionic surfactants and alkyl phosphonate surfactants. The mixtures of one or more cationic and nonionic surfactants are described in U.S. Pat. No. 6,311,773, the relevant disclosure of which is incorporated herein by reference. A C12-C22 alkyl phosphonate surfactant is preferred. The surfactant or surfactants utilized are included in the liquid hardening agent component in an amount in the range of from about 2% to about 15% by weight of the liquid hardening agent component.
- A diluent or liquid carrier fluid in the hardenable resin composition may be used to reduce the viscosity of the hardenable resin component for ease of handling, mixing and transferring. It is within the ability of one skilled in the art, with the benefit of this disclosure, to determine if and how much liquid carrier fluid is needed to achieve a viscosity suitable to the subterranean conditions. Any suitable carrier fluid that is compatible with the hardenable resin and achieves the desired viscosity effects is suitable for use in the present invention. The liquid carrier fluids that can be utilized in the liquid hardening agent component low-temperature epoxy-based resins preferably include those having high flash points (most preferably above about 125° F.). Examples of liquid carrier fluids suitable for use in the present invention include, but are not limited to, dipropylene glycol methyl ethers, dipropylene glycol dimethyl ethers, dimethyl formamides, diethyleneglycol methyl ethers, ethyleneglycol butyl ethers, diethyleneglycol butyl ethers, propylene carbonates, d'limonene and fatty acid methyl esters.
- Another consolidation material suitable for use in the methods of the present invention is a furan-based resin. Suitable furan-based resins include, but are not limited to, furfuryl alcohol resins, mixtures furfuryl alcohol resins and aldehydes, and a mixture of furan resins and phenolic resins. A furan-based resin may be combined with a solvent to control viscosity, if desired. Suitable solvents for use in the furan-based consolidation fluids of the present invention include, but are not limited to 2-butoxy ethanol, butyl acetate, and furfuryl acetate.
- Another consolidation material suitable for use in the methods of the present invention is a phenolic-based resin. Suitable phenolic-based resins include, but are not limited to, terpolymers of phenol, phenolic formaldehyde resins, and a mixture of phenolic and furan resins. A phenolic-based resin may be combined with a solvent to control viscosity if desired. Suitable solvents for use in the phenolic-based consolidation fluids of the present invention include, but are not limited to butyl acetate, butyl lactate, furfuryl acetate, and 2-butoxy ethanol.
- Another consolidation material suitable for use in the methods of the present invention is a HT epoxy-based resin. Suitable HT epoxy-based components include, but are not limited to, bisphenol A-epichlorohydrin resins, polyepoxide resins, novolac resins, polyester resins, glycidyl ethers and mixtures thereof. An HT epoxy-based resin may be combined with a solvent to control viscosity if desired. Suitable solvents for use with the HT epoxy-based resins of the present invention are those solvents capable of substantially dissolving the HT epoxy-resin chosen for use in the consolidation fluid. Such solvents include, but are not limited to, dimethyl sulfoxide, dimethyl formamide, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, diethylene glycol methyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, propylene carbonate, d'limonene, and fatty acid methyl esters.
- Yet another consolidation material suitable for use in the methods of the present invention is a phenol/phenol formaldehyde/furfuryl alcohol resin comprising from about 5% to about 30% phenol, from about 40% to about 70%% phenol formaldehyde, from about 10 to about 40% furfuryl alcohol, from about 0.1% to about 3% of a silane coupling agent, and from about 1% to about 15% of a surfactant. In the phenol/phenol formaldehyde/furfuryl alcohol resins suitable for use in the methods of the present invention, suitable silane coupling agents include, but are not limited to, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane. Suitable surfactants include, but are not limited to, an ethoxylated nonyl phenol phosphate ester, mixtures of one or more cationic surfactants, and one or more non-ionic surfactants and an alkyl phosphonate surfactant. Suitable solvents for use with phenol/phenol formaldehyde/furfuryl alcohol resins include, but are not limited to, 2-butoxy ethanol, butyl acetate, furfuryl acetate, and combinations thereof
- Regardless of the consolidation material chosen, its viscosity should preferably be controlled to ensure that it is able to sufficiently penetrate the subterranean formation. A preferred depth of treatment may be from about one to about three well bore diameters; however, the laminate and/or non-uniform makeup of the formation, i.e. shale-sandstone-shale-sandstone, etc., may make reaching such a depth unrealistic. In some embodiments of the present invention, the consolidation fluid penetrates at least about 0.5 inches into the walls of the well bore.
- One embodiment of a method of the present invention provides a method of drilling a well bore with a drilling composition comprising a drilling fluid component and a consolidating material component, and allowing the consolidating material to penetrate into the walls of the well bore.
- Another embodiment of a method of the present invention provides a method of consolidating a subterranean formation surrounding a well bore comprising the steps of drilling a well bore with a drilling composition comprising a drilling fluid component and a consolidating material component, and allowing the consolidating material to penetrate into the subterranean formation surrounding the well bore.
- Therefore, the present invention is well adapted to carry out the objects and attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit and scope of this invention as defined by the appended claims.
Claims (20)
1. A method of consolidating formation particulates surrounding a well bore comprising the steps of:
providing a drilling composition comprising a drilling fluid and a consolidating material; and
using the drilling composition to drill at least a portion of the well bore;
allowing the consolidating material in the drilling composition to penetrate into the walls of the well bore; and
allowing the consolidating material in the drilling composition to consolidate at least a portion of the formation particulates surrounding the well bore.
2. The method of claim 1 wherein the consolidating material has a viscosity of less than about 100 cP.
3. The method of claim 1 wherein the consolidating material comprises
a hardenable resin component that comprises a hardenable resin, and
a liquid hardening agent component that comprises a hardening agent, a silane coupling agent, and a surfactant.
4. The method of claim 1 wherein the consolidating material has a viscosity of less than about 100 cP.
5. The method of claim 3 wherein the hardenable resin in the hardenable resin component is an organic resin selected from the group consisting of bisphenol A-epichlorohydrin resins, polyepoxide resins, novolak resins, polyester resins, phenol-aldehyde resins, urea-aldehyde resins, furan resins, urethane resins, glycidyl ethers, and mixtures thereof.
6. The method of claim 3 wherein the hardening agent in the liquid hardening agent component is selected from the group consisting of amines, aromatic amines, aliphatic amines, cyclo-aliphatic amines, piperidine, triethylamine, benzyldimethylamine, N,N-dimethylaminopyridine, 2-(N2N-dimethylaminomethyl)phenol, tris(dimethylaminomethyl) phenol, and mixtures thereof.
7. The method of claim 3 wherein the silane coupling agent in the liquid hardening agent component is selected from the group consisting of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, n-beta-(aminoethyl)-gamma-aminopropyl trimethoxysilane, and mixtures thereof.
8. The method of claim 3 wherein the surfactant in the liquid hardening agent component is selected from the group consisting of ethoxylated nonyl phenol phosphate esters, mixtures of one or more cationic surfactants, C12-C22 alkyl phosphonate surfactants, mixtures of one or more non-ionic surfactants and alkyl phosphonate surfactants, and mixtures thereof.
9. The method of claim 3 wherein the hardenable resin is a furan-based resin selected from the group consisting of furfuryl alcohol, mixtures of furfuryl alcohol with aldehydes, mixtures of furan resins and phenolic resins, and mixtures thereof.
10. The method of claim 6 wherein the hardenable resin component further comprises a solvent selected from the group consisting of 2-butoxy ethanol, butyl acetate, furfuryl acetate, and mixtures thereof.
11. The method of claim 1 wherein the consolidating material is a phenolic-based resin selected from the group consisting of terpolymers of phenol, phenolic formaldehyde resins, mixtures of phenolic and furan resins, and mixtures thereof.
12. The method of claim 11 wherein the consolidating material further comprises a solvent selected from the group consisting of butyl acetate, butyl lactate, furfuryl acetate, 2-butoxy ethanol, and mixtures thereof.
13. The method of claim 1 wherein the consolidating material is a HT epoxy-based resin selected from the group consisting of bisphenol A-epichlorohydrin resins, polyepoxide resins, novolac resins, polyester resins, glycidyl ethers, and mixtures thereof.
14. The method of claim 13 wherein the consolidating material further comprises a solvent selected from the group consisting of dimethyl sulfoxide, dimethyl formamide, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethylene glycol methyl ether, ethylene glycol butyl ether, diethylene glycol butyl ether, propylene carbonate, d-limonene, fatty acid methyl esters, and mixtures thereof.
15. The method of claim 3 wherein the consolidating material comprises:
from about 5% to about 30% phenol;
from about 40% to about 70% phenol formaldehyde;
from about 10 to about 40% furfuryl alcohol;
from about 0.1% to about 3% of a silane coupling agent; and
from about 1% to about 15% of a surfactant.
16. The method of claim 15 wherein the hardenable resin component further comprises a solvent selected from the group consisting of 2-butoxy ethanol, butyl acetate, furfuryl acetate, and combinations thereof.
17. The method of claim 1 wherein the fluid component of the drilling fluid is an aqueous gel or an emulsion.
18. The method of claim 1 wherein the consolidating material penetrate into the walls of the well bore from about 0.1 to about 3 inches.
