US20060185226A1 - Method of applying mercury reagent with coal - Google Patents
Method of applying mercury reagent with coal Download PDFInfo
- Publication number
- US20060185226A1 US20060185226A1 US11/065,398 US6539805A US2006185226A1 US 20060185226 A1 US20060185226 A1 US 20060185226A1 US 6539805 A US6539805 A US 6539805A US 2006185226 A1 US2006185226 A1 US 2006185226A1
- Authority
- US
- United States
- Prior art keywords
- coal
- mercury
- compound
- ppmw
- halogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L5/00—Solid fuels
- C10L5/02—Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
- C10L5/34—Other details of the shaped fuels, e.g. briquettes
- C10L5/36—Shape
- C10L5/366—Powders
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L9/00—Treating solid fuels to improve their combustion
- C10L9/10—Treating solid fuels to improve their combustion by using additives
Definitions
- the present invention generally relates to combustion of fossil fuels in a boiler or furnace, and more specifically to a method of halogenating a fossil fuel prior to combustion to enhance removal of mercury from flue gas.
- Coal fired utility plants are necessary to satisfy the energy needs of many countries. Heat energy derived from combusting fossil fuels such as coal produces steam utilized to drive energy producing turbines. A byproduct of the combustion process is a flue or combustion gas which, after a cleaning process, exits into the atmosphere.
- Fossil fuels such as coal may contain varying levels of mercury. Upon combustion mercury may enter the flue gas as a solid particulate or as a gas in the vapor phase as elemental mercury or in one of many oxidized forms. Flue gas scrubbers are readily able to remove a substantial portion of mercury in the oxidized form, however current scrubber technology is relatively ineffective in removing elemental mercury from flue gas.
- a general object of the present invention is drawn to a method for enhancing mercury removal from flue gas.
- a more particular objective of the present invention involves a method for halogenating a fossil fuel such as coal prior to combustion to suppress the formation of elemental mercury in the vapor phase and favor its conversion to an oxidized form.
- the present invention provides a method for halogenating a fossil fuel such as coal with chlorine or compounds thereof. After chlorination the coal is fed to a pulverizer which further admixes the coal and chlorine thereby more uniformly dispersing the chlorine amongst the pulverized coal particles. Once pulverized the coal is fed to at least one burner and combusted in the presence of oxygen. The admixed chlorine readily oxidizes the elemental mercury contained within the coal during combustion, thereby suppressing formation of mercury in the elemental form. The oxidized mercury is then removed downstream of the burner utilizing a scrubber or other mercury removal means readily known to one of ordinary skill in the art.
- the invention comprises the steps of treating mercury containing coal with a chlorine containing compound, pulverizing the treated coal, conveying the pulverized treated coal to a pulverized coal burner, utilizing the burner to combust the pulverized treated coal, wherein the chlorine containing compound oxidizes a substantial portion of the mercury contained in the coal during combustion, and creating a flue gas comprising oxidized mercury.
- the invention comprises the steps of providing a burner with a mercury containing coal, utilizing the burner to combust the coal, and combusting the coal in the presence of a halogen containing compound, wherein elemental mercury is oxidized during combustion.
- a flue gas monitoring means is utilized to monitor the mercury concentration of flue gas exiting the boiler.
- the monitoring means then relays a signal to a regulating means, which regulates the level of chlorine treatment applied to the coal prior to pulverization in order to maximize mercury oxidation.
- a halogen other than chlorine such as bromine, iodine, fluorine, or compounds thereof, may by used to halogenate the fossil fuel.
- the present invention due to its ease of incorporation and benefit in mercury removal, provides an important advantage over prior art methods due to unexpected advantages and cost savings associated with forgoing the need to install expensive mercury vapor removal means in order to lower mercury emissions. Further, as a single pulverizer may provide coal to numerous burners, substantial economic savings are observed by chlorinating the coal prior to combustion and utilizing existing piping between the pulverizer and burners thereby forgoing the need to install additional piping or ductwork to each burner.
- FIG. 1 is a schematic diagram of an embodiment of the present invention.
- a fossil fuel such as coal
- a coal silo onto a belt feeder, such as a gravimetric feeder or other belt feeding apparatus.
- the belt feeder in turn provides the coal to the pulverizer wherein the coal is pulverized to a predetermined particle size.
- the coal Prior to being pulverized, preferably while the coal is on the belt feeder or alternatively dropping into the pulverizer, the coal is treated with a liquid or solid chlorine reagent, preferably sodium chloride or calcium chloride.