19. The method of claim 1 wherein the drilling composition further comprises a fluid loss control material.
20. The method of claim 19 wherein the fluid loss control material is selected from the group consisting of aliphatic polyesters, polylactic acid, poly(lactides), and combinations thereof.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/526,181 US20070017706A1 (en) | 2003-08-26 | 2006-09-22 | Methods of drilling and consolidating subterranean formation particulates |
| US12/256,644 US7766099B2 (en) | 2003-08-26 | 2008-10-23 | Methods of drilling and consolidating subterranean formation particulates |
| US12/386,293 US8167045B2 (en) | 2003-08-26 | 2009-04-16 | Methods and compositions for stabilizing formation fines and sand |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/650,065 US7156194B2 (en) | 2003-08-26 | 2003-08-26 | Methods of drilling and consolidating subterranean formation particulate |
| US11/526,181 US20070017706A1 (en) | 2003-08-26 | 2006-09-22 | Methods of drilling and consolidating subterranean formation particulates |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/650,065 Division US7156194B2 (en) | 2003-08-26 | 2003-08-26 | Methods of drilling and consolidating subterranean formation particulate |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/256,644 Continuation-In-Part US7766099B2 (en) | 2003-08-26 | 2008-10-23 | Methods of drilling and consolidating subterranean formation particulates |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20070017706A1 true US20070017706A1 (en) | 2007-01-25 |
Family
ID=34217068
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/650,065 Expired - Lifetime US7156194B2 (en) | 2003-08-26 | 2003-08-26 | Methods of drilling and consolidating subterranean formation particulate |
| US11/526,181 Abandoned US20070017706A1 (en) | 2003-08-26 | 2006-09-22 | Methods of drilling and consolidating subterranean formation particulates |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/650,065 Expired - Lifetime US7156194B2 (en) | 2003-08-26 | 2003-08-26 | Methods of drilling and consolidating subterranean formation particulate |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US7156194B2 (en) |
| WO (1) | WO2005019599A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009149413A1 (en) | 2008-06-06 | 2009-12-10 | Real D | Blur enhancement of stereoscopic images |
| US20100032159A1 (en) * | 2008-08-08 | 2010-02-11 | Halliburton Energy Services, Inc. | Proppant-containing treatment fluids and methods of use |
| US20100132943A1 (en) * | 2004-02-10 | 2010-06-03 | Nguyen Philip D | Resin Compositions and Methods of Using Resin Compositions to Control Proppant Flow-Back |
| US20110120712A1 (en) * | 2009-07-30 | 2011-05-26 | Halliburton Energy Services, Inc. | Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate |
| US20110168449A1 (en) * | 2010-01-11 | 2011-07-14 | Dusterhoft Ronald G | Methods for drilling, reaming and consolidating a subterranean formation |
| US8697612B2 (en) | 2009-07-30 | 2014-04-15 | Halliburton Energy Services, Inc. | Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate |
| US8853137B2 (en) | 2009-07-30 | 2014-10-07 | Halliburton Energy Services, Inc. | Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate |
| WO2017019066A1 (en) * | 2015-07-29 | 2017-02-02 | Halliburton Energy Services, Inc. | Delayed reaction treatment additive |
Families Citing this family (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6962200B2 (en) * | 2002-01-08 | 2005-11-08 | Halliburton Energy Services, Inc. | Methods and compositions for consolidating proppant in subterranean fractures |
| US6691780B2 (en) | 2002-04-18 | 2004-02-17 | Halliburton Energy Services, Inc. | Tracking of particulate flowback in subterranean wells |
| US7766099B2 (en) | 2003-08-26 | 2010-08-03 | Halliburton Energy Services, Inc. | Methods of drilling and consolidating subterranean formation particulates |
| US8167045B2 (en) | 2003-08-26 | 2012-05-01 | Halliburton Energy Services, Inc. | Methods and compositions for stabilizing formation fines and sand |
| US20060142165A1 (en) * | 2003-09-24 | 2006-06-29 | Halliburton Energy Services, Inc. | Methods and compositions for treating subterranean formations using sulfonated gelling agent polymers |
| US20050089631A1 (en) * | 2003-10-22 | 2005-04-28 | Nguyen Philip D. | Methods for reducing particulate density and methods of using reduced-density particulates |
| US7063150B2 (en) | 2003-11-25 | 2006-06-20 | Halliburton Energy Services, Inc. | Methods for preparing slurries of coated particulates |
| US7195068B2 (en) * | 2003-12-15 | 2007-03-27 | Halliburton Energy Services, Inc. | Filter cake degradation compositions and methods of use in subterranean operations |
| US20070007009A1 (en) * | 2004-01-05 | 2007-01-11 | Halliburton Energy Services, Inc. | Methods of well stimulation and completion |
| US7211547B2 (en) | 2004-03-03 | 2007-05-01 | Halliburton Energy Services, Inc. | Resin compositions and methods of using such resin compositions in subterranean applications |
| US7063151B2 (en) | 2004-03-05 | 2006-06-20 | Halliburton Energy Services, Inc. | Methods of preparing and using coated particulates |
| US7541318B2 (en) | 2004-05-26 | 2009-06-02 | Halliburton Energy Services, Inc. | On-the-fly preparation of proppant and its use in subterranean operations |
| US7299875B2 (en) | 2004-06-08 | 2007-11-27 | Halliburton Energy Services, Inc. | Methods for controlling particulate migration |
| US7281580B2 (en) | 2004-09-09 | 2007-10-16 | Halliburton Energy Services, Inc. | High porosity fractures and methods of creating high porosity fractures |
| US7757768B2 (en) | 2004-10-08 | 2010-07-20 | Halliburton Energy Services, Inc. | Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations |
| US7398825B2 (en) | 2004-12-03 | 2008-07-15 | Halliburton Energy Services, Inc. | Methods of controlling sand and water production in subterranean zones |
| US7883740B2 (en) | 2004-12-12 | 2011-02-08 | Halliburton Energy Services, Inc. | Low-quality particulates and methods of making and using improved low-quality particulates |
| US7673686B2 (en) | 2005-03-29 | 2010-03-09 | Halliburton Energy Services, Inc. | Method of stabilizing unconsolidated formation for sand control |
| US7448451B2 (en) | 2005-03-29 | 2008-11-11 | Halliburton Energy Services, Inc. | Methods for controlling migration of particulates in a subterranean formation |
| US20060240995A1 (en) * | 2005-04-23 | 2006-10-26 | Halliburton Energy Services, Inc. | Methods of using resins in subterranean formations |
| US7318474B2 (en) | 2005-07-11 | 2008-01-15 | Halliburton Energy Services, Inc. | Methods and compositions for controlling formation fines and reducing proppant flow-back |
| US20070114032A1 (en) * | 2005-11-22 | 2007-05-24 | Stegent Neil A | Methods of consolidating unconsolidated particulates in subterranean formations |
| US20070173416A1 (en) * | 2006-01-20 | 2007-07-26 | Halliburton Energy Services, Inc. | Well treatment compositions for use in acidizing a well |
| US7819192B2 (en) | 2006-02-10 | 2010-10-26 | Halliburton Energy Services, Inc. | Consolidating agent emulsions and associated methods |
| US7926591B2 (en) | 2006-02-10 | 2011-04-19 | Halliburton Energy Services, Inc. | Aqueous-based emulsified consolidating agents suitable for use in drill-in applications |
| US20080006405A1 (en) * | 2006-07-06 | 2008-01-10 | Halliburton Energy Services, Inc. | Methods and compositions for enhancing proppant pack conductivity and strength |
| US8613320B2 (en) * | 2006-02-10 | 2013-12-24 | Halliburton Energy Services, Inc. | Compositions and applications of resins in treating subterranean formations |
| US7407010B2 (en) | 2006-03-16 | 2008-08-05 | Halliburton Energy Services, Inc. | Methods of coating particulates |
| US7500521B2 (en) | 2006-07-06 | 2009-03-10 | Halliburton Energy Services, Inc. | Methods of enhancing uniform placement of a resin in a subterranean formation |
| US20080115692A1 (en) * | 2006-11-17 | 2008-05-22 | Halliburton Energy Services, Inc. | Foamed resin compositions and methods of using foamed resin compositions in subterranean applications |
| US7451812B2 (en) * | 2006-12-20 | 2008-11-18 | Schlumberger Technology Corporation | Real-time automated heterogeneous proppant placement |
| US7934557B2 (en) | 2007-02-15 | 2011-05-03 | Halliburton Energy Services, Inc. | Methods of completing wells for controlling water and particulate production |
| US7908230B2 (en) * | 2007-02-16 | 2011-03-15 | Schlumberger Technology Corporation | System, method, and apparatus for fracture design optimization |
| AR063177A1 (en) * | 2007-05-23 | 2008-12-30 | Mi Llc | USE OF REVERSE EPOXIC EMULSIONS FOR THE STABILIZATION OF WELL PERFORATIONS |
| EA019839B1 (en) * | 2007-11-16 | 2014-06-30 | Шлюмбергер Норге Ас | Method of drilling and wellbore fluid |
| ITVA20070085A1 (en) * | 2007-11-21 | 2009-05-22 | Lamberti Spa | SILVER SWING INHIBITORS |
| US20170137703A1 (en) | 2007-12-11 | 2017-05-18 | Superior Silica Sands, LLC | Hydraulic fracture composition and method |
| US8661729B2 (en) | 2007-12-11 | 2014-03-04 | Calder Hendrickson | Hydraulic fracture composition and method |
| US10920494B2 (en) | 2007-12-11 | 2021-02-16 | Aquasmart Enterprises, Llc | Hydraulic fracture composition and method |
| US9057014B2 (en) | 2007-12-11 | 2015-06-16 | Aquasmart Enterprises, Llc | Hydraulic fracture composition and method |
| US9856415B1 (en) | 2007-12-11 | 2018-01-02 | Superior Silica Sands, LLC | Hydraulic fracture composition and method |
| US7902128B2 (en) * | 2008-04-29 | 2011-03-08 | Halliburton Energy Services Inc. | Water-in-oil emulsions with hydrogel droplets background |
| EP2350228A1 (en) | 2008-10-29 | 2011-08-03 | Basf Se | A proppant |
| US9714378B2 (en) | 2008-10-29 | 2017-07-25 | Basf Se | Proppant |
| US7762329B1 (en) | 2009-01-27 | 2010-07-27 | Halliburton Energy Services, Inc. | Methods for servicing well bores with hardenable resin compositions |
| US9234124B2 (en) | 2013-08-09 | 2016-01-12 | Halliburton Energy Services, Inc. | Dimer acid grafted polymer for stabilizing particulate in a well |
| WO2015041661A1 (en) * | 2013-09-20 | 2015-03-26 | Halliburton Energy Services, Inc. | Composition for stabilizing unconsolidated formation and fines agglomeration |
| US10266450B2 (en) | 2014-07-01 | 2019-04-23 | Aquasmart Enterprises, Llc | Coated-fine-aggregate, concrete composition and method |
| US9359253B2 (en) | 2014-07-01 | 2016-06-07 | Aquasmart Enterprises, Llc | Coated-fine-aggregate, concrete composition and method |
| CN108727549A (en) * | 2018-05-29 | 2018-11-02 | 宁夏共享化工有限公司 | A kind of modified urea-formaldehyde furane resins |
| AU2021299284B2 (en) * | 2020-06-30 | 2023-08-24 | Lyondellbasell Advanced Polymers Inc. | Degradable aliphatic polyester fluid |
| CN117701256A (en) * | 2022-09-06 | 2024-03-15 | 中国石油化工股份有限公司 | Thixotropic leakage plugging cement slurry and its application when exposed to water, cement and its application, and drilling and leakage plugging methods |
Citations (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2238671A (en) * | 1940-02-09 | 1941-04-15 | Du Pont | Method of treating wells |
| US2703316A (en) * | 1951-06-05 | 1955-03-01 | Du Pont | Polymers of high melting lactide |
| US2869642A (en) * | 1954-09-14 | 1959-01-20 | Texas Co | Method of treating subsurface formations |
| US3047067A (en) * | 1958-09-08 | 1962-07-31 | Jersey Prod Res Co | Sand consolidation method |
| US3123138A (en) * | 1964-03-03 | robichaux | ||
| US3176768A (en) * | 1964-07-27 | 1965-04-06 | California Research Corp | Sand consolidation |
| US3199590A (en) * | 1963-02-25 | 1965-08-10 | Halliburton Co | Method of consolidating incompetent sands and composition therefor |
| US3272650A (en) * | 1963-02-21 | 1966-09-13 | Union Carbide Corp | Process for cleaning conduits |
| US3297086A (en) * | 1962-03-30 | 1967-01-10 | Exxon Production Research Co | Sand consolidation method |
| US3308885A (en) * | 1965-12-28 | 1967-03-14 | Union Oil Co | Treatment of subsurface hydrocarbon fluid-bearing formations to reduce water production therefrom |
| US3316965A (en) * | 1963-08-05 | 1967-05-02 | Union Oil Co | Material and process for treating subterranean formations |
| US3336980A (en) * | 1967-02-09 | 1967-08-22 | Exxon Production Research Co | Sand control in wells |
| US3375872A (en) * | 1965-12-02 | 1968-04-02 | Halliburton Co | Method of plugging or sealing formations with acidic silicic acid solution |
| US3404735A (en) * | 1966-11-01 | 1968-10-08 | Halliburton Co | Sand control method |
| US3415320A (en) * | 1967-02-09 | 1968-12-10 | Halliburton Co | Method of treating clay-containing earth formations |
| US3492147A (en) * | 1964-10-22 | 1970-01-27 | Halliburton Co | Method of coating particulate solids with an infusible resin |
| US3659651A (en) * | 1970-08-17 | 1972-05-02 | Exxon Production Research Co | Hydraulic fracturing using reinforced resin pellets |
| US3681287A (en) * | 1971-03-03 | 1972-08-01 | Quaker Oats Co | Siliceous materials bound with resin containing organosilane coupling agent |
| US3708013A (en) * | 1971-05-03 | 1973-01-02 | Mobil Oil Corp | Method and apparatus for obtaining an improved gravel pack |
| US3709298A (en) * | 1971-05-20 | 1973-01-09 | Shell Oil Co | Sand pack-aided formation sand consolidation |
| US3754598A (en) * | 1971-11-08 | 1973-08-28 | Phillips Petroleum Co | Method for producing a hydrocarbon-containing formation |
| US3765804A (en) * | 1951-08-13 | 1973-10-16 | Brandon O | Apparatus for producing variable high frequency vibrations in a liquid medium |
| US3768564A (en) * | 1971-04-26 | 1973-10-30 | Halliburton Co | Method of fracture acidizing a well formation |
| US3784585A (en) * | 1971-10-21 | 1974-01-08 | American Cyanamid Co | Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same |
| US3819525A (en) * | 1972-08-21 | 1974-06-25 | Avon Prod Inc | Cosmetic cleansing preparation |
| US3828854A (en) * | 1973-04-16 | 1974-08-13 | Shell Oil Co | Dissolving siliceous materials with self-acidifying liquid |
| US3842911A (en) * | 1971-04-26 | 1974-10-22 | Halliburton Co | Method of fracture acidizing a well formation |
| US3854533A (en) * | 1972-12-07 | 1974-12-17 | Dow Chemical Co | Method for forming a consolidated gravel pack in a subterranean formation |
| US3857444A (en) * | 1972-10-06 | 1974-12-31 | Dow Chemical Co | Method for forming a consolidated gravel pack in a subterranean formation |
| US3863709A (en) * | 1973-12-20 | 1975-02-04 | Mobil Oil Corp | Method of recovering geothermal energy |
| US3868998A (en) * | 1974-05-15 | 1975-03-04 | Shell Oil Co | Self-acidifying treating fluid positioning process |
| US3888311A (en) * | 1973-10-01 | 1975-06-10 | Exxon Production Research Co | Hydraulic fracturing method |
| US4585064A (en) * | 1984-07-02 | 1986-04-29 | Graham John W | High strength particulates |
| US5105886A (en) * | 1990-10-24 | 1992-04-21 | Mobil Oil Corporation | Method for the control of solids accompanying hydrocarbon production from subterranean formations |
| US6328106B1 (en) * | 1999-02-04 | 2001-12-11 | Halliburton Energy Services, Inc. | Sealing subterranean zones |
| US6632778B1 (en) * | 2000-05-02 | 2003-10-14 | Schlumberger Technology Corporation | Self-diverting resin systems for sand consolidation |
| US20040231847A1 (en) * | 2003-05-23 | 2004-11-25 | Nguyen Philip D. | Methods for controlling water and particulate production |
| US20040261997A1 (en) * | 2003-06-25 | 2004-12-30 | Nguyen Philip D. | Compositions and methods for consolidating unconsolidated subterranean formations |
| US20050051331A1 (en) * | 2003-04-07 | 2005-03-10 | Nguyen Philip D. | Compositions and methods for particulate consolidation |
Family Cites Families (371)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1107584A (en) | 1965-04-06 | 1968-03-27 | Pan American Petroleum Corp | Method of treating unconsolidated well formations |
| US3489222A (en) | 1968-12-26 | 1970-01-13 | Chevron Res | Method of consolidating earth formations without removing tubing from well |
| DE1905834C3 (en) | 1969-02-06 | 1972-11-09 | Basf Ag | Procedure for avoiding dust and caking of salts or fertilizers |
| US4305463A (en) | 1979-10-31 | 1981-12-15 | Oil Trieval Corporation | Oil recovery method and apparatus |
| US3912692A (en) | 1973-05-03 | 1975-10-14 | American Cyanamid Co | Process for polymerizing a substantially pure glycolide composition |
| US4042032A (en) | 1973-06-07 | 1977-08-16 | Halliburton Company | Methods of consolidating incompetent subterranean formations using aqueous treating solutions |
| US4015995A (en) | 1973-11-23 | 1977-04-05 | Chevron Research Company | Method for delaying the setting of an acid-settable liquid in a terrestrial zone |
| US3948672A (en) | 1973-12-28 | 1976-04-06 | Texaco Inc. | Permeable cement composition and method |
| US3955993A (en) | 1973-12-28 | 1976-05-11 | Texaco Inc. | Method and composition for stabilizing incompetent oil-containing formations |
| US3960736A (en) | 1974-06-03 | 1976-06-01 | The Dow Chemical Company | Self-breaking viscous aqueous solutions and the use thereof in fracturing subterranean formations |
| US4172066A (en) | 1974-06-21 | 1979-10-23 | The Dow Chemical Company | Cross-linked, water-swellable polymer microgels |
| US4031958A (en) | 1975-06-13 | 1977-06-28 | Union Oil Company Of California | Plugging of water-producing zones in a subterranean formation |
| US4070865A (en) * | 1976-03-10 | 1978-01-31 | Halliburton Company | Method of consolidating porous formations using vinyl polymer sealer with divinylbenzene crosslinker |
| US4008763A (en) * | 1976-05-20 | 1977-02-22 | Atlantic Richfield Company | Well treatment method |
| US4029148A (en) | 1976-09-13 | 1977-06-14 | Atlantic Richfield Company | Well fracturing method |
| US4074760A (en) * | 1976-11-01 | 1978-02-21 | The Dow Chemical Company | Method for forming a consolidated gravel pack |
| US4085801A (en) | 1976-11-05 | 1978-04-25 | Continental Oil Company | Control of incompetent formations with thickened acid-settable resin compositions |
| US4169798A (en) | 1976-11-26 | 1979-10-02 | Celanese Corporation | Well-treating compositions |
| US4127173A (en) | 1977-07-28 | 1978-11-28 | Exxon Production Research Company | Method of gravel packing a well |
| GB1569063A (en) * | 1978-05-22 | 1980-06-11 | Shell Int Research | Formation parts around a borehole method for forming channels of high fluid conductivity in |
| US4291766A (en) | 1979-04-09 | 1981-09-29 | Shell Oil Company | Process for consolidating water-wet sands with an epoxy resin-forming solution |
| US4273187A (en) | 1979-07-30 | 1981-06-16 | Texaco Inc. | Petroleum recovery chemical retention prediction technique |
| GB2061918B (en) * | 1979-08-31 | 1984-05-31 | Asahi Dow Ltd | Organic rare-earth salt phosphors |
| FR2473180A1 (en) | 1980-01-08 | 1981-07-10 | Petroles Cie Francaise | METHOD OF TRACING THE DRILLING MUD BY DETERMINING THE CONCENTRATION OF A SOLUBLE ION |
| US4353806A (en) | 1980-04-03 | 1982-10-12 | Exxon Research And Engineering Company | Polymer-microemulsion complexes for the enhanced recovery of oil |
| US4336842A (en) | 1981-01-05 | 1982-06-29 | Graham John W | Method of treating wells using resin-coated particles |
| US4415805A (en) | 1981-06-18 | 1983-11-15 | Dresser Industries, Inc. | Method and apparatus for evaluating multiple stage fracturing or earth formations surrounding a borehole |
| US4460052A (en) | 1981-08-10 | 1984-07-17 | Judith Gockel | Prevention of lost circulation of drilling muds |
| US4387769A (en) | 1981-08-10 | 1983-06-14 | Exxon Production Research Co. | Method for reducing the permeability of subterranean formations |
| US4526695A (en) | 1981-08-10 | 1985-07-02 | Exxon Production Research Co. | Composition for reducing the permeability of subterranean formations |
| US4716964A (en) * | 1981-08-10 | 1988-01-05 | Exxon Production Research Company | Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion |
| US4498995A (en) * | 1981-08-10 | 1985-02-12 | Judith Gockel | Lost circulation drilling fluid |
| US4564459A (en) * | 1981-12-03 | 1986-01-14 | Baker Oil Tools, Inc. | Proppant charge and method |
| US4664819A (en) | 1981-12-03 | 1987-05-12 | Baker Oil Tools, Inc. | Proppant charge and method |
| US4443347A (en) | 1981-12-03 | 1984-04-17 | Baker Oil Tools, Inc. | Proppant charge and method |
| US4494605A (en) * | 1981-12-11 | 1985-01-22 | Texaco Inc. | Sand control employing halogenated, oil soluble hydrocarbons |
| US4439489A (en) * | 1982-02-16 | 1984-03-27 | Acme Resin Corporation | Particles covered with a cured infusible thermoset film and process for their production |
| US4470915A (en) | 1982-09-27 | 1984-09-11 | Halliburton Company | Method and compositions for fracturing subterranean formations |
| US4553596A (en) | 1982-10-27 | 1985-11-19 | Santrol Products, Inc. | Well completion technique |
| US4501328A (en) * | 1983-03-14 | 1985-02-26 | Mobil Oil Corporation | Method of consolidation of oil bearing sands |