- a liquid or solid chlorine reagent preferably sodium chloride or calcium chloride.
- Spray nozzles located above and/or around the belt may be provided to treat the coal with liquid chlorine reagent prior to pulverization.
- Reagent flow rate may be control manually by valves or alternatively utilize automated means.
- reagent may be supplied to coal in the form of solid pellets, powder, or granules utilizing a solids feeder in place of the spray nozzle.
- the coal is treated with between about 2 ppmw and 1200 ppmw of halogen, and more preferably between about 200 ppmw and 600 ppmw, wherein ppmw refers to pounds of halogen per one million pounds of a wet fossil fuel such as wet coal.
- Treatment comprises the steps of providing the coal with sufficient chlorine to substantially suppress the formation of elemental mercury vapor, and pulverizing the coal in the presence of the chlorine reagent. During pulverization the coal and chlorine reagent are further admixed so as to provide more uniform distribution of chlorine amongst the pulverized coal particles.
- the treated coal particles Upon exiting the pulverizer, the treated coal particles are fed through a series of coal pipes to a burner, wherein the coal is combusted, preferably at a temperature between about 1050° C. and about 2000° C., in the presence of oxygen.
- the mercury contained within the coal oxidizes in the presence of chlorine to favor the production of an oxidized form of mercury, such as mercuric chloride, over elemental mercury in the vapor form.
- Resulting mercury concentration in the flue gas exiting the boiler is decreased because scrubbers and other flue gas cleansing means are more readily able to remove mercury in the oxidized form, and formation of mercury in the elemental form is suppressed in favor of the oxidized form due to the presence of a halogen such as chlorine.
- a single reagent storage means is used to supply chlorine reagent to multiple belt feeders utilizing control valves and piping that allows the treatment rate to any belt feeder to be controlled independently of the treatment rate to another belt feeder.
- an automated means for controlling the treatment rate may be utilized.
- a mercury detection means is installed in the flue gas stack to monitor the level of mercury in the flue gas as it exits into the atmosphere.
- An electronic signal is then sent to a regulating means which conveys instructions to adjust the flowrate of the chlorine reagent treating the coal to a level which optimizes low mercury emissions.
- the chlorine reagent may be replaced with another halogen reagent such as bromine, iodine, fluorine, etc. . . . or compounds thereof.
- a combination of more than one halogen reagent may be used such as reagent mixture comprising both bromine and chlorine, or any other number of halogen reagent combinations incorporating more than one halogen reagent as would be known by one of ordinary skill in the art.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Treating Waste Gases (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
- The present invention generally relates to combustion of fossil fuels in a boiler or furnace, and more specifically to a method of halogenating a fossil fuel prior to combustion to enhance removal of mercury from flue gas.
- Coal fired utility plants are necessary to satisfy the energy needs of many countries. Heat energy derived from combusting fossil fuels such as coal produces steam utilized to drive energy producing turbines. A byproduct of the combustion process is a flue or combustion gas which, after a cleaning process, exits into the atmosphere.
- Fossil fuels such as coal may contain varying levels of mercury. Upon combustion mercury may enter the flue gas as a solid particulate or as a gas in the vapor phase as elemental mercury or in one of many oxidized forms. Flue gas scrubbers are readily able to remove a substantial portion of mercury in the oxidized form, however current scrubber technology is relatively ineffective in removing elemental mercury from flue gas.
- Environmental regulations strictly regulate flue gas emissions for pollutants such as sulfur and nitrogen oxides, and the U.S. EPA is considering implementing mercury emission standards. In order to meet such proposed environmental regulations, a need exists for a new and more effective means of controlling mercury emissions arising from the combustion of fossil fuels.
- A general object of the present invention is drawn to a method for enhancing mercury removal from flue gas. A more particular objective of the present invention involves a method for halogenating a fossil fuel such as coal prior to combustion to suppress the formation of elemental mercury in the vapor phase and favor its conversion to an oxidized form.
- In a first aspect, the present invention provides a method for halogenating a fossil fuel such as coal with chlorine or compounds thereof. After chlorination the coal is fed to a pulverizer which further admixes the coal and chlorine thereby more uniformly dispersing the chlorine amongst the pulverized coal particles. Once pulverized the coal is fed to at least one burner and combusted in the presence of oxygen. The admixed chlorine readily oxidizes the elemental mercury contained within the coal during combustion, thereby suppressing formation of mercury in the elemental form. The oxidized mercury is then removed downstream of the burner utilizing a scrubber or other mercury removal means readily known to one of ordinary skill in the art.