| US4527627A (en) | 1983-07-28 | 1985-07-09 | Santrol Products, Inc. | Method of acidizing propped fractures |
| US4493875A (en) * | 1983-12-09 | 1985-01-15 | Minnesota Mining And Manufacturing Company | Proppant for well fractures and method of making same |
| US4541489A (en) | 1984-03-19 | 1985-09-17 | Phillips Petroleum Company | Method of removing flow-restricting materials from wells |
| US4546012A (en) | 1984-04-26 | 1985-10-08 | Carbomedics, Inc. | Level control for a fluidized bed |
| US4675140A (en) | 1984-05-18 | 1987-06-23 | Washington University Technology Associates | Method for coating particles or liquid droplets |
| US4888240A (en) | 1984-07-02 | 1989-12-19 | Graham John W | High strength particulates |
| US4715967A (en) | 1985-12-27 | 1987-12-29 | E. I. Du Pont De Nemours And Company | Composition and method for temporarily reducing permeability of subterranean formations |
| US4665988A (en) | 1986-04-04 | 1987-05-19 | Halliburton Company | Method of preparation of variable permeability fill material for use in subterranean formations |
| US4789105A (en) | 1986-04-18 | 1988-12-06 | Hosokawa Micron Corporation | Particulate material treating apparatus |
| US4959432A (en) | 1986-05-19 | 1990-09-25 | Union Carbide Chemicals And Plastics Company Inc. | Acid viscosifier compositions |
| US4785884A (en) | 1986-05-23 | 1988-11-22 | Acme Resin Corporation | Consolidation of partially cured resin coated particulate material |
| US4669543A (en) | 1986-05-23 | 1987-06-02 | Halliburton Company | Methods and compositions for consolidating solids in subterranean zones |
| US4694905A (en) | 1986-05-23 | 1987-09-22 | Acme Resin Corporation | Precured coated particulate material |
| US4693808A (en) * | 1986-06-16 | 1987-09-15 | Shell Oil Company | Downflow fluidized catalytic cranking reactor process and apparatus with quick catalyst separation means in the bottom thereof |
| US4649998A (en) * | 1986-07-02 | 1987-03-17 | Texaco Inc. | Sand consolidation method employing latex |
| US4683954A (en) | 1986-09-05 | 1987-08-04 | Halliburton Company | Composition and method of stimulating subterranean formations |
| US4733729A (en) * | 1986-09-08 | 1988-03-29 | Dowell Schlumberger Incorporated | Matched particle/liquid density well packing technique |
| MX168601B (en) | 1986-10-01 | 1993-06-01 | Air Prod & Chem | PROCEDURE FOR THE PREPARATION OF A HIGH MOLECULAR WEIGHT VINYLAMINE HOMOPOLYMER |
| US4787453A (en) | 1986-10-30 | 1988-11-29 | Union Oil Company Of California | Permeability stabilization in subterranean formations containing particulate matter |
| FR2618846A2 (en) | 1986-11-25 | 1989-02-03 | Schlumberger Cie Dowell | PROCESS FOR SEALING UNDERGROUND FORMATIONS, PARTICULARLY IN THE OIL DRILLING SECTOR AND CORRESPONDING COMPOSITIONS AND APPLICATIONS |
| US4739832A (en) | 1986-12-24 | 1988-04-26 | Mobil Oil Corporation | Method for improving high impulse fracturing |
| US4850430A (en) | 1987-02-04 | 1989-07-25 | Dowell Schlumberger Incorporated | Matched particle/liquid density well packing technique |
| US4796701A (en) * | 1987-07-30 | 1989-01-10 | Dowell Schlumberger Incorporated | Pyrolytic carbon coating of media improves gravel packing and fracturing capabilities |
| US4829100A (en) | 1987-10-23 | 1989-05-09 | Halliburton Company | Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels |
| US4942186A (en) | 1987-10-23 | 1990-07-17 | Halliburton Company | Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels |
| US4817721A (en) | 1987-12-14 | 1989-04-04 | Conoco Inc. | Reducing the permeability of a rock formation |
| US4800960A (en) * | 1987-12-18 | 1989-01-31 | Texaco Inc. | Consolidatable gravel pack method |
| US4809783A (en) * | 1988-01-14 | 1989-03-07 | Halliburton Services | Method of dissolving organic filter cake |
| US4848467A (en) | 1988-02-16 | 1989-07-18 | Conoco Inc. | Formation fracturing process |
| US4957165A (en) | 1988-02-16 | 1990-09-18 | Conoco Inc. | Well treatment process |
| DE3805116A1 (en) | 1988-02-18 | 1989-08-31 | Hilterhaus Karl Heinz | METHOD FOR PRODUCING ORGANOMINERAL PRODUCTS |
| US4886354A (en) | 1988-05-06 | 1989-12-12 | Conoco Inc. | Method and apparatus for measuring crystal formation |
| US4842072A (en) | 1988-07-25 | 1989-06-27 | Texaco Inc. | Sand consolidation methods |
| US5030603A (en) | 1988-08-02 | 1991-07-09 | Norton-Alcoa | Lightweight oil and gas well proppants |
| US5216050A (en) | 1988-08-08 | 1993-06-01 | Biopak Technology, Ltd. | Blends of polyactic acid |
| US6323307B1 (en) | 1988-08-08 | 2001-11-27 | Cargill Dow Polymers, Llc | Degradation control of environmentally degradable disposable materials |
| US4903770A (en) * | 1988-09-01 | 1990-02-27 | Texaco Inc. | Sand consolidation methods |
| US4986354A (en) * | 1988-09-14 | 1991-01-22 | Conoco Inc. | Composition and placement process for oil field chemicals |
| US4986353A (en) * | 1988-09-14 | 1991-01-22 | Conoco Inc. | Placement process for oil field chemicals |
| US4848470A (en) | 1988-11-21 | 1989-07-18 | Acme Resin Corporation | Process for removing flow-restricting materials from wells |
| US4895207A (en) * | 1988-12-19 | 1990-01-23 | Texaco, Inc. | Method and fluid for placing resin coated gravel or sand in a producing oil well |
| US4969522A (en) | 1988-12-21 | 1990-11-13 | Mobil Oil Corporation | Polymer-coated support and its use as sand pack in enhanced oil recovery |
| US4961466A (en) | 1989-01-23 | 1990-10-09 | Halliburton Company | Method for effecting controlled break in polysaccharide gels |
| US4934456A (en) | 1989-03-29 | 1990-06-19 | Phillips Petroleum Company | Method for altering high temperature subterranean formation permeability |
| US4986355A (en) * | 1989-05-18 | 1991-01-22 | Conoco Inc. | Process for the preparation of fluid loss additive and gel breaker |
| US4969523A (en) | 1989-06-12 | 1990-11-13 | Dowell Schlumberger Incorporated | Method for gravel packing a well |
| US5351754A (en) | 1989-06-21 | 1994-10-04 | N. A. Hardin 1977 Trust | Apparatus and method to cause fatigue failure of subterranean formations |
| US4936385A (en) | 1989-10-30 | 1990-06-26 | Halliburton Company | Method of particulate consolidation |
| US5464060A (en) | 1989-12-27 | 1995-11-07 | Shell Oil Company | Universal fluids for drilling and cementing wells |
| US5182051A (en) * | 1990-01-17 | 1993-01-26 | Protechnics International, Inc. | Raioactive tracing with particles |
| US5049743A (en) | 1990-01-17 | 1991-09-17 | Protechnics International, Inc. | Surface located isotope tracer injection apparatus |
| US6184311B1 (en) * | 1990-03-26 | 2001-02-06 | Courtaulds Coatings (Holdings) Limited | Powder coating composition of semi-crystalline polyester and curing agent |
| US5082056A (en) * | 1990-10-16 | 1992-01-21 | Marathon Oil Company | In situ reversible crosslinked polymer gel used in hydrocarbon recovery applications |
| US5128390A (en) | 1991-01-22 | 1992-07-07 | Halliburton Company | Methods of forming consolidatable resin coated particulate materials in aqueous gels |
| IT1245383B (en) | 1991-03-28 | 1994-09-20 | Eniricerche Spa | GELIFIABLE WATER COMPOSITION WITH DELAYED GELIFICATION TIME |
| GB9108665D0 (en) | 1991-04-23 | 1991-06-12 | Unilever Plc | Liquid cleaning products |
| US5173527A (en) | 1991-05-15 | 1992-12-22 | Forintek Canada Corp. | Fast cure and pre-cure resistant cross-linked phenol-formaldehyde adhesives and methods of making same |
| US5135051A (en) | 1991-06-17 | 1992-08-04 | Facteau David M | Perforation cleaning tool |
| US5178218A (en) * | 1991-06-19 | 1993-01-12 | Oryx Energy Company | Method of sand consolidation with resin |
| CA2062395A1 (en) * | 1991-06-21 | 1992-12-22 | Robert H. Friedman | Sand consolidation methods |
| US5232961A (en) | 1991-08-19 | 1993-08-03 | Murphey Joseph R | Hardenable resin compositions and methods |
| US5256729A (en) | 1991-09-04 | 1993-10-26 | Atlantic Richfield Company | Nitrile derivative for sand control |
| US5199491A (en) | 1991-09-04 | 1993-04-06 | Atlantic Richfield Company | Method of using nitrile derivative for sand control |
| US5199492A (en) | 1991-09-19 | 1993-04-06 | Texaco Inc. | Sand consolidation methods |
| US5218038A (en) | 1991-11-14 | 1993-06-08 | Borden, Inc. | Phenolic resin coated proppants with reduced hydraulic fluid interaction |
| CA2057750A1 (en) | 1991-12-16 | 1993-06-17 | Tibor Csabai | Process for producing a high strength artificial (cast) stone with high permeability and filter effect |
| US6326458B1 (en) | 1992-01-24 | 2001-12-04 | Cargill, Inc. | Continuous process for the manufacture of lactide and lactide polymers |
| MX9300333A (en) | 1992-01-24 | 1993-07-01 | Cargill Inc | CONTINUOUS PROCESS FOR THE MANUFACTURE OF LACTIDE POLYMERS WITH IMPROVED PURIFICATION METHODS. |
| US5142023A (en) | 1992-01-24 | 1992-08-25 | Cargill, Incorporated | Continuous process for manufacture of lactide polymers with controlled optical purity |
| US5247059A (en) | 1992-01-24 | 1993-09-21 | Cargill, Incorporated | Continuous process for the manufacture of a purified lactide from esters of lactic acid |
| US5677187A (en) | 1992-01-29 | 1997-10-14 | Anderson, Ii; David K. | Tagging chemical compositions |
| US5211234A (en) | 1992-01-30 | 1993-05-18 | Halliburton Company | Horizontal well completion methods |
| US5165438A (en) | 1992-05-26 | 1992-11-24 | Facteau David M | Fluidic oscillator |
| US5238068A (en) | 1992-07-01 | 1993-08-24 | Halliburton Company | Methods of fracture acidizing subterranean formations |
| US5273115A (en) | 1992-07-13 | 1993-12-28 | Gas Research Institute | Method for refracturing zones in hydrocarbon-producing wells |
| US5293939A (en) * | 1992-07-31 | 1994-03-15 | Texaco Chemical Company | Formation treating methods |
| US5425994A (en) | 1992-08-04 | 1995-06-20 | Technisand, Inc. | Resin coated particulates comprissing a formaldehyde source-metal compound (FS-MC) complex |
| US5249628A (en) | 1992-09-29 | 1993-10-05 | Halliburton Company | Horizontal well completions |
| US5325923A (en) | 1992-09-29 | 1994-07-05 | Halliburton Company | Well completions with expandable casing portions |
| US5396957A (en) * | 1992-09-29 | 1995-03-14 | Halliburton Company | Well completions with expandable casing portions |
| US5361856A (en) | 1992-09-29 | 1994-11-08 | Halliburton Company | Well jetting apparatus and met of modifying a well therewith |
| WO1994008078A1 (en) | 1992-10-02 | 1994-04-14 | Cargill, Incorporated | A melt-stable lactide polymer fabric and process for manufacture thereof |
| US5338822A (en) | 1992-10-02 | 1994-08-16 | Cargill, Incorporated | Melt-stable lactide polymer composition and process for manufacture thereof |
| ATE173520T1 (en) | 1992-10-02 | 1998-12-15 | Cargill Inc | PAPER WITH A COATING OF MELTS-STABLE POLYMER AND METHOD FOR PRODUCING IT |
| US5295542A (en) * | 1992-10-05 | 1994-03-22 | Halliburton Company | Well gravel packing methods |
| US5320171A (en) | 1992-10-09 | 1994-06-14 | Halliburton Company | Method of preventing gas coning and fingering in a high temperature hydrocarbon bearing formation |
| US5321062A (en) | 1992-10-20 | 1994-06-14 | Halliburton Company | Substituted alkoxy benzene and use thereof as wetting aid for polyepoxide resins |
| US5332037A (en) | 1992-11-16 | 1994-07-26 | Atlantic Richfield Company | Squeeze cementing method for wells |
| US5363916A (en) | 1992-12-21 | 1994-11-15 | Halliburton Company | Method of gravel packing a well |
| US5316587A (en) | 1993-01-21 | 1994-05-31 | Church & Dwight Co., Inc. | Water soluble blast media containing surfactant |
| JPH06225848A (en) | 1993-02-01 | 1994-08-16 | Tootaru Service:Kk | Cleaning method for outer wall surface of building |
| US5330005A (en) | 1993-04-05 | 1994-07-19 | Dowell Schlumberger Incorporated | Control of particulate flowback in subterranean wells |
| CA2497728C (en) * | 1993-04-05 | 2008-02-19 | Roger J. Card | Control of particulate flowback in subterranean wells |
| US5360068A (en) | 1993-04-19 | 1994-11-01 | Mobil Oil Corporation | Formation fracturing |
| US5377759A (en) * | 1993-05-20 | 1995-01-03 | Texaco Inc. | Formation treating methods |
| US5422183A (en) * | 1993-06-01 | 1995-06-06 | Santrol, Inc. | Composite and reinforced coatings on proppants and particles |
| US5373901A (en) | 1993-07-27 | 1994-12-20 | Halliburton Company | Encapsulated breakers and method for use in treating subterranean formations |
| US5359026A (en) * | 1993-07-30 | 1994-10-25 | Cargill, Incorporated | Poly(lactide) copolymer and process for manufacture thereof |
| US5368102A (en) | 1993-09-09 | 1994-11-29 | Halliburton Company | Consolidatable particulate material and well treatment method |
| US5545824A (en) | 1993-09-14 | 1996-08-13 | Ppg Industries, Inc. | Curing composition for acrylic polyol coatings and coating produced therefrom |
| US5388648A (en) * | 1993-10-08 | 1995-02-14 | Baker Hughes Incorporated | Method and apparatus for sealing the juncture between a vertical well and one or more horizontal wells using deformable sealing means |
| US5335726A (en) | 1993-10-22 | 1994-08-09 | Halliburton Company | Water control |
| US5358051A (en) | 1993-10-22 | 1994-10-25 | Halliburton Company | Method of water control with hydroxy unsaturated carbonyls |
| US5423381A (en) | 1993-10-29 | 1995-06-13 | Texaco Inc. | Quick-set formation treating methods |
| US5386874A (en) * | 1993-11-08 | 1995-02-07 | Halliburton Company | Perphosphate viscosity breakers in well fracture fluids |
| US5381864A (en) * | 1993-11-12 | 1995-01-17 | Halliburton Company | Well treating methods using particulate blends |
| US5402846A (en) | 1993-11-15 | 1995-04-04 | Mobil Oil Corporation | Unique method of hydraulic fracturing |
| DE69415937T2 (en) | 1993-11-18 | 1999-05-27 | Halliburton Energy Services, Inc., Duncan, Okla. | Reduction of aluminum precipitation when acidifying underground formations |
| EP0656459B1 (en) | 1993-11-27 | 2001-03-28 | AEA Technology plc | Method for treating oil wells |
| US5559086A (en) * | 1993-12-13 | 1996-09-24 | Halliburton Company | Epoxy resin composition and well treatment method |
| US5393810A (en) * | 1993-12-30 | 1995-02-28 | Halliburton Company | Method and composition for breaking crosslinked gels |
| US5460226A (en) | 1994-05-18 | 1995-10-24 | Shell Oil Company | Formation fracturing |
| US5837656A (en) | 1994-07-21 | 1998-11-17 | Santrol, Inc. | Well treatment fluid compatible self-consolidating particles |
| US5494178A (en) * | 1994-07-25 | 1996-02-27 | Alu Inc. | Display and decorative fixture apparatus |
| US5531274A (en) | 1994-07-29 | 1996-07-02 | Bienvenu, Jr.; Raymond L. | Lightweight proppants and their use in hydraulic fracturing |
| US5499678A (en) * | 1994-08-02 | 1996-03-19 | Halliburton Company | Coplanar angular jetting head for well perforating |
| US5431225A (en) | 1994-09-21 | 1995-07-11 | Halliburton Company | Sand control well completion methods for poorly consolidated formations |
| US5498280A (en) * | 1994-11-14 | 1996-03-12 | Binney & Smith Inc. | Phosphorescent and fluorescent marking composition |
| GB9426025D0 (en) | 1994-12-22 | 1995-02-22 | Smith Philip L U | Oil and gas field chemicals |
| US5591700A (en) * | 1994-12-22 | 1997-01-07 | Halliburton Company | Fracturing fluid with encapsulated breaker |
| USRE36466E (en) | 1995-01-06 | 1999-12-28 | Dowel | Sand control without requiring a gravel pack screen |
| US5551514A (en) | 1995-01-06 | 1996-09-03 | Dowell, A Division Of Schlumberger Technology Corp. | Sand control without requiring a gravel pack screen |
| US5649323A (en) * | 1995-01-17 | 1997-07-15 | Kalb; Paul D. | Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes |
| US5522460A (en) | 1995-01-30 | 1996-06-04 | Mobil Oil Corporation | Water compatible chemical in situ and sand consolidation with furan resin |
| US5604186A (en) * | 1995-02-15 | 1997-02-18 | Halliburton Company | Encapsulated enzyme breaker and method for use in treating subterranean formations |
| GB9503949D0 (en) | 1995-02-28 | 1995-04-19 | Atomic Energy Authority Uk | Oil well treatment |
| US6074739A (en) | 1995-03-01 | 2000-06-13 | Katagiri; Noboru | Colored composites exhibiting long afterglow characteristics and colored articles exhibiting long afterglow characteristics |
| US5639806A (en) | 1995-03-28 | 1997-06-17 | Borden Chemical, Inc. | Bisphenol-containing resin coating articles and methods of using same |
| US5787986A (en) | 1995-03-29 | 1998-08-04 | Halliburton Energy Services, Inc. | Control of particulate flowback in subterranean wells |
| US5775425A (en) | 1995-03-29 | 1998-07-07 | Halliburton Energy Services, Inc. | Control of fine particulate flowback in subterranean wells |
| US6047772A (en) | 1995-03-29 | 2000-04-11 | Halliburton Energy Services, Inc. | Control of particulate flowback in subterranean wells |
| US5839510A (en) | 1995-03-29 | 1998-11-24 | Halliburton Energy Services, Inc. | Control of particulate flowback in subterranean wells |
| US5582249A (en) | 1995-08-02 | 1996-12-10 | Halliburton Company | Control of particulate flowback in subterranean wells |
| US6209643B1 (en) | 1995-03-29 | 2001-04-03 | Halliburton Energy Services, Inc. | Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals |
| US5833000A (en) | 1995-03-29 | 1998-11-10 | Halliburton Energy Services, Inc. | Control of particulate flowback in subterranean wells |
| US5497830A (en) * | 1995-04-06 | 1996-03-12 | Bj Services Company | Coated breaker for crosslinked acid |
| US5604184A (en) * | 1995-04-10 | 1997-02-18 | Texaco, Inc. | Chemically inert resin coated proppant system for control of proppant flowback in hydraulically fractured wells |
| US5529123A (en) | 1995-04-10 | 1996-06-25 | Atlantic Richfield Company | Method for controlling fluid loss from wells into high conductivity earth formations |
| US5551513A (en) | 1995-05-12 | 1996-09-03 | Texaco Inc. | Prepacked screen |
| US5670473A (en) | 1995-06-06 | 1997-09-23 | Sunburst Chemicals, Inc. | Solid cleaning compositions based on hydrated salts |
| DE19627469A1 (en) | 1995-07-12 | 1997-01-16 | Sanyo Chemical Ind Ltd | Epoxy resin crosslinking agent and one-component epoxy resin composition |
| US5836391A (en) | 1995-07-25 | 1998-11-17 | Alberta Oil Sands Technology & Research Authority | Wellbore sand control method |
| US5595245A (en) * | 1995-08-04 | 1997-01-21 | Scott, Iii; George L. | Systems of injecting phenolic resin activator during subsurface fracture stimulation for enhanced oil recovery |
| US5929437A (en) | 1995-08-18 | 1999-07-27 | Protechnics International, Inc. | Encapsulated radioactive tracer |
| US5588488A (en) | 1995-08-22 | 1996-12-31 | Halliburton Company | Cementing multi-lateral wells |
| US5833361A (en) | 1995-09-07 | 1998-11-10 | Funk; James E. | Apparatus for the production of small spherical granules |
| US6028113A (en) * | 1995-09-27 | 2000-02-22 | Sunburst Chemicals, Inc. | Solid sanitizers and cleaner disinfectants |
| US5849401A (en) | 1995-09-28 | 1998-12-15 | Cargill, Incorporated | Compostable multilayer structures, methods for manufacture, and articles prepared therefrom |
| US6528157B1 (en) | 1995-11-01 | 2003-03-04 | Borden Chemical, Inc. | Proppants with fiber reinforced resin coatings |
| US5582250A (en) | 1995-11-09 | 1996-12-10 | Dowell, A Division Of Schlumberger Technology Corporation | Overbalanced perforating and fracturing process using low-density, neutrally buoyant proppant |
| US5620049A (en) | 1995-12-14 | 1997-04-15 | Atlantic Richfield Company | Method for increasing the production of petroleum from a subterranean formation penetrated by a wellbore |
| NO965327L (en) | 1995-12-14 | 1997-06-16 | Halliburton Co | Traceable well cement compositions and methods |
| US5697440A (en) | 1996-01-04 | 1997-12-16 | Halliburton Energy Services, Inc. | Control of particulate flowback in subterranean wells |
| US5692566A (en) | 1996-01-22 | 1997-12-02 | Texaco Inc. | Formation treating method |
| US5985312A (en) | 1996-01-26 | 1999-11-16 | Brown University Research Foundation | Methods and compositions for enhancing the bioadhesive properties of polymers |
| US6620857B2 (en) | 1996-07-02 | 2003-09-16 | Ciba Specialty Chemicals Corporation | Process for curing a polymerizable composition |
| US5799734A (en) | 1996-07-18 | 1998-09-01 | Halliburton Energy Services, Inc. | Method of forming and using particulate slurries for well completion |
| US5806593A (en) | 1996-07-22 | 1998-09-15 | Texaco Inc | Method to increase sand grain coating coverage |
| US5864003A (en) * | 1996-07-23 | 1999-01-26 | Georgia-Pacific Resins, Inc. | Thermosetting phenolic resin composition |
| US5712314A (en) * | 1996-08-09 | 1998-01-27 | Texaco Inc. | Formulation for creating a pliable resin plug |
| US5977283A (en) | 1996-08-12 | 1999-11-02 | Lear Corporation | Thermosetting adhesive and method of making same |
| US5960880A (en) | 1996-08-27 | 1999-10-05 | Halliburton Energy Services, Inc. | Unconsolidated formation stimulation with sand filtration |