- In another aspect, the invention comprises the steps of treating mercury containing coal with a chlorine containing compound, pulverizing the treated coal, conveying the pulverized treated coal to a pulverized coal burner, utilizing the burner to combust the pulverized treated coal, wherein the chlorine containing compound oxidizes a substantial portion of the mercury contained in the coal during combustion, and creating a flue gas comprising oxidized mercury.
- In yet another aspect, the invention comprises the steps of providing a burner with a mercury containing coal, utilizing the burner to combust the coal, and combusting the coal in the presence of a halogen containing compound, wherein elemental mercury is oxidized during combustion.
- In yet another aspect a flue gas monitoring means is utilized to monitor the mercury concentration of flue gas exiting the boiler. The monitoring means then relays a signal to a regulating means, which regulates the level of chlorine treatment applied to the coal prior to pulverization in order to maximize mercury oxidation.
- In yet another aspect of the present invention a halogen other than chlorine, such as bromine, iodine, fluorine, or compounds thereof, may by used to halogenate the fossil fuel.
- The present invention, due to its ease of incorporation and benefit in mercury removal, provides an important advantage over prior art methods due to unexpected advantages and cost savings associated with forgoing the need to install expensive mercury vapor removal means in order to lower mercury emissions. Further, as a single pulverizer may provide coal to numerous burners, substantial economic savings are observed by chlorinating the coal prior to combustion and utilizing existing piping between the pulverizer and burners thereby forgoing the need to install additional piping or ductwork to each burner.
-
FIG. 1 . is a schematic diagram of an embodiment of the present invention. - Referring now to
FIG. 1 , a schematic diagram of an embodiment of the present invention is shown. A fossil fuel, such as coal, is provided from a coal silo onto a belt feeder, such as a gravimetric feeder or other belt feeding apparatus. The belt feeder in turn provides the coal to the pulverizer wherein the coal is pulverized to a predetermined particle size. - Prior to being pulverized, preferably while the coal is on the belt feeder or alternatively dropping into the pulverizer, the coal is treated with a liquid or solid chlorine reagent, preferably sodium chloride or calcium chloride. Spray nozzles located above and/or around the belt may be provided to treat the coal with liquid chlorine reagent prior to pulverization. Reagent flow rate may be control manually by valves or alternatively utilize automated means. Alternatively, reagent may be supplied to coal in the form of solid pellets, powder, or granules utilizing a solids feeder in place of the spray nozzle. Preferably the coal is treated with between about 2 ppmw and 1200 ppmw of halogen, and more preferably between about 200 ppmw and 600 ppmw, wherein ppmw refers to pounds of halogen per one million pounds of a wet fossil fuel such as wet coal.
- Treatment comprises the steps of providing the coal with sufficient chlorine to substantially suppress the formation of elemental mercury vapor, and pulverizing the coal in the presence of the chlorine reagent. During pulverization the coal and chlorine reagent are further admixed so as to provide more uniform distribution of chlorine amongst the pulverized coal particles.
- Upon exiting the pulverizer, the treated coal particles are fed through a series of coal pipes to a burner, wherein the coal is combusted, preferably at a temperature between about 1050° C. and about 2000° C., in the presence of oxygen. During combustion the mercury contained within the coal oxidizes in the presence of chlorine to favor the production of an oxidized form of mercury, such as mercuric chloride, over elemental mercury in the vapor form.
- Resulting mercury concentration in the flue gas exiting the boiler is decreased because scrubbers and other flue gas cleansing means are more readily able to remove mercury in the oxidized form, and formation of mercury in the elemental form is suppressed in favor of the oxidized form due to the presence of a halogen such as chlorine.
- In an alternative embodiment, a single reagent storage means is used to supply chlorine reagent to multiple belt feeders utilizing control valves and piping that allows the treatment rate to any belt feeder to be controlled independently of the treatment rate to another belt feeder.
- In yet another alternative embodiment, an automated means for controlling the treatment rate may be utilized. In this embodiment, a mercury detection means is installed in the flue gas stack to monitor the level of mercury in the flue gas as it exits into the atmosphere. An electronic signal is then sent to a regulating means which conveys instructions to adjust the flowrate of the chlorine reagent treating the coal to a level which optimizes low mercury emissions.
- In yet another embodiment, the chlorine reagent may be replaced with another halogen reagent such as bromine, iodine, fluorine, etc. . . . or compounds thereof.