| GB9619418D0 (en) * | 1996-09-18 | 1996-10-30 | Urlwin Smith Phillip L | Oil and gas field chemicals |
| US5782300A (en) | 1996-11-13 | 1998-07-21 | Schlumberger Technology Corporation | Suspension and porous pack for reduction of particles in subterranean well fluids, and method for treating an underground formation |
| US6667279B1 (en) | 1996-11-13 | 2003-12-23 | Wallace, Inc. | Method and composition for forming water impermeable barrier |
| US6330916B1 (en) | 1996-11-27 | 2001-12-18 | Bj Services Company | Formation treatment method using deformable particles |
| US6059034A (en) | 1996-11-27 | 2000-05-09 | Bj Services Company | Formation treatment method using deformable particles |
| US6364018B1 (en) | 1996-11-27 | 2002-04-02 | Bj Services Company | Lightweight methods and compositions for well treating |
| US6749025B1 (en) | 1996-11-27 | 2004-06-15 | Bj Services Company | Lightweight methods and compositions for sand control |
| US7426961B2 (en) | 2002-09-03 | 2008-09-23 | Bj Services Company | Method of treating subterranean formations with porous particulate materials |
| US5698322A (en) | 1996-12-02 | 1997-12-16 | Kimberly-Clark Worldwide, Inc. | Multicomponent fiber |
| US5765642A (en) | 1996-12-23 | 1998-06-16 | Halliburton Energy Services, Inc. | Subterranean formation fracturing methods |
| KR100535971B1 (en) | 1997-03-07 | 2006-06-21 | 디에스엠 아이피 어셋츠 비. 브이 | Radiation-curable composition having high cure speed |
| US5830987A (en) | 1997-03-11 | 1998-11-03 | Hehr International Inc. | Amino-acrylate polymers and method |
| US5791415A (en) | 1997-03-13 | 1998-08-11 | Halliburton Energy Services, Inc. | Stimulating wells in unconsolidated formations |
| GB9706044D0 (en) | 1997-03-24 | 1997-05-14 | Davidson Brett C | Dynamic enhancement of fluid flow rate using pressure and strain pulsing |
| US5865936A (en) * | 1997-03-28 | 1999-02-02 | National Starch And Chemical Investment Holding Corporation | Rapid curing structural acrylic adhesive |
| GB9708484D0 (en) * | 1997-04-25 | 1997-06-18 | Merck Sharp & Dohme | Therapeutic agents |
| US5960877A (en) | 1997-05-07 | 1999-10-05 | Halliburton Energy Services, Inc. | Polymeric compositions and methods for use in well applications |
| US5840784A (en) | 1997-05-07 | 1998-11-24 | Halliburton Energy Services, Inc. | Polymeric compositions and methods for use in low temperature well applications |
| US5968879A (en) | 1997-05-12 | 1999-10-19 | Halliburton Energy Services, Inc. | Polymeric well completion and remedial compositions and methods |
| US6028534A (en) * | 1997-06-02 | 2000-02-22 | Schlumberger Technology Corporation | Formation data sensing with deployed remote sensors during well drilling |
| US6169058B1 (en) * | 1997-06-05 | 2001-01-02 | Bj Services Company | Compositions and methods for hydraulic fracturing |
| US5924488A (en) | 1997-06-11 | 1999-07-20 | Halliburton Energy Services, Inc. | Methods of preventing well fracture proppant flow-back |
| US5908073A (en) | 1997-06-26 | 1999-06-01 | Halliburton Energy Services, Inc. | Preventing well fracture proppant flow-back |
| US6004400A (en) | 1997-07-09 | 1999-12-21 | Phillip W. Bishop | Carbon dioxide cleaning process |
| US5921317A (en) | 1997-08-14 | 1999-07-13 | Halliburton Energy Services, Inc. | Coating well proppant with hardenable resin-fiber composites |
| AU738096B2 (en) | 1997-08-15 | 2001-09-06 | Halliburton Energy Services, Inc. | Light weight high temperature well cement compositions and methods |
| US6006836A (en) | 1997-08-18 | 1999-12-28 | Halliburton Energy Services, Inc. | Methods of sealing plugs in well bores |
| US5873413A (en) | 1997-08-18 | 1999-02-23 | Halliburton Energy Services, Inc. | Methods of modifying subterranean strata properties |
| US6003600A (en) | 1997-10-16 | 1999-12-21 | Halliburton Energy Services, Inc. | Methods of completing wells in unconsolidated subterranean zones |
| US6177484B1 (en) * | 1997-11-03 | 2001-01-23 | Texaco Inc. | Combination catalyst/coupling agent for furan resin |
| US5944105A (en) * | 1997-11-11 | 1999-08-31 | Halliburton Energy Services, Inc. | Well stabilization methods |
| US6124246A (en) | 1997-11-17 | 2000-09-26 | Halliburton Energy Services, Inc. | High temperature epoxy resin compositions, additives and methods |
| US6140446A (en) | 1997-11-18 | 2000-10-31 | Shin-Etsu Chemical Co., Ltd. | Hydrosilylation catalysts and silicone compositions using the same |
| WO1999027229A1 (en) | 1997-11-21 | 1999-06-03 | Bj Services Company | Formation treatment method using deformable particles |
| US5893383A (en) | 1997-11-25 | 1999-04-13 | Perfclean International | Fluidic Oscillator |
| US6059036A (en) | 1997-11-26 | 2000-05-09 | Halliburton Energy Services, Inc. | Methods and compositions for sealing subterranean zones |
| US6135987A (en) | 1997-12-22 | 2000-10-24 | Kimberly-Clark Worldwide, Inc. | Synthetic fiber |
| EP0926310A1 (en) | 1997-12-24 | 1999-06-30 | Shell Internationale Researchmaatschappij B.V. | Apparatus and method for injecting treatment fluids into an underground formation |
| EP0933498B1 (en) | 1998-02-03 | 2003-05-28 | Halliburton Energy Services, Inc. | Method of rapidly consolidating particulate materials in wells |
| US6006835A (en) | 1998-02-17 | 1999-12-28 | Halliburton Energy Services, Inc. | Methods for sealing subterranean zones using foamed resin |
| US6012524A (en) * | 1998-04-14 | 2000-01-11 | Halliburton Energy Services, Inc. | Remedial well bore sealing methods and compositions |
| EP0955675B1 (en) | 1998-05-07 | 2004-12-15 | Shin-Etsu Chemical Co., Ltd. | Epoxy resin compositions and semiconductor devices encapsulated therewith |
| US6458885B1 (en) | 1998-05-29 | 2002-10-01 | Ppg Industries Ohio, Inc. | Fast drying clear coat composition |
| US6162766A (en) | 1998-05-29 | 2000-12-19 | 3M Innovative Properties Company | Encapsulated breakers, compositions and methods of use |
| US6024170A (en) * | 1998-06-03 | 2000-02-15 | Halliburton Energy Services, Inc. | Methods of treating subterranean formation using borate cross-linking compositions |
| US6152234A (en) | 1998-06-10 | 2000-11-28 | Atlantic Richfield Company | Method for strengthening a subterranean formation |
| US6016870A (en) * | 1998-06-11 | 2000-01-25 | Halliburton Energy Services, Inc. | Compositions and methods for consolidating unconsolidated subterranean zones |
| US6068055A (en) | 1998-06-30 | 2000-05-30 | Halliburton Energy Services, Inc. | Well sealing compositions and methods |
| US6686328B1 (en) * | 1998-07-17 | 2004-02-03 | The Procter & Gamble Company | Detergent tablet |
| US6114410A (en) | 1998-07-17 | 2000-09-05 | Technisand, Inc. | Proppant containing bondable particles and removable particles |
| US6059035A (en) | 1998-07-20 | 2000-05-09 | Halliburton Energy Services, Inc. | Subterranean zone sealing methods and compositions |
| ATE319772T1 (en) | 1998-07-22 | 2006-03-15 | Hexion Specialty Chemicals Inc | SUPPORT COMPOSITE, COMPOSITE FILTRATION MEDIUM AND METHOD FOR THE PRODUCTION AND USE THEREOF |
| US6406789B1 (en) | 1998-07-22 | 2002-06-18 | Borden Chemical, Inc. | Composite proppant, composite filtration media and methods for making and using same |
| US6582819B2 (en) | 1998-07-22 | 2003-06-24 | Borden Chemical, Inc. | Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same |
| GB2340147A (en) | 1998-07-30 | 2000-02-16 | Sofitech Nv | Wellbore fluid |
| US6242390B1 (en) | 1998-07-31 | 2001-06-05 | Schlumberger Technology Corporation | Cleanup additive |
| US6098711A (en) | 1998-08-18 | 2000-08-08 | Halliburton Energy Services, Inc. | Compositions and methods for sealing pipe in well bores |
| US6279652B1 (en) | 1998-09-23 | 2001-08-28 | Halliburton Energy Services, Inc. | Heat insulation compositions and methods |
| US6446727B1 (en) | 1998-11-12 | 2002-09-10 | Sclumberger Technology Corporation | Process for hydraulically fracturing oil and gas wells |
| DE19854207A1 (en) | 1998-11-24 | 2000-05-25 | Wacker Chemie Gmbh | Process for the production of fast-curing molded articles bound with phenolic resin |
| US6176315B1 (en) * | 1998-12-04 | 2001-01-23 | Halliburton Energy Services, Inc. | Preventing flow through subterranean zones |
| US6713170B1 (en) | 1998-12-09 | 2004-03-30 | Nippon Kayaku Kabushiki Kaisha | Hard coating material and film comprising the same |
| US6189615B1 (en) * | 1998-12-15 | 2001-02-20 | Marathon Oil Company | Application of a stabilized polymer gel to an alkaline treatment region for improved hydrocarbon recovery |
| US6196317B1 (en) * | 1998-12-15 | 2001-03-06 | Halliburton Energy Services, Inc. | Method and compositions for reducing the permeabilities of subterranean zones |
| US6130286A (en) | 1998-12-18 | 2000-10-10 | Ppg Industries Ohio, Inc. | Fast drying clear coat composition with low volatile organic content |
| US6192985B1 (en) * | 1998-12-19 | 2001-02-27 | Schlumberger Technology Corporation | Fluids and techniques for maximizing fracture fluid clean-up |
| US6140277A (en) | 1998-12-31 | 2000-10-31 | Schlumberger Technology Corporation | Fluids and techniques for hydrocarbon well completion |
| US20030130133A1 (en) | 1999-01-07 | 2003-07-10 | Vollmer Daniel Patrick | Well treatment fluid |
| US6123871A (en) | 1999-01-11 | 2000-09-26 | Carroll; Michael Lee | Photoluminescence polymers, their preparation and uses thereof |
| DE19904147C2 (en) | 1999-02-03 | 2001-05-10 | Herbert Huettlin | Device for treating particulate material |
| US6271181B1 (en) | 1999-02-04 | 2001-08-07 | Halliburton Energy Services, Inc. | Sealing subterranean zones |
| US6136078A (en) | 1999-02-05 | 2000-10-24 | Binney & Smith Inc. | Marking composition and method for marking dark substrates |
| US6244344B1 (en) | 1999-02-09 | 2001-06-12 | Halliburton Energy Services, Inc. | Methods and compositions for cementing pipe strings in well bores |
| US6599863B1 (en) | 1999-02-18 | 2003-07-29 | Schlumberger Technology Corporation | Fracturing process and composition |
| US6234251B1 (en) | 1999-02-22 | 2001-05-22 | Halliburton Energy Services, Inc. | Resilient well cement compositions and methods |
| DE60012248T2 (en) | 1999-02-26 | 2005-07-28 | Shin-Etsu Chemical Co., Ltd. | Room temperature fast curing silicone composition |
| US6187839B1 (en) * | 1999-03-03 | 2001-02-13 | Halliburton Energy Services, Inc. | Methods of sealing compositions and methods |
| KR100305750B1 (en) | 1999-03-10 | 2001-09-24 | 윤덕용 | Manufacturing Method for Anisotropic Conductive Adhesive for Flip Chip Interconnection on an Organic Substrate |
| GB9906484D0 (en) | 1999-03-19 | 1999-05-12 | Cleansorb Ltd | Method for treatment of underground reservoirs |
| US6209644B1 (en) | 1999-03-29 | 2001-04-03 | Weatherford Lamb, Inc. | Assembly and method for forming a seal in a junction of a multilateral well bore |
| US6148911A (en) | 1999-03-30 | 2000-11-21 | Atlantic Richfield Company | Method of treating subterranean gas hydrate formations |
| US6209646B1 (en) | 1999-04-21 | 2001-04-03 | Halliburton Energy Services, Inc. | Controlling the release of chemical additives in well treating fluids |
| US6538576B1 (en) | 1999-04-23 | 2003-03-25 | Halliburton Energy Services, Inc. | Self-contained downhole sensor and method of placing and interrogating same |
| SG93832A1 (en) | 1999-05-07 | 2003-01-21 | Inst Of Microelectronics | Epoxy resin compositions for liquid encapsulation |
| AU780135B2 (en) | 1999-05-21 | 2005-03-03 | Cargill Inc. | Methods and materials for the synthesis of organic products |
| US6283214B1 (en) | 1999-05-27 | 2001-09-04 | Schlumberger Technology Corp. | Optimum perforation design and technique to minimize sand intrusion |
| US6387986B1 (en) | 1999-06-24 | 2002-05-14 | Ahmad Moradi-Araghi | Compositions and processes for oil field applications |
| US6187834B1 (en) * | 1999-09-08 | 2001-02-13 | Dow Corning Corporation | Radiation curable silicone compositions |
| CA2318703A1 (en) * | 1999-09-16 | 2001-03-16 | Bj Services Company | Compositions and methods for cementing using elastic particles |
| US6214773B1 (en) | 1999-09-29 | 2001-04-10 | Halliburton Energy Services, Inc. | High temperature, low residue well treating fluids and methods |
| US6279656B1 (en) | 1999-11-03 | 2001-08-28 | Santrol, Inc. | Downhole chemical delivery system for oil and gas wells |
| DK1247840T3 (en) | 1999-12-08 | 2005-12-27 | Nat Inst Of Advanced Ind Scien | Biodegradable resin compositions |
| US6311773B1 (en) | 2000-01-28 | 2001-11-06 | Halliburton Energy Services, Inc. | Resin composition and methods of consolidating particulate solids in wells with or without closure pressure |
| US6302207B1 (en) | 2000-02-15 | 2001-10-16 | Halliburton Energy Services, Inc. | Methods of completing unconsolidated subterranean producing zones |
| US6257335B1 (en) | 2000-03-02 | 2001-07-10 | Halliburton Energy Services, Inc. | Stimulating fluid production from unconsolidated formations |
| DE60122491T2 (en) | 2000-04-26 | 2006-12-28 | Resman As | MONITORING OF A RESERVOIR |
| US6745159B1 (en) | 2000-04-28 | 2004-06-01 | Halliburton Energy Services, Inc. | Process of designing screenless completions for oil or gas wells |
| GB2382143B (en) | 2000-05-01 | 2004-05-26 | Schlumberger Holdings | A method for telemetering data between wellbores |
| US6357527B1 (en) | 2000-05-05 | 2002-03-19 | Halliburton Energy Services, Inc. | Encapsulated breakers and method for use in treating subterranean formations |
| US6444316B1 (en) | 2000-05-05 | 2002-09-03 | Halliburton Energy Services, Inc. | Encapsulated chemicals for use in controlled time release applications and methods |
| WO2001087797A1 (en) | 2000-05-15 | 2001-11-22 | Services Petroliers Schlumberger (Sps) | Permeable cements |
| KR100460680B1 (en) | 2000-06-12 | 2004-12-09 | 미쯔이카가쿠 가부시기가이샤 | Phenolic resin composition |
| US6454003B1 (en) | 2000-06-14 | 2002-09-24 | Ondeo Nalco Energy Services, L.P. | Composition and method for recovering hydrocarbon fluids from a subterranean reservoir |
| US6450260B1 (en) | 2000-07-07 | 2002-09-17 | Schlumberger Technology Corporation | Sand consolidation with flexible gel system |
| US6408943B1 (en) | 2000-07-17 | 2002-06-25 | Halliburton Energy Services, Inc. | Method and apparatus for placing and interrogating downhole sensors |
| US6390195B1 (en) | 2000-07-28 | 2002-05-21 | Halliburton Energy Service,S Inc. | Methods and compositions for forming permeable cement sand screens in well bores |
| US6202751B1 (en) | 2000-07-28 | 2001-03-20 | Halliburton Energy Sevices, Inc. | Methods and compositions for forming permeable cement sand screens in well bores |
| US6422314B1 (en) | 2000-08-01 | 2002-07-23 | Halliburton Energy Services, Inc. | Well drilling and servicing fluids and methods of removing filter cake deposited thereby |
| US6494263B2 (en) | 2000-08-01 | 2002-12-17 | Halliburton Energy Services, Inc. | Well drilling and servicing fluids and methods of removing filter cake deposited thereby |
| WO2002012674A1 (en) | 2000-08-07 | 2002-02-14 | T R Oil Services Limited | Method for delivering chemicals to an oil or gas well |
| US6552333B1 (en) | 2000-08-16 | 2003-04-22 | Halliburton Energy Services, Inc. | Apparatus and methods for determining gravel pack quality |
| ATE377137T1 (en) | 2000-09-12 | 2007-11-15 | Schlumberger Technology Bv | INVESTIGATION OF MULTI-LAYER DEPOSITS |
| US6439310B1 (en) | 2000-09-15 | 2002-08-27 | Scott, Iii George L. | Real-time reservoir fracturing process |
| US6372678B1 (en) | 2000-09-28 | 2002-04-16 | Fairmount Minerals, Ltd | Proppant composition for gas and oil well fracturing |
| US6543545B1 (en) | 2000-10-27 | 2003-04-08 | Halliburton Energy Services, Inc. | Expandable sand control device and specialized completion system and method |
| US20020070020A1 (en) | 2000-12-08 | 2002-06-13 | Nguyen Philip D. | Completing wells in unconsolidated formations |
| US6439309B1 (en) | 2000-12-13 | 2002-08-27 | Bj Services Company | Compositions and methods for controlling particulate movement in wellbores and subterranean formations |
| US6648501B2 (en) | 2000-12-19 | 2003-11-18 | Wenger Manufacturing, Inc. | System for homogeneously mixing plural incoming product streams of different composition |
| US6321841B1 (en) | 2001-02-21 | 2001-11-27 | Halliburton Energy Services, Inc. | Methods of sealing pipe strings in disposal wells |
| US6659179B2 (en) | 2001-05-18 | 2003-12-09 | Halliburton Energy Serv Inc | Method of controlling proppant flowback in a well |
| WO2002095189A1 (en) * | 2001-05-23 | 2002-11-28 | Core Laboratories L.P. | Method of determining the extent of recovery of materials injected into oil wells |
| US6488091B1 (en) | 2001-06-11 | 2002-12-03 | Halliburton Energy Services, Inc. | Subterranean formation treating fluid concentrates, treating fluids and methods |
| US6868998B2 (en) * | 2001-07-10 | 2005-03-22 | Watermark Paddlesports, Inc. | Bike mount |
| DE60203973T2 (en) | 2001-08-14 | 2006-02-23 | Kaneka Corp. | Hardenable resin |
| US6632892B2 (en) | 2001-08-21 | 2003-10-14 | General Electric Company | Composition comprising silicone epoxy resin, hydroxyl compound, anhydride and curing catalyst |
| US6367549B1 (en) | 2001-09-21 | 2002-04-09 | Halliburton Energy Services, Inc. | Methods and ultra-low density sealing compositions for sealing pipe in well bores |
| US6949491B2 (en) | 2001-09-26 | 2005-09-27 | Cooke Jr Claude E | Method and materials for hydraulic fracturing of wells |
| US6753299B2 (en) | 2001-11-09 | 2004-06-22 | Badger Mining Corporation | Composite silica proppant material |
| US6626241B2 (en) | 2001-12-06 | 2003-09-30 | Halliburton Energy Services, Inc. | Method of frac packing through existing gravel packed screens |
| US6861394B2 (en) | 2001-12-19 | 2005-03-01 | M-I L.L.C. | Internal breaker |
| US6962200B2 (en) | 2002-01-08 | 2005-11-08 | Halliburton Energy Services, Inc. | Methods and compositions for consolidating proppant in subterranean fractures |
| US6725931B2 (en) * | 2002-06-26 | 2004-04-27 | Halliburton Energy Services, Inc. | Methods of consolidating proppant and controlling fines in wells |
| US7216711B2 (en) | 2002-01-08 | 2007-05-15 | Halliburton Eenrgy Services, Inc. | Methods of coating resin and blending resin-coated proppant |
| US6668926B2 (en) | 2002-01-08 | 2003-12-30 | Halliburton Energy Services, Inc. | Methods of consolidating proppant in subterranean fractures |
| US6608162B1 (en) | 2002-03-15 | 2003-08-19 | Borden Chemical, Inc. | Spray-dried phenol formaldehyde resins |
| US6830105B2 (en) | 2002-03-26 | 2004-12-14 | Halliburton Energy Services, Inc. | Proppant flowback control using elastomeric component |
| US6852173B2 (en) | 2002-04-05 | 2005-02-08 | Boc, Inc. | Liquid-assisted cryogenic cleaning |
| US6691780B2 (en) | 2002-04-18 | 2004-02-17 | Halliburton Energy Services, Inc. | Tracking of particulate flowback in subterranean wells |
| US6725930B2 (en) | 2002-04-19 | 2004-04-27 | Schlumberger Technology Corporation | Conductive proppant and method of hydraulic fracturing using the same |
| US20030205376A1 (en) | 2002-04-19 | 2003-11-06 | Schlumberger Technology Corporation | Means and Method for Assessing the Geometry of a Subterranean Fracture During or After a Hydraulic Fracturing Treatment |
| EP1362978A1 (en) | 2002-05-17 | 2003-11-19 | Resolution Research Nederland B.V. | System for treating an underground formation |
| US6732800B2 (en) | 2002-06-12 | 2004-05-11 | Schlumberger Technology Corporation | Method of completing a well in an unconsolidated formation |
| US6840318B2 (en) | 2002-06-20 | 2005-01-11 | Schlumberger Technology Corporation | Method for treating subterranean formation |
| US7049272B2 (en) * | 2002-07-16 | 2006-05-23 | Santrol, Inc. | Downhole chemical delivery system for oil and gas wells |
| US6877560B2 (en) * | 2002-07-19 | 2005-04-12 | Halliburton Energy Services | Methods of preventing the flow-back of particulates deposited in subterranean formations |
| US6886635B2 (en) | 2002-08-28 | 2005-05-03 | Tetra Technologies, Inc. | Filter cake removal fluid and method |
| US6705400B1 (en) | 2002-08-28 | 2004-03-16 | Halliburton Energy Services, Inc. | Methods and compositions for forming subterranean fractures containing resilient proppant packs |
| US6887834B2 (en) | 2002-09-05 | 2005-05-03 | Halliburton Energy Services, Inc. | Methods and compositions for consolidating proppant in subterranean fractures |
| US6832650B2 (en) | 2002-09-11 | 2004-12-21 | Halliburton Energy Services, Inc. | Methods of reducing or preventing particulate flow-back in wells |
| US6817414B2 (en) | 2002-09-20 | 2004-11-16 | M-I Llc | Acid coated sand for gravel pack and filter cake clean-up |
| US6776236B1 (en) | 2002-10-16 | 2004-08-17 | Halliburton Energy Services, Inc. | Methods of completing wells in unconsolidated formations |
| US7265079B2 (en) | 2002-10-28 | 2007-09-04 | Schlumberger Technology Corporation | Self-destructing filter cake |
| US6766858B2 (en) | 2002-12-04 | 2004-07-27 | Halliburton Energy Services, Inc. | Method for managing the production of a well |
| AU2003288607A1 (en) | 2002-12-19 | 2004-07-14 | Sofitech N.V. | Method for providing treatment chemicals in a subterranean well |