- In yet another embodiment a combination of more than one halogen reagent may be used such as reagent mixture comprising both bromine and chlorine, or any other number of halogen reagent combinations incorporating more than one halogen reagent as would be known by one of ordinary skill in the art.
- While the specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise as appreciated by one of ordinary skill in the art without departing from the scope of the present invention.
Claims (22)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/065,398 US20060185226A1 (en) | 2005-02-24 | 2005-02-24 | Method of applying mercury reagent with coal |
| PCT/US2006/006195 WO2006091635A2 (en) | 2005-02-24 | 2006-02-23 | Method of applying mercury reagent with coal |
| EP06720957A EP1888721A2 (en) | 2005-02-24 | 2006-02-23 | Method of applying mercury reagent with coal |
| CA002599420A CA2599420A1 (en) | 2005-02-24 | 2006-02-23 | Method of applying mercury reagent with coal |
| CNA2006800059564A CN101133141A (en) | 2005-02-24 | 2006-02-23 | Method of applying mercury reagent with coal |
| UAA200709752A UA93367C2 (en) | 2005-02-24 | 2006-02-23 | Method for mercury oxidation at combustion of mercury-containing coal and method for production of oxidized mercury at its combustion |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/065,398 US20060185226A1 (en) | 2005-02-24 | 2005-02-24 | Method of applying mercury reagent with coal |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060185226A1 true US20060185226A1 (en) | 2006-08-24 |
Family
ID=36911103
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/065,398 Abandoned US20060185226A1 (en) | 2005-02-24 | 2005-02-24 | Method of applying mercury reagent with coal |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20060185226A1 (en) |
| EP (1) | EP1888721A2 (en) |
| CN (1) | CN101133141A (en) |
| CA (1) | CA2599420A1 (en) |
| UA (1) | UA93367C2 (en) |
| WO (1) | WO2006091635A2 (en) |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060210463A1 (en) * | 2005-03-17 | 2006-09-21 | Comrie Douglas C | Reducing mercury emissions from the burning of coal |
| WO2009005525A1 (en) * | 2007-07-03 | 2009-01-08 | Albemarle Corporation | Use of compounds containing halogen and nitrogen for reducing mercury emissions during coal combustion |
| WO2010036750A1 (en) * | 2008-09-24 | 2010-04-01 | Albemarle Corporation | Bromine chloride compositions for removing mercury from emissions produced during fuel combustion |
| US20100263577A1 (en) * | 2009-04-21 | 2010-10-21 | Industrial Accessories Company | Pollution abatement process for fossil fuel-fired boilers |
| US20110053100A1 (en) * | 2009-08-28 | 2011-03-03 | Sinha Rabindra K | Composition and Method for Reducing Mercury Emitted into the Atmosphere |
| US8124036B1 (en) | 2005-10-27 | 2012-02-28 | ADA-ES, Inc. | Additives for mercury oxidation in coal-fired power plants |
| US8226913B2 (en) | 2005-03-17 | 2012-07-24 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20120195815A1 (en) * | 2011-02-01 | 2012-08-02 | Shaw Environmental & Infrastructure, Inc. | Emission control system |
| WO2012106715A1 (en) * | 2011-02-04 | 2012-08-09 | ADA-ES, Inc. | Remote additive application |
| US8372362B2 (en) | 2010-02-04 | 2013-02-12 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US8383071B2 (en) | 2010-03-10 | 2013-02-26 | Ada Environmental Solutions, Llc | Process for dilute phase injection of dry alkaline materials |
| US8496894B2 (en) | 2010-02-04 | 2013-07-30 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US8524179B2 (en) | 2010-10-25 | 2013-09-03 | ADA-ES, Inc. | Hot-side method and system |
| US8784757B2 (en) | 2010-03-10 | 2014-07-22 | ADA-ES, Inc. | Air treatment process for dilute phase injection of dry alkaline materials |
| US8883099B2 (en) | 2012-04-11 | 2014-11-11 | ADA-ES, Inc. | Control of wet scrubber oxidation inhibitor and byproduct recovery |
| US8951487B2 (en) | 2010-10-25 | 2015-02-10 | ADA-ES, Inc. | Hot-side method and system |
| US8974756B2 (en) | 2012-07-25 | 2015-03-10 | ADA-ES, Inc. | Process to enhance mixing of dry sorbents and flue gas for air pollution control |
| US9017452B2 (en) | 2011-11-14 | 2015-04-28 | ADA-ES, Inc. | System and method for dense phase sorbent injection |
| US10350545B2 (en) | 2014-11-25 | 2019-07-16 | ADA-ES, Inc. | Low pressure drop static mixing system |
| WO2019178137A1 (en) * | 2018-03-14 | 2019-09-19 | Midwest Energy Emissions Corp | Halide injection system |
| US10465137B2 (en) | 2011-05-13 | 2019-11-05 | Ada Es, Inc. | Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers |
| US10589292B2 (en) | 2013-08-16 | 2020-03-17 | ADA-ES, Inc. | Method to reduce mercury, acid gas, and particulate emissions |
| US10767130B2 (en) | 2012-08-10 | 2020-09-08 | ADA-ES, Inc. | Method and additive for controlling nitrogen oxide emissions |
| US11298657B2 (en) | 2010-10-25 | 2022-04-12 | ADA-ES, Inc. | Hot-side method and system |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2014256383B2 (en) * | 2005-03-17 | 2016-08-04 | Douglas C. Comrie | Reducing mercury emissions from the burning of coal |
| CA2658469C (en) | 2008-10-03 | 2012-08-14 | Rajender P. Gupta | Bromination process |
| CN102343200A (en) * | 2011-09-21 | 2012-02-08 | 中国华能集团清洁能源技术研究院有限公司 | Method and system for efficiently controlling mercury pollution of coal-fired power plant at low cost |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3187944A (en) * | 1962-10-09 | 1965-06-08 | Arthur J Stock | Gravimetric feeder and method of filling voids therein or in other pressure vessels |
| US20080107579A1 (en) * | 2004-03-22 | 2008-05-08 | William Downs | Bromine Addition for the Improved Removal of Mercury from Flue Gas |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4765259A (en) * | 1987-07-20 | 1988-08-23 | Exxon Research And Engineering Company | Sodium addition to low rank coal to enhance particulate removal from combustion effluent |
| US6855859B2 (en) * | 1999-03-31 | 2005-02-15 | The Babcock & Wilcox Company | Method for controlling elemental mercury emissions |
| US6790420B2 (en) * | 2002-02-07 | 2004-09-14 | Breen Energy Solutions, Llc | Control of mercury and other elemental metal emissions from combustion devices by oxidation |
-
2005
- 2005-02-24 US US11/065,398 patent/US20060185226A1/en not_active Abandoned
-
2006
- 2006-02-23 UA UAA200709752A patent/UA93367C2/en unknown
- 2006-02-23 EP EP06720957A patent/EP1888721A2/en not_active Withdrawn
- 2006-02-23 WO PCT/US2006/006195 patent/WO2006091635A2/en active Application Filing
- 2006-02-23 CA CA002599420A patent/CA2599420A1/en not_active Abandoned
- 2006-02-23 CN CNA2006800059564A patent/CN101133141A/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3187944A (en) * | 1962-10-09 | 1965-06-08 | Arthur J Stock | Gravimetric feeder and method of filling voids therein or in other pressure vessels |
| US20080107579A1 (en) * | 2004-03-22 | 2008-05-08 | William Downs | Bromine Addition for the Improved Removal of Mercury from Flue Gas |
Cited By (83)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9702554B2 (en) * | 2005-03-17 | 2017-07-11 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US20120100490A1 (en) * | 2005-03-17 | 2012-04-26 | Comrie Douglas C | Sorbents for coal combustion |
| US7507083B2 (en) * | 2005-03-17 | 2009-03-24 | Douglas C Comrie | Reducing mercury emissions from the burning of coal |
| US7674442B2 (en) * | 2005-03-17 | 2010-03-09 | Comrie Douglas C | Reducing mercury emissions from the burning of coal |
| US10359192B2 (en) | 2005-03-17 | 2019-07-23 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20100139482A1 (en) * | 2005-03-17 | 2010-06-10 | Comrie Douglas C | Reducing mercury emissions from the burning of coal |
| US7776301B2 (en) | 2005-03-17 | 2010-08-17 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US10641483B2 (en) * | 2005-03-17 | 2020-05-05 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US8658115B2 (en) | 2005-03-17 | 2014-02-25 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20100323308A1 (en) * | 2005-03-17 | 2010-12-23 | Comrie Douglas C | Sorbents for coal combustion |
| US10670265B2 (en) * | 2005-03-17 | 2020-06-02 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20180224121A1 (en) * | 2005-03-17 | 2018-08-09 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US7988939B2 (en) | 2005-03-17 | 2011-08-02 | NOx II Ltd. | Sorbents for coal combustion |
| US9945557B2 (en) | 2005-03-17 | 2018-04-17 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US10612779B2 (en) * | 2005-03-17 | 2020-04-07 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US9822973B2 (en) | 2005-03-17 | 2017-11-21 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20190093883A1 (en) * | 2005-03-17 | 2019-03-28 | Nox Ii, Ltd. | Sorbents For Coal Combustion |
| US8114368B2 (en) | 2005-03-17 | 2012-02-14 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US8226913B2 (en) | 2005-03-17 | 2012-07-24 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20060210463A1 (en) * | 2005-03-17 | 2006-09-21 | Comrie Douglas C | Reducing mercury emissions from the burning of coal |
| US11732889B2 (en) * | 2005-03-17 | 2023-08-22 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal by remote sorbent addition |
| US9416967B2 (en) | 2005-03-17 | 2016-08-16 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20160025337A1 (en) * | 2005-03-17 | 2016-01-28 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US8313323B2 (en) * | 2005-03-17 | 2012-11-20 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US9169453B2 (en) | 2005-03-17 | 2015-10-27 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US10962224B2 (en) * | 2005-03-17 | 2021-03-30 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US11060723B2 (en) * | 2005-03-17 | 2021-07-13 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal by remote sorbent addition |
| US8501128B2 (en) | 2005-03-17 | 2013-08-06 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US20210332977A1 (en) * | 2005-03-17 | 2021-10-28 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal by remote sorbent addition |
| US8545778B2 (en) * | 2005-03-17 | 2013-10-01 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US11732888B2 (en) * | 2005-03-17 | 2023-08-22 | Nox Ii, Ltd. | Sorbents for coal combustion |
| US8920158B2 (en) | 2005-03-17 | 2014-12-30 | Nox Ii, Ltd. | Reducing mercury emissions from the burning of coal |
| US8124036B1 (en) | 2005-10-27 | 2012-02-28 | ADA-ES, Inc. | Additives for mercury oxidation in coal-fired power plants |
| US8293196B1 (en) | 2005-10-27 | 2012-10-23 | ADA-ES, Inc. | Additives for mercury oxidation in coal-fired power plants |
| WO2009005525A1 (en) * | 2007-07-03 | 2009-01-08 | Albemarle Corporation | Use of compounds containing halogen and nitrogen for reducing mercury emissions during coal combustion |
| JP2010532460A (en) * | 2007-07-03 | 2010-10-07 | アルベマール・コーポレーシヨン | Use of halogen and nitrogen containing compounds to reduce mercury emissions during coal combustion |
| US20110165044A1 (en) * | 2008-09-24 | 2011-07-07 | Albemarle Corporation | Bromine chloride compositions for removing mercury from emissions produced during fuel combustion |
| US8313543B2 (en) | 2008-09-24 | 2012-11-20 | Albemarle Corporation | Bromine chloride compositions for removing mercury from emissions produced during fuel combustion |
| WO2010036750A1 (en) * | 2008-09-24 | 2010-04-01 | Albemarle Corporation | Bromine chloride compositions for removing mercury from emissions produced during fuel combustion |
| AU2009296691B2 (en) * | 2008-09-24 | 2014-01-16 | Albemarle Corporation | Bromine chloride compositions for removing mercury from emissions produced during fuel combustion |
| CN102164650A (en) * | 2008-09-24 | 2011-08-24 | 阿尔比马尔公司 | Bromine chloride compositions for removing mercury from emissions produced during fuel combustion |
| JP2012503545A (en) * | 2008-09-24 | 2012-02-09 | アルベマール・コーポレーシヨン | Bromine chloride composition for removing mercury from emissions generated during fuel combustion |
| US20100263577A1 (en) * | 2009-04-21 | 2010-10-21 | Industrial Accessories Company | Pollution abatement process for fossil fuel-fired boilers |
| US20110053100A1 (en) * | 2009-08-28 | 2011-03-03 | Sinha Rabindra K | Composition and Method for Reducing Mercury Emitted into the Atmosphere |
| US10427096B2 (en) | 2010-02-04 | 2019-10-01 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US8372362B2 (en) | 2010-02-04 | 2013-02-12 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US10843130B2 (en) | 2010-02-04 | 2020-11-24 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US8496894B2 (en) | 2010-02-04 | 2013-07-30 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US9352275B2 (en) | 2010-02-04 | 2016-05-31 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US11213787B2 (en) | 2010-02-04 | 2022-01-04 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US9221013B2 (en) | 2010-02-04 | 2015-12-29 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US9884286B2 (en) | 2010-02-04 | 2018-02-06 | ADA-ES, Inc. | Method and system for controlling mercury emissions from coal-fired thermal processes |
| US8784757B2 (en) | 2010-03-10 | 2014-07-22 | ADA-ES, Inc. | Air treatment process for dilute phase injection of dry alkaline materials |
| US9149759B2 (en) | 2010-03-10 | 2015-10-06 | ADA-ES, Inc. | Air treatment process for dilute phase injection of dry alkaline materials |
| US8383071B2 (en) | 2010-03-10 | 2013-02-26 | Ada Environmental Solutions, Llc | Process for dilute phase injection of dry alkaline materials |
| US10730015B2 (en) | 2010-10-25 | 2020-08-04 | ADA-ES, Inc. | Hot-side method and system |
| US9657942B2 (en) | 2010-10-25 | 2017-05-23 | ADA-ES, Inc. | Hot-side method and system |
| US10124293B2 (en) | 2010-10-25 | 2018-11-13 | ADA-ES, Inc. | Hot-side method and system |
| US8951487B2 (en) | 2010-10-25 | 2015-02-10 | ADA-ES, Inc. | Hot-side method and system |
| US8524179B2 (en) | 2010-10-25 | 2013-09-03 | ADA-ES, Inc. | Hot-side method and system |
| US11298657B2 (en) | 2010-10-25 | 2022-04-12 | ADA-ES, Inc. | Hot-side method and system |
| US20120195815A1 (en) * | 2011-02-01 | 2012-08-02 | Shaw Environmental & Infrastructure, Inc. | Emission control system |
| US9097420B2 (en) * | 2011-02-01 | 2015-08-04 | Shaw Environmental & Infrastructure, Inc. | Emission control system |
| US8580214B2 (en) * | 2011-02-01 | 2013-11-12 | Shaw Environmental & Infrastructure, Inc. | Emission control system |
| WO2012106715A1 (en) * | 2011-02-04 | 2012-08-09 | ADA-ES, Inc. | Remote additive application |
| US8992637B2 (en) | 2011-02-04 | 2015-03-31 | ADA-ES, Inc. | Remote additive application |
| US11118127B2 (en) | 2011-05-13 | 2021-09-14 | ADA-ES, Inc. | Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers |
| US10465137B2 (en) | 2011-05-13 | 2019-11-05 | Ada Es, Inc. | Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers |
| US10731095B2 (en) | 2011-05-13 | 2020-08-04 | ADA-ES, Inc. | Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers |
| US9017452B2 (en) | 2011-11-14 | 2015-04-28 | ADA-ES, Inc. | System and method for dense phase sorbent injection |
| US9889405B2 (en) | 2012-04-11 | 2018-02-13 | ADA-ES, Inc. | Control of wet scrubber oxidation inhibitor and byproduct recovery |
| US9409123B2 (en) | 2012-04-11 | 2016-08-09 | ASA-ES, Inc. | Control of wet scrubber oxidation inhibitor and byproduct recovery |
| US10758863B2 (en) | 2012-04-11 | 2020-09-01 | ADA-ES, Inc. | Control of wet scrubber oxidation inhibitor and byproduct recovery |
| US11065578B2 (en) | 2012-04-11 | 2021-07-20 | ADA-ES, Inc. | Control of wet scrubber oxidation inhibitor and byproduct recovery |
| US10159931B2 (en) | 2012-04-11 | 2018-12-25 | ADA-ES, Inc. | Control of wet scrubber oxidation inhibitor and byproduct recovery |
| US8883099B2 (en) | 2012-04-11 | 2014-11-11 | ADA-ES, Inc. | Control of wet scrubber oxidation inhibitor and byproduct recovery |
| US8974756B2 (en) | 2012-07-25 | 2015-03-10 | ADA-ES, Inc. | Process to enhance mixing of dry sorbents and flue gas for air pollution control |
| US10767130B2 (en) | 2012-08-10 | 2020-09-08 | ADA-ES, Inc. | Method and additive for controlling nitrogen oxide emissions |
| US11384304B2 (en) | 2012-08-10 | 2022-07-12 | ADA-ES, Inc. | Method and additive for controlling nitrogen oxide emissions |
| US10589292B2 (en) | 2013-08-16 | 2020-03-17 | ADA-ES, Inc. | Method to reduce mercury, acid gas, and particulate emissions |
| US10350545B2 (en) | 2014-11-25 | 2019-07-16 | ADA-ES, Inc. | Low pressure drop static mixing system |
| US11369921B2 (en) | 2014-11-25 | 2022-06-28 | ADA-ES, Inc. | Low pressure drop static mixing system |
| WO2019178137A1 (en) * | 2018-03-14 | 2019-09-19 | Midwest Energy Emissions Corp | Halide injection system |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2006091635A2 (en) | 2006-08-31 |
| WO2006091635A3 (en) | 2007-09-07 |
| UA93367C2 (en) | 2011-02-10 |
| CA2599420A1 (en) | 2006-08-31 |
| CN101133141A (en) | 2008-02-27 |
| EP1888721A2 (en) | 2008-02-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20060185226A1 (en) | Method of applying mercury reagent with coal | |
| US10962224B2 (en) | Sorbents for coal combustion | |
| CA3005876C (en) | Emission control system | |
| RU2607410C2 (en) | Dry sorbent introduction under conditions of non-stationary state into dry gas cleaning scrubber | |
| CN102015070B (en) | System for treating discharge gas and method of removing mercury from discharge gas | |
| CN202185253U (en) | Waste incineration flue gas purification system | |
| US20180250628A1 (en) | Sorbent injection system and method for treating flue gases | |
| CN113144862A (en) | Biomass incineration power generation flue gas ultralow emission system and emission method thereof | |
| CN117427471A (en) | System and method for inhibiting generation of dioxin in pulverized coal drying process by utilizing furnace smoke | |
| JP4942559B2 (en) | Exhaust gas purifier and method for capturing harmful trace elements | |
| JP2011120981A (en) | Oxygen combustion type exhaust gas treatment apparatus and operation method for the same | |
| CN101915423B (en) | Refuse burning system and method with functions of deacidifying flue gas and retarding dioxin generation | |
| US9797598B1 (en) | Method for controlling gaseous mercury emission between two or more coal-fired combustion units | |
| CN204328994U (en) | Biomass boiler equipment for denitrifying flue gas | |
| CN113251411B (en) | Multi-pollutant cooperative control system and method for coal-fired industrial boiler | |
| US10197272B2 (en) | Process and apparatus for reducing acid plume | |
| US20180200672A1 (en) | Method for separating mercury from flue gas | |
| AU2016250355B2 (en) | Reducing mercury emissions from the burning of coal | |
| Mutama et al. | Load Cycling of a 242 MW Coal Fired Steam Turbine Plant Designed for Base Load Operations | |
| AU2014256383A1 (en) | Reducing mercury emissions from the burning of coal | |
| JP2008170105A (en) | Method of reducing carbon monoxide, and carbon monoxide reducer for coal addition used in method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BABCOCK & WILCOX COMPANY, THE, LOUISIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCDONALD, DENNIS K.;EVANS, AMY P.;JANKURA, BRYAN J.;REEL/FRAME:016305/0797 Effective date: 20050210 |
|
| AS | Assignment |
Owner name: CREDIT SUISSE, CAYMAN ISLANDS BRANCH, AS COLLATERA Free format text: SECURITY AGREEMENT;ASSIGNOR:THE BABCOCK & WILCOX COMPANY;REEL/FRAME:017344/0565 Effective date: 20060222 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: BABCOCK & WILCOX DENMARK HOLDINGS, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: BABCOCK & WILCOX INTERNATIONAL SALES AND SERVICE C Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: DIAMOND OPERATING CO., INC., PENNSYLVANIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: BABCOCK & WILCOX INTERNATIONAL, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: BABCOCK & WILCOX CHINA HOLDINGS, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: AMERICON, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: NORTH COUNTY RECYCLING, INC., NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: DIAMOND POWER CHINA HOLDINGS, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: AMERICON EQUIPMENT SERVICES, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: BABCOCK & WILCOX CONSTRUCTION CO., INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: PALM BEACH RESOURCE RECOVERY CORPORATION, FLORIDA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: BABCOCK & WILCOX EQUITY INVESTMENTS, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: DIAMOND POWER EQUITY INVESTMENTS, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: THE BABCOCK & WILCOX COMPANY, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: B & W SERVICE COMPANY, NORTH CAROLINA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: POWER SYSTEMS OPERATIONS, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: NATIONAL ECOLOGY COMPANY, OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: DIAMOND POWER AUSTRALIA HOLDINGS, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: DIAMOND POWER INTERNATIONAL, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: APPLIED SYNERGISTICS, INC., VIRGINIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: REVLOC RECLAMATION SERVICE, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 Owner name: BABCOCK & WILCOX EBENSBURG POWER, INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:024776/0693 Effective date: 20100503 |