| US6892813B2 (en) | 2003-01-30 | 2005-05-17 | Halliburton Energy Services, Inc. | Methods for preventing fracture proppant flowback |
| US6851474B2 (en) * | 2003-02-06 | 2005-02-08 | Halliburton Energy Services, Inc. | Methods of preventing gravel loss in through-tubing vent-screen well completions |
| US6866099B2 (en) | 2003-02-12 | 2005-03-15 | Halliburton Energy Services, Inc. | Methods of completing wells in unconsolidated subterranean zones |
| US20040211561A1 (en) | 2003-03-06 | 2004-10-28 | Nguyen Philip D. | Methods and compositions for consolidating proppant in fractures |
| US20040211559A1 (en) | 2003-04-25 | 2004-10-28 | Nguyen Philip D. | Methods and apparatus for completing unconsolidated lateral well bores |
| US20040231845A1 (en) | 2003-05-15 | 2004-11-25 | Cooke Claude E. | Applications of degradable polymers in wells |
| US6681856B1 (en) * | 2003-05-16 | 2004-01-27 | Halliburton Energy Services, Inc. | Methods of cementing in subterranean zones penetrated by well bores using biodegradable dispersants |
| US7114560B2 (en) | 2003-06-23 | 2006-10-03 | Halliburton Energy Services, Inc. | Methods for enhancing treatment fluid placement in a subterranean formation |
| US7044220B2 (en) | 2003-06-27 | 2006-05-16 | Halliburton Energy Services, Inc. | Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well |
| US6981560B2 (en) * | 2003-07-03 | 2006-01-03 | Halliburton Energy Services, Inc. | Method and apparatus for treating a productive zone while drilling |
| US7021379B2 (en) * | 2003-07-07 | 2006-04-04 | Halliburton Energy Services, Inc. | Methods and compositions for enhancing consolidation strength of proppant in subterranean fractures |
| US7066258B2 (en) * | 2003-07-08 | 2006-06-27 | Halliburton Energy Services, Inc. | Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures |
| US7104325B2 (en) * | 2003-07-09 | 2006-09-12 | Halliburton Energy Services, Inc. | Methods of consolidating subterranean zones and compositions therefor |
| US7036589B2 (en) * | 2003-08-14 | 2006-05-02 | Halliburton Energy Services, Inc. | Methods for fracturing stimulation |
| US7059406B2 (en) | 2003-08-26 | 2006-06-13 | Halliburton Energy Services, Inc. | Production-enhancing completion methods |
-
2003
- 2003-08-26 US US10/650,065 patent/US7156194B2/en not_active Expired - Lifetime
-
2004
- 2004-08-26 WO PCT/US2004/027736 patent/WO2005019599A1/en active Application Filing
-
2006
- 2006-09-22 US US11/526,181 patent/US20070017706A1/en not_active Abandoned
Patent Citations (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3123138A (en) * | 1964-03-03 | robichaux | ||
| US2238671A (en) * | 1940-02-09 | 1941-04-15 | Du Pont | Method of treating wells |
| US2703316A (en) * | 1951-06-05 | 1955-03-01 | Du Pont | Polymers of high melting lactide |
| US3765804A (en) * | 1951-08-13 | 1973-10-16 | Brandon O | Apparatus for producing variable high frequency vibrations in a liquid medium |
| US2869642A (en) * | 1954-09-14 | 1959-01-20 | Texas Co | Method of treating subsurface formations |
| US3047067A (en) * | 1958-09-08 | 1962-07-31 | Jersey Prod Res Co | Sand consolidation method |
| US3297086A (en) * | 1962-03-30 | 1967-01-10 | Exxon Production Research Co | Sand consolidation method |
| US3272650A (en) * | 1963-02-21 | 1966-09-13 | Union Carbide Corp | Process for cleaning conduits |
| US3199590A (en) * | 1963-02-25 | 1965-08-10 | Halliburton Co | Method of consolidating incompetent sands and composition therefor |
| US3316965A (en) * | 1963-08-05 | 1967-05-02 | Union Oil Co | Material and process for treating subterranean formations |
| US3176768A (en) * | 1964-07-27 | 1965-04-06 | California Research Corp | Sand consolidation |
| US3492147A (en) * | 1964-10-22 | 1970-01-27 | Halliburton Co | Method of coating particulate solids with an infusible resin |
| US3375872A (en) * | 1965-12-02 | 1968-04-02 | Halliburton Co | Method of plugging or sealing formations with acidic silicic acid solution |
| US3308885A (en) * | 1965-12-28 | 1967-03-14 | Union Oil Co | Treatment of subsurface hydrocarbon fluid-bearing formations to reduce water production therefrom |
| US3404735A (en) * | 1966-11-01 | 1968-10-08 | Halliburton Co | Sand control method |
| US3336980A (en) * | 1967-02-09 | 1967-08-22 | Exxon Production Research Co | Sand control in wells |
| US3415320A (en) * | 1967-02-09 | 1968-12-10 | Halliburton Co | Method of treating clay-containing earth formations |
| US3659651A (en) * | 1970-08-17 | 1972-05-02 | Exxon Production Research Co | Hydraulic fracturing using reinforced resin pellets |
| US3681287A (en) * | 1971-03-03 | 1972-08-01 | Quaker Oats Co | Siliceous materials bound with resin containing organosilane coupling agent |
| US3842911A (en) * | 1971-04-26 | 1974-10-22 | Halliburton Co | Method of fracture acidizing a well formation |
| US3768564A (en) * | 1971-04-26 | 1973-10-30 | Halliburton Co | Method of fracture acidizing a well formation |
| US3708013A (en) * | 1971-05-03 | 1973-01-02 | Mobil Oil Corp | Method and apparatus for obtaining an improved gravel pack |
| US3709298A (en) * | 1971-05-20 | 1973-01-09 | Shell Oil Co | Sand pack-aided formation sand consolidation |
| US3784585A (en) * | 1971-10-21 | 1974-01-08 | American Cyanamid Co | Water-degradable resins containing recurring,contiguous,polymerized glycolide units and process for preparing same |
| US3754598A (en) * | 1971-11-08 | 1973-08-28 | Phillips Petroleum Co | Method for producing a hydrocarbon-containing formation |
| US3819525A (en) * | 1972-08-21 | 1974-06-25 | Avon Prod Inc | Cosmetic cleansing preparation |
| US3857444A (en) * | 1972-10-06 | 1974-12-31 | Dow Chemical Co | Method for forming a consolidated gravel pack in a subterranean formation |
| US3854533A (en) * | 1972-12-07 | 1974-12-17 | Dow Chemical Co | Method for forming a consolidated gravel pack in a subterranean formation |
| US3828854A (en) * | 1973-04-16 | 1974-08-13 | Shell Oil Co | Dissolving siliceous materials with self-acidifying liquid |
| US3888311A (en) * | 1973-10-01 | 1975-06-10 | Exxon Production Research Co | Hydraulic fracturing method |
| US3863709A (en) * | 1973-12-20 | 1975-02-04 | Mobil Oil Corp | Method of recovering geothermal energy |
| US3868998A (en) * | 1974-05-15 | 1975-03-04 | Shell Oil Co | Self-acidifying treating fluid positioning process |
| US4585064A (en) * | 1984-07-02 | 1986-04-29 | Graham John W | High strength particulates |
| US5105886A (en) * | 1990-10-24 | 1992-04-21 | Mobil Oil Corporation | Method for the control of solids accompanying hydrocarbon production from subterranean formations |
| US6328106B1 (en) * | 1999-02-04 | 2001-12-11 | Halliburton Energy Services, Inc. | Sealing subterranean zones |
| US6632778B1 (en) * | 2000-05-02 | 2003-10-14 | Schlumberger Technology Corporation | Self-diverting resin systems for sand consolidation |
| US20050051331A1 (en) * | 2003-04-07 | 2005-03-10 | Nguyen Philip D. | Compositions and methods for particulate consolidation |
| US20040231847A1 (en) * | 2003-05-23 | 2004-11-25 | Nguyen Philip D. | Methods for controlling water and particulate production |
| US20040261997A1 (en) * | 2003-06-25 | 2004-12-30 | Nguyen Philip D. | Compositions and methods for consolidating unconsolidated subterranean formations |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100132943A1 (en) * | 2004-02-10 | 2010-06-03 | Nguyen Philip D | Resin Compositions and Methods of Using Resin Compositions to Control Proppant Flow-Back |
| US7963330B2 (en) | 2004-02-10 | 2011-06-21 | Halliburton Energy Services, Inc. | Resin compositions and methods of using resin compositions to control proppant flow-back |
| WO2009149413A1 (en) | 2008-06-06 | 2009-12-10 | Real D | Blur enhancement of stereoscopic images |
| US20100032159A1 (en) * | 2008-08-08 | 2010-02-11 | Halliburton Energy Services, Inc. | Proppant-containing treatment fluids and methods of use |
| US20110120712A1 (en) * | 2009-07-30 | 2011-05-26 | Halliburton Energy Services, Inc. | Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate |
| US8697612B2 (en) | 2009-07-30 | 2014-04-15 | Halliburton Energy Services, Inc. | Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate |
| US8853137B2 (en) | 2009-07-30 | 2014-10-07 | Halliburton Energy Services, Inc. | Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate |
| US9023770B2 (en) | 2009-07-30 | 2015-05-05 | Halliburton Energy Services, Inc. | Increasing fracture complexity in ultra-low permeable subterranean formation using degradable particulate |
| US20110168449A1 (en) * | 2010-01-11 | 2011-07-14 | Dusterhoft Ronald G | Methods for drilling, reaming and consolidating a subterranean formation |
| WO2017019066A1 (en) * | 2015-07-29 | 2017-02-02 | Halliburton Energy Services, Inc. | Delayed reaction treatment additive |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005019599A1 (en) | 2005-03-03 |
| US20050045384A1 (en) | 2005-03-03 |
| US7156194B2 (en) | 2007-01-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7156194B2 (en) | Methods of drilling and consolidating subterranean formation particulate | |
| US7114570B2 (en) | Methods and compositions for stabilizing unconsolidated subterranean formations | |
| US7059406B2 (en) | Production-enhancing completion methods | |
| US7017665B2 (en) | Strengthening near well bore subterranean formations | |
| US7926591B2 (en) | Aqueous-based emulsified consolidating agents suitable for use in drill-in applications | |
| US7066258B2 (en) | Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures | |
| US6978836B2 (en) | Methods for controlling water and particulate production | |
| US7350571B2 (en) | Methods of preparing and using coated particulates | |
| US20120183687A1 (en) | Methods for Reducing Particulate Density | |
| RU2432381C2 (en) | Application of sealant composition to reduce diagenesis | |
| US8333241B2 (en) | Methods and compositions for packing void spaces and stabilizing formations surrounding a wellbore | |
| US20050145385A1 (en) | Methods of well stimulation and completion | |
| US7407010B2 (en) | Methods of coating particulates | |
| US7063150B2 (en) | Methods for preparing slurries of coated particulates | |
| US20070007009A1 (en) | Methods of well stimulation and completion | |
| US20180187066A1 (en) | Delayed reaction treatment additive | |
| WO2025106965A1 (en) | Method of viscosifying water-based epoxy resin consolidation fluid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |