[go: up one dir, main page]

US20060182624A1 - Sealing arrangement, in particular for the blade segments of gas turbines - Google Patents

Sealing arrangement, in particular for the blade segments of gas turbines Download PDF

Info

Publication number
US20060182624A1
US20060182624A1 US11/206,824 US20682405A US2006182624A1 US 20060182624 A1 US20060182624 A1 US 20060182624A1 US 20682405 A US20682405 A US 20682405A US 2006182624 A1 US2006182624 A1 US 2006182624A1
Authority
US
United States
Prior art keywords
sealing strip
sealing
grooves
sealing arrangement
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/206,824
Inventor
Richard London
Peter Marx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Vernova GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority to US11/400,793 priority Critical patent/US7261514B2/en
Assigned to ALSTOM TECHNOLOGY LTD. reassignment ALSTOM TECHNOLOGY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LONDON, RICHARD, MARX, PETER
Publication of US20060182624A1 publication Critical patent/US20060182624A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • F01D11/006Sealing the gap between rotor blades or blades and rotor
    • F01D11/008Sealing the gap between rotor blades or blades and rotor by spacer elements between the blades, e.g. independent interblade platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/061Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with positioning means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0887Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • F05D2240/57Leaf seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/182Two-dimensional patterned crenellated, notched
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position

Definitions

  • the present invention relates to the field of thermal machines. It relates to a sealing arrangement, in particular for the blade segments of a gas turbine, according to the preamble of claim 1 .
  • Turbine stages of gas turbines comprise rows of guide blades (stator) and moving blades (rotor). These rows are each composed of a certain number of blade segments.
  • a guide blade segment is reproduced in FIG. 1 in a perspective side view.
  • the central part of the guide blade segment 10 from FIG. 1 is the actual airfoil 11 , which is defined at both ends by plate-shaped shroud segments 12 , 13 .
  • the outer shroud segment 12 together with the outer shroud segments of the other blade segments of the row forms an annular outer blade shroud.
  • the inner shroud segment 13 together with the inner shroud segments of the other blade segments of the row accordingly forms an annular inner blade shroud.
  • Formed between the inner and outer blade shrouds is an annular passage, through which the hot working medium of the gas turbine flows. Cooling air normally flows outside the annular passage, this cooling air being separated from the hot working medium by the blade shrouds.
  • FIG. 2 ( a ) The cross section through such a known sealing arrangement along the plane A-A in FIG. 1 is shown in FIG. 2 ( a ).
  • FIG. 2 ( a ) two adjacent guide blade segments 10 a and 10 b adjoin one another with their end faces 24 , 25 in the region of the shroud segments while forming a gap 18 .
  • grooves 16 , 17 Arranged in the end faces 24 , 25 of the guide blade segments 10 a , 10 b are grooves 16 , 17 which run perpendicularly to the gap 18 in the direction of the longitudinal axis 26 and accommodate a sealing strip 19 (with clearance).
  • the grooves 16 , 17 can be incorporated in the segments, for example, by EDM (electrical discharge machining), grinding or milling.
  • the rectangular, flat sealing strip 19 is reproduced in a perspective side view in FIG. 2 ( b ).
  • a clearance in the form of a gap 18 is obtained overall, the width of which can assume values of between 0 and a maximum width (maximum clearance) X (see FIG. 2 ( a ))
  • the nominal clearance is normally 1 . . . 3 mm, the maximum clearance (X) 3 . . . 5 mm.
  • the grooves 16 , 17 each have a depth T; the sealing strip 19 has a basic width S (see FIG. 2 ( a )).
  • the depth T and basic width S must satisfy certain conditions so that the sealing strip 19 cannot fall out of the grooves (at maximum clearance X) or is not squeezed together (at clearance 0): S ⁇ 2 ⁇ T (1)
  • condition (2) is met, the situation shown in FIG. 4 ( b ) is avoided, in which the sealing strip 19 can fall out of the grooves 16 , 17 or can tilt in the gap 18 in such a way that it is deformed or damaged during a subsequent reduction in the clearance.
  • a disadvantage with this type of dimensioning is that the depth T of the grooves 16 , 17 and the width S of the sealing strip 19 can become very large depending on the maximum width X of the gap 18 or the maximum clearance.
  • the depth T of the grooves 16 , 17 and the width of the seal may be limited by the production process, the predetermined geometry or the cooling requirements of the end faces 24 , 25 of the segments. In these cases, a compromise has to be found or another sealing method has to be used.
  • the essence of the invention starting from the conventional form of the sealing strip, is to provide additional means on the sealing strip which prevent the sealing strip from slipping out of the grooves if the sum of the maximum width of the gap and the depth of the grooves is greater than or equal to the basic width of the sealing strip.
  • a preferred configuration of the invention is characterized by the fact that the additional means comprise lugs which are arranged in a distributed manner on the longitudinal sides of the sealing strip, are defined in the direction of the longitudinal axis and locally increase the width of the sealing strip beyond the basic width by a predetermined additional width.
  • the lugs with their additional width, increase the maximum clearance which can safely be bridged by the sealing strip.
  • the lugs can yield locally by bending up if transverse forces act on the sealing strip at zero clearance.
  • At least two lugs are preferably arranged on a longitudinal side of the sealing strip in such a way as to be distributed over the longitudinal side.
  • the at least two lugs are arranged on the ends of the longitudinal side. This results in a stable and predetermined position of the sealing strip in the grooves at all times.
  • lugs are arranged in pairs opposite one another on the two longitudinal sides of the sealing strip.
  • the lugs are preferably integrally formed on the sealing strip and have the same width as the sealing strip.
  • the lugs may lie in the plane of the sealing strip in the initial state. However, they may also be bent out of the plane of the sealing strip in the initial state.
  • the sealing arrangement is especially space-saving and exerts less stress on the sealing strip if, according to another configuration, in order to accommodate the lugs, deeper pockets are formed at the corresponding locations of the grooves.
  • the walls of the grooves may be oriented perpendicularly to the gap.
  • the walls of the grooves to be oriented obliquely relative to the gap on one side or on both sides in such a way that the grooves have a V-shaped cross-sectional profile.
  • FIG. 1 shows a guide blade segment of a gas turbine according to the prior art in a perspective side view
  • FIG. 2 shows, in two partial figures, the cross section through a known sealing arrangement in the plane A-A of FIG. 1 (partial figure (a)) and the perspective side view of the associated sealing strip (partial figure (b));
  • FIG. 3 shows a preferred exemplary embodiment of the sealing arrangement according to the invention in an illustration comparable with FIG. 2 ;
  • FIG. 4 shows, in an illustration comparable with FIG. 2 ( a ), the extreme cases of the zero clearance (partial figure (a)) and of the maximum clearance (partial figure (b)) in the sealing arrangement from the prior art;
  • FIG. 5 shows the behavior of the sealing arrangement from FIG. 3 in an illustration comparable with FIG. 4 ;
  • FIG. 6 shows various configurations of the grooves in a sealing arrangement according to the invention in three partial figures (a), (b) and (c);
  • FIG. 7 shows different forms of the sealing strip for the sealing arrangement according to FIG. 3 or 6 in two partial figures (a), (b); and
  • FIG. 8 shows various configurations of the grooves and sealing strips in a sealing arrangement according to the invention in three partial figures (a), (b) and (c).
  • FIG. 3 A preferred exemplary embodiment of the sealing arrangement according to the invention is reproduced in FIG. 3 in an illustration comparable with FIG. 2 .
  • the sealing strip 19 of simple rectangular shape from FIG. 2 has been replaced by a sealing strip 20 which has a plurality of integrally formed lugs 21 distributed on the longitudinal sides.
  • the lugs 21 give the sealing strip 20 a local width S 1 and S 2 , respectively, on both sides in addition to the basic width S.
  • S 1 S 2 .
  • condition (3) compared with the known sealing arrangement (see condition (2)), at constant values of S and T, greater values of X can be tolerated without the sealing arrangement or the sealing strip 20 being put at risk. If the lugs 21 (at zero clearance) are first of all bent upward (or downward), the additional width of the sealing strip 20 is certainly largely lost and thus the ability to absorb a larger maximum clearance X without problems is also largely lost, but the sealing strip 20 can still be used like a conventional (standard) sealing strip of the width S.
  • the lugs 21 are arranged in a distributed manner on both longitudinal sides of the sealing strip 20 .
  • a respective pair of opposite lugs 21 is provided at the ends of the sealing strip 20 and a pair is provided in the center.
  • This symmetrical distribution ensures that the enlarged width becomes effective with only a few lugs over the entire length of the sealing strip 20 .
  • Lugs 21 which are integrally formed on the sealing strip 20 and have the same thickness b as the sealing strip 20 ( FIG. 7 ) are especially simple to produce.
  • FIG. 7 ( b ) it is conceivable according to FIG. 7 ( b ) to use a sealing strip 20 with lugs 21 which are already bent out of the plane of the sealing strip 20 to one side by an angle ⁇ .
  • Such sealing strips with pre-bent lugs have the advantage that the bending process in the case of FIG. 5 ( a ) (0 clearance) takes place in an orderly manner.
  • such a pre-bent sealing strip 20 may also be advantageously used in a sealing arrangement as shown in FIGS. 6 ( b ) and ( c ).
  • grooves 16 a, 17 a and 16 b, 17 b, respectively are provided whose walls are oriented obliquely relative to the gap 18 on one side or on both sides at an angle ⁇ in such a way that the grooves 16 a, 17 a and 16 b, 17 b, respectively, have a V-shaped cross-sectional profile.
  • the pre-bent lugs 21 result in an improved position of the sealing strip 20 in the grooves.
  • this advantage is gained at the cost of a more complicated production of the grooves 16 d, 17 d.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gasket Seals (AREA)
  • Powder Metallurgy (AREA)
  • Sealing Devices (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

In a sealing arrangement, in particular for the blade segments of gas turbines, two bodies, with two end faces which extend along a longitudinal axis, adjoin one another while forming a gap, the width of which can vary between zero and a maximum width. The gap is covered by a sealing strip which lies transversely to the gap, extends along the longitudinal axis and is mounted with clearance in two opposite grooves of a predetermined depth. In such a sealing arrangement, an increased maximum width of the gap is made possible by the sealing strip having a basic width transversely to the longitudinal axis, this basic width being less than or equal to twice the depth of the grooves, and by the sealing strip having additional means which prevent the sealing strip from slipping out of the grooves if the sum of the maximum width of the gap and the depth of the grooves is greater than or equal to the basic width of the sealing strip.

Description

  • This application is a continuation application under 35 U.S.C. §120 of International Application No. PCT/CH2003/000124, filed Feb. 19, 2003, designating the United States, the contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to the field of thermal machines. It relates to a sealing arrangement, in particular for the blade segments of a gas turbine, according to the preamble of claim 1.
  • Such a sealing arrangement has been disclosed, for example, by publication EP-A2-0 896 128.
  • PRIOR ART
  • Turbine stages of gas turbines comprise rows of guide blades (stator) and moving blades (rotor). These rows are each composed of a certain number of blade segments. Such a guide blade segment is reproduced in FIG. 1 in a perspective side view. The central part of the guide blade segment 10 from FIG. 1 is the actual airfoil 11, which is defined at both ends by plate- shaped shroud segments 12, 13. The outer shroud segment 12 together with the outer shroud segments of the other blade segments of the row forms an annular outer blade shroud. The inner shroud segment 13 together with the inner shroud segments of the other blade segments of the row accordingly forms an annular inner blade shroud. Formed between the inner and outer blade shrouds is an annular passage, through which the hot working medium of the gas turbine flows. Cooling air normally flows outside the annular passage, this cooling air being separated from the hot working medium by the blade shrouds.
  • Provided at the end faces of the shroud segments 12, 13 are outer and inner shroud seals 14 and 15, respectively, which run in the direction of a longitudinal axis 26 and serve to seal off the intermediate spaces (gaps) between adjacent shroud segments. The cross section through such a known sealing arrangement along the plane A-A in FIG. 1 is shown in FIG. 2(a). According to FIG. 2(a), two adjacent guide blade segments 10 a and 10 b adjoin one another with their end faces 24, 25 in the region of the shroud segments while forming a gap 18. Arranged in the end faces 24, 25 of the guide blade segments 10 a, 10 b are grooves 16, 17 which run perpendicularly to the gap 18 in the direction of the longitudinal axis 26 and accommodate a sealing strip 19 (with clearance). The grooves 16, 17 can be incorporated in the segments, for example, by EDM (electrical discharge machining), grinding or milling. The rectangular, flat sealing strip 19 is reproduced in a perspective side view in FIG. 2(b).
  • On account of the thermal expansion during operation, the adjacent segments must be designed with a nominal clearance in the cold state in order to be able to absorb the thermal expansion. Superimposed on the nominal clearance are tolerances which result from the type of circumferential fastening of the segments. A clearance in the form of a gap 18 is obtained overall, the width of which can assume values of between 0 and a maximum width (maximum clearance) X (see FIG. 2(a)) The nominal clearance is normally 1 . . . 3 mm, the maximum clearance (X) 3 . . . 5 mm. The grooves 16, 17 each have a depth T; the sealing strip 19 has a basic width S (see FIG. 2(a)). The depth T and basic width S must satisfy certain conditions so that the sealing strip 19 cannot fall out of the grooves (at maximum clearance X) or is not squeezed together (at clearance 0):
    S≦2·T   (1)
  • If condition (1) is met, the sealing strip 19 is not loaded in the transverse direction even when the clearance or the width of the gap 18 is zero (see the illustration in FIG. 4(a)).
    S−T≧X   (2)
  • If condition (2) is met, the situation shown in FIG. 4(b) is avoided, in which the sealing strip 19 can fall out of the grooves 16, 17 or can tilt in the gap 18 in such a way that it is deformed or damaged during a subsequent reduction in the clearance.
  • A disadvantage with this type of dimensioning is that the depth T of the grooves 16, 17 and the width S of the sealing strip 19 can become very large depending on the maximum width X of the gap 18 or the maximum clearance. However, the depth T of the grooves 16, 17 and the width of the seal may be limited by the production process, the predetermined geometry or the cooling requirements of the end faces 24, 25 of the segments. In these cases, a compromise has to be found or another sealing method has to be used.
  • SUMMARY OF THE INVENTION
  • It is therefore the object of the invention to specify a sealing arrangement which can be used in particular for the blade segments of gas turbines and which avoids the disadvantages of the known sealing arrangements and is characterized in particular by the fact that a larger maximum clearance can be reliably absorbed between the adjoining bodies or segments with comparatively little effort.
  • This object is achieved by all the features of claim 1 in their entirety. The essence of the invention, starting from the conventional form of the sealing strip, is to provide additional means on the sealing strip which prevent the sealing strip from slipping out of the grooves if the sum of the maximum width of the gap and the depth of the grooves is greater than or equal to the basic width of the sealing strip.
  • A preferred configuration of the invention is characterized by the fact that the additional means comprise lugs which are arranged in a distributed manner on the longitudinal sides of the sealing strip, are defined in the direction of the longitudinal axis and locally increase the width of the sealing strip beyond the basic width by a predetermined additional width. On the one hand, the lugs, with their additional width, increase the maximum clearance which can safely be bridged by the sealing strip. On the other hand, the lugs can yield locally by bending up if transverse forces act on the sealing strip at zero clearance.
  • At least two lugs are preferably arranged on a longitudinal side of the sealing strip in such a way as to be distributed over the longitudinal side. In particular, the at least two lugs are arranged on the ends of the longitudinal side. This results in a stable and predetermined position of the sealing strip in the grooves at all times.
  • Especially favorable is a geometry in which the lugs are arranged in pairs opposite one another on the two longitudinal sides of the sealing strip.
  • The lugs are preferably integrally formed on the sealing strip and have the same width as the sealing strip.
  • In this case, the lugs may lie in the plane of the sealing strip in the initial state. However, they may also be bent out of the plane of the sealing strip in the initial state.
  • The sealing arrangement is especially space-saving and exerts less stress on the sealing strip if, according to another configuration, in order to accommodate the lugs, deeper pockets are formed at the corresponding locations of the grooves.
  • In the simplest case, the walls of the grooves may be oriented perpendicularly to the gap.
  • However, it is also conceivable for the walls of the grooves to be oriented obliquely relative to the gap on one side or on both sides in such a way that the grooves have a V-shaped cross-sectional profile.
  • Further embodiments follow from the dependent claims.
  • BRIEF EXPLANATION OF THE FIGURES
  • The invention is to be explained in more detail below with reference to exemplary embodiments in connection with the drawing, in which:
  • FIG. 1 shows a guide blade segment of a gas turbine according to the prior art in a perspective side view;
  • FIG. 2 shows, in two partial figures, the cross section through a known sealing arrangement in the plane A-A of FIG. 1 (partial figure (a)) and the perspective side view of the associated sealing strip (partial figure (b));
  • FIG. 3 shows a preferred exemplary embodiment of the sealing arrangement according to the invention in an illustration comparable with FIG. 2;
  • FIG. 4 shows, in an illustration comparable with FIG. 2(a), the extreme cases of the zero clearance (partial figure (a)) and of the maximum clearance (partial figure (b)) in the sealing arrangement from the prior art;
  • FIG. 5 shows the behavior of the sealing arrangement from FIG. 3 in an illustration comparable with FIG. 4;
  • FIG. 6 shows various configurations of the grooves in a sealing arrangement according to the invention in three partial figures (a), (b) and (c);
  • FIG. 7 shows different forms of the sealing strip for the sealing arrangement according to FIG. 3 or 6 in two partial figures (a), (b); and
  • FIG. 8 shows various configurations of the grooves and sealing strips in a sealing arrangement according to the invention in three partial figures (a), (b) and (c).
  • WAYS OF IMPLEMENTING THE INVENTION
  • A preferred exemplary embodiment of the sealing arrangement according to the invention is reproduced in FIG. 3 in an illustration comparable with FIG. 2. In this case, the same parts are provided with the same designations. The sealing strip 19 of simple rectangular shape from FIG. 2 has been replaced by a sealing strip 20 which has a plurality of integrally formed lugs 21 distributed on the longitudinal sides. As can be seen in FIG. 8(a), the lugs 21 give the sealing strip 20 a local width S1 and S2, respectively, on both sides in addition to the basic width S. In the simplest case of symmetrical lug pairs, S1=S2. Given suitable dimensioning of S1, S2, the additional width is of no importance at minimum clearance=0, since the lugs 21 are then bent over by the transverse forces and the additional width of the sealing strip 20 largely disappears (FIG. 5(a)). At maximum clearance X (FIG. 5(b)), on the other hand, the value X which can still be safely tolerated can correspondingly increase due to the additional width S1+S2=2·S1. The condition (1) mentioned at the beginning at zero clearance still applies. At maximum clearance X, on the other hand, on account of the additional width, the following condition applies:
    S+S1−T≧X   (3)
  • It follows directly from condition (3) that, compared with the known sealing arrangement (see condition (2)), at constant values of S and T, greater values of X can be tolerated without the sealing arrangement or the sealing strip 20 being put at risk. If the lugs 21 (at zero clearance) are first of all bent upward (or downward), the additional width of the sealing strip 20 is certainly largely lost and thus the ability to absorb a larger maximum clearance X without problems is also largely lost, but the sealing strip 20 can still be used like a conventional (standard) sealing strip of the width S.
  • In the exemplary embodiment according to FIG. 3(b), the lugs 21 are arranged in a distributed manner on both longitudinal sides of the sealing strip 20. In this case, a respective pair of opposite lugs 21 is provided at the ends of the sealing strip 20 and a pair is provided in the center. This symmetrical distribution ensures that the enlarged width becomes effective with only a few lugs over the entire length of the sealing strip 20. However, it is also conceivable to provide more or fewer lugs or to arrange the lugs 21 only on one side of the sealing strip or in an alternating manner on both sides. Lugs 21 which are integrally formed on the sealing strip 20 and have the same thickness b as the sealing strip 20 (FIG. 7) are especially simple to produce. They can be produced by a corresponding design of the marginal contour of the sealing strip 20. However, it is also conceivable to attach the lugs 21 to the sealing strip 20 as separate elements in order to be able to optimize them independently of the sealing strip 20. It is likewise conceivable, instead of the lugs 21, to use other elements which project laterally beyond the sealing strip 20.
  • Furthermore, it is conceivable according to FIG. 7(b) to use a sealing strip 20 with lugs 21 which are already bent out of the plane of the sealing strip 20 to one side by an angle β. Such sealing strips with pre-bent lugs have the advantage that the bending process in the case of FIG. 5(a) (0 clearance) takes place in an orderly manner. However, such a pre-bent sealing strip 20 may also be advantageously used in a sealing arrangement as shown in FIGS. 6(b) and (c). In these sealing arrangements, instead of the grooves 16, 17 with walls perpendicular to the gap 18 and with the width a, grooves 16 a, 17 a and 16 b, 17 b, respectively, are provided whose walls are oriented obliquely relative to the gap 18 on one side or on both sides at an angle α in such a way that the grooves 16 a, 17 a and 16 b, 17 b, respectively, have a V-shaped cross-sectional profile. Here, the pre-bent lugs 21 result in an improved position of the sealing strip 20 in the grooves.
  • However, it is also conceivable, instead of the flat sealing strips 20 from FIG. 8(a), to use sealing strips 20 a, 20 b according to FIGS. 8(b) and (c) which are bent at the ends. To accommodate such bent sealing strips 20 a, 20 b, correspondingly bent grooves 16 c, 17 c and 16 d, 17 d, respectively, must be provided.
  • A further modification which is shown in FIG. 8(c) with reference to a sealing strip 20 b bent at the ends, but may also be used in flat sealing strips, consists in providing pockets 22, 23 in the grooves 16 d, 17 d, these pockets 22, 23 having an additional depth T1 for accommodating the lugs 21. In this way, bending-up of the lugs 21 at 0 clearance is avoided without the increase in the maximum clearance X due to the lugs 21 being lost. However, this advantage is gained at the cost of a more complicated production of the grooves 16 d, 17 d.
  • List of Designations
    • 10 Guide blade segment
    • 10 a, b Guide blade segment
    • 11 Airfoil
    • 12 Outer shroud segment
    • 13 Inner shroud segment
    • 14 Outer shroud seal
    • 15 Inner shroud seal
    • 16, 17 Groove
    • 16 a, 17 a Groove
    • 16 b, 17 b Groove
    • 16 c, 17 c Groove
    • 16 d, 17 d Groove
    • 18 Gap
    • 19, 20 Sealing strip
    • 20 a, b Sealing strip
    • 21 Lug
    • 22, 23 Pocket
    • 24, 25 End face
    • 26 Longitudinal axis
    • a Width (groove)
    • b Thickness (sealing strip)
    • S Basic width (sealing strip)
    • S1, 2 Width (lugs)
    • T Depth (groove)
    • T1, 2 Depth (pockets)
    • X Maximum width (gap)
    • α, β Angle

Claims (15)

1. A sealing arrangement, in particular for the blade segments of gas turbines, in which sealing arrangement two bodies with two end faces which extend along a longitudinal axis, adjoin one another while forming a gap, a width of which can vary between zero and a maximum width (X), and in which the gap is covered by a sealing strip which lies transversely to the gap, extends along the longitudinal axis and is mounted with clearance in two opposite grooves of a predetermined depth (T) which are incorporated transversely to the gap in the end faces of the bodies wherein the sealing strip has a basic width (S) transversely to the longitudinal axis, this basic width (S) being less than or equal to twice the depth of the grooves, and wherein the sealing strip has additional means which prevent the sealing strip from slipping out of the grooves if the sum of the maximum width (X) of the gap and the depth (T) of the grooves is greater than or equal to the basic width (S) of the sealing strip.
2. The sealing arrangement as claimed in claim 1, wherein the additional means comprise lugs which are arranged in a distributed manner on the longitudinal sides of the sealing strip, are defined in the direction of the longitudinal axis and locally increase the width of the sealing strip beyond the basic width (S) by a predetermined additional width (S1, S2).
3. The sealing arrangement as claimed in claim 2, wherein at least two lugs are arranged on a longitudinal side of the sealing strip in such a way as to be distributed over the longitudinal side.
4. The sealing arrangement as claimed in claim 3, wherein the at least two lugs are arranged on the ends of the longitudinal side.
5. The sealing arrangement as claimed in claim 4, wherein at least one additional lug is arranged in the center between the at least two lugs.
6. The sealing arrangement as claimed in claim 2 wherein the lugs are arranged in pairs opposite one another on the two longitudinal sides of the sealing strip.
7. The sealing arrangement as claimed in claim 2 wherein the lugs are integrally formed on the sealing strip and have the same width as the sealing strip.
8. The sealing arrangement as claimed in claim 2 wherein the lugs lie in the plane of the sealing strip in the initial state.
9. The sealing arrangement as claimed in claim 2 wherein the lugs are bent out of the plane of the sealing strip in the initial state.
10. The sealing arrangement as claimed in claim 2 wherein in order to accommodate the lugs, deeper pockets are formed at the corresponding locations of the grooves.
11. The sealing arrangement as claimed in claim 1 wherein the walls of the grooves are oriented perpendicularly to the gap.
12. The sealing arrangement as claimed in claim 1 wherein the walls of the grooves are oriented obliquely relative to the gap on one side or on both sides in such a way that the grooves have a V-shaped cross-sectional profile.
13. The sealing arrangement as claimed in claim 1 wherein the grooves and the sealing strip are of flat design.
14. The sealing arrangement as claimed in claim 1 wherein the grooves and the sealing strip are of bent design.
15. The sealing arrangement as claimed in claim 1 wherein the bodies are guide blade segments and/or moving blade segments of a gas turbine.
US11/206,824 2003-02-19 2005-08-19 Sealing arrangement, in particular for the blade segments of gas turbines Abandoned US20060182624A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/400,793 US7261514B2 (en) 2003-02-19 2006-04-10 Sealing arrangement, in particular for the blade segments of gas turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2003/000124 WO2004074640A1 (en) 2003-02-19 2003-02-19 Sealing arrangement, particularly for the blade segments of gas turbines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000124 Continuation WO2004074640A1 (en) 2003-02-19 2003-02-19 Sealing arrangement, particularly for the blade segments of gas turbines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/400,793 Continuation US7261514B2 (en) 2003-02-19 2006-04-10 Sealing arrangement, in particular for the blade segments of gas turbines

Publications (1)

Publication Number Publication Date
US20060182624A1 true US20060182624A1 (en) 2006-08-17

Family

ID=32873411

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/206,824 Abandoned US20060182624A1 (en) 2003-02-19 2005-08-19 Sealing arrangement, in particular for the blade segments of gas turbines
US11/400,793 Expired - Fee Related US7261514B2 (en) 2003-02-19 2006-04-10 Sealing arrangement, in particular for the blade segments of gas turbines

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/400,793 Expired - Fee Related US7261514B2 (en) 2003-02-19 2006-04-10 Sealing arrangement, in particular for the blade segments of gas turbines

Country Status (9)

Country Link
US (2) US20060182624A1 (en)
EP (1) EP1595058B1 (en)
KR (1) KR100928176B1 (en)
AT (2) ATE366864T1 (en)
AU (1) AU2003203130A1 (en)
DE (1) DE50307673D1 (en)
ES (1) ES2289256T3 (en)
MX (1) MXPA05008823A (en)
WO (1) WO2004074640A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090016873A1 (en) * 2007-07-10 2009-01-15 United Technologies Corp. Gas Turbine Systems Involving Feather Seals
US20090092485A1 (en) * 2007-10-09 2009-04-09 Bridges Jr Joseph W Seal assembly retention feature and assembly method
US20170306771A1 (en) * 2016-04-20 2017-10-26 Rolls-Royce Deutschland Ltd & Co Kg Rotor with overhang at blades for a locking element
CN108361084A (en) * 2017-01-26 2018-08-03 赛峰航空助推器股份有限公司 The compressor with segmented interior shield for axial-flow turbine engine
US20180340437A1 (en) * 2017-02-24 2018-11-29 General Electric Company Spline for a turbine engine
US20180355741A1 (en) * 2017-02-24 2018-12-13 General Electric Company Spline for a turbine engine
US20180355755A1 (en) * 2017-02-24 2018-12-13 General Electric Company Spline for a turbine engine
CN110325712A (en) * 2017-02-24 2019-10-11 通用电气公司 The spline of turbogenerator
CN110325711A (en) * 2017-02-24 2019-10-11 通用电气公司 The spline of turbogenerator
US20200040753A1 (en) * 2018-08-06 2020-02-06 General Electric Company Turbomachinery sealing apparatus and method
US20200063586A1 (en) * 2018-08-24 2020-02-27 General Electric Company Spline Seal with Cooling Features for Turbine Engines
US11187094B2 (en) * 2019-08-26 2021-11-30 General Electric Company Spline for a turbine engine

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037356B4 (en) * 2004-07-30 2017-11-23 Ansaldo Energia Ip Uk Limited Wall structure for limiting a hot gas path
US7306424B2 (en) * 2004-12-29 2007-12-11 United Technologies Corporation Blade outer seal with micro axial flow cooling system
US7575415B2 (en) * 2005-11-10 2009-08-18 General Electric Company Methods and apparatus for assembling turbine engines
US7625174B2 (en) * 2005-12-16 2009-12-01 General Electric Company Methods and apparatus for assembling gas turbine engine stator assemblies
EP1991762B1 (en) * 2006-03-06 2015-03-11 Alstom Technology Ltd Gas turbine with annular heat shield and angled sealing strips
FR2902843A1 (en) * 2006-06-23 2007-12-28 Snecma Sa COMPRESSOR RECTIFIER AREA OR TURBOMACHINE DISTRIBUTOR SECTOR
EP1914386A1 (en) 2006-10-17 2008-04-23 Siemens Aktiengesellschaft Turbine blade assembly
CH698921B1 (en) * 2006-11-10 2009-12-15 Alstom Technology Ltd Turbo engine i.e. gas turbine, has sealing element arranged transverse to gap and engaging recesses of blades, and radial outer wall and/or radial inner wall of recesses running transverse to gap
US20090096174A1 (en) * 2007-02-28 2009-04-16 United Technologies Corporation Blade outer air seal for a gas turbine engine
US8500392B2 (en) * 2009-10-01 2013-08-06 Pratt & Whitney Canada Corp. Sealing for vane segments
US9441497B2 (en) * 2010-02-24 2016-09-13 United Technologies Corporation Combined featherseal slot and lightening pocket
FR2957969B1 (en) * 2010-03-26 2013-03-29 Snecma DEVICE FOR SEALING BETWEEN ADJACENT BLADE HEADS IN MATERIAL COMPOSED OF A TURBOMACHINE MOBILE WHEEL
US9022727B2 (en) * 2010-11-15 2015-05-05 Mtu Aero Engines Gmbh Rotor for a turbo machine
US9534500B2 (en) * 2011-04-27 2017-01-03 Pratt & Whitney Canada Corp. Seal arrangement for segmented gas turbine engine components
GB201113054D0 (en) * 2011-07-29 2011-09-14 Rolls Royce Plc Flap seal and sealing apparatus
US9022728B2 (en) * 2011-10-28 2015-05-05 United Technologies Corporation Feather seal slot
EP2685052A1 (en) * 2012-07-10 2014-01-15 Siemens Aktiengesellschaft A heat shield and a method for construction thereof
WO2015013503A1 (en) 2013-07-24 2015-01-29 United Technologies Corporation Trough seal for gas turbine engine
WO2015031763A1 (en) 2013-08-29 2015-03-05 United Technologies Corporation Seal for gas turbine engine
US10280779B2 (en) 2013-09-10 2019-05-07 United Technologies Corporation Plug seal for gas turbine engine
EP2886800A1 (en) * 2013-12-18 2015-06-24 Rolls-Royce Deutschland Ltd & Co KG Guide vane assembly for a gas turbine and corresponding strip seal
US10196913B1 (en) 2014-12-17 2019-02-05 United Technologies Corporation Featherseal having tapered radial portion
WO2016118138A1 (en) * 2015-01-22 2016-07-28 Siemens Aktiengesellschaft Seal system for ring segments radially outward of a turbine assembly within a turbine engine
US9759079B2 (en) 2015-05-28 2017-09-12 Rolls-Royce Corporation Split line flow path seals
US10662794B2 (en) 2017-10-19 2020-05-26 Rolls-Royce Corporation Strip seal axial assembly groove
US10718226B2 (en) 2017-11-21 2020-07-21 Rolls-Royce Corporation Ceramic matrix composite component assembly and seal
US11002144B2 (en) * 2018-03-30 2021-05-11 Siemens Energy Global GmbH & Co. KG Sealing arrangement between turbine shroud segments
US11492909B2 (en) 2019-01-02 2022-11-08 Dresser-Rand Company Platform seal and damper assembly for turbomachinery and methodology for forming said assembly
IT201900013854A1 (en) * 2019-08-02 2021-02-02 Ge Avio Srl TURBINE MOTOR WITH SNAP-IN GASKETS.
PL431184A1 (en) 2019-09-17 2021-03-22 General Electric Company Polska Spółka Z Ograniczoną Odpowiedzialnością Turboshaft engine set
US11187096B2 (en) * 2019-11-07 2021-11-30 Raytheon Technologies Corporation Platform seal
US11506129B2 (en) * 2020-04-24 2022-11-22 Raytheon Technologies Corporation Feather seal mateface cooling pockets
KR102821442B1 (en) * 2022-11-23 2025-06-16 두산에너빌리티 주식회사 Turbine vane platform sealing assembly, turbine vane and gas turbine comprising it
US12152493B2 (en) 2022-12-09 2024-11-26 Doosan Enerbility Co., Ltd. Turbine vane having sealing assembly, turbine, and turbomachine including same
KR102791366B1 (en) 2022-12-12 2025-04-07 두산에너빌리티 주식회사 Turbine vane platform sealing assembly, turbine vane and gas turbine comprising it

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3752598A (en) * 1971-11-17 1973-08-14 United Aircraft Corp Segmented duct seal
US3975114A (en) * 1975-09-23 1976-08-17 Westinghouse Electric Corporation Seal arrangement for turbine diaphragms and the like
US4537024A (en) * 1979-04-23 1985-08-27 Solar Turbines, Incorporated Turbine engines
US4902198A (en) * 1988-08-31 1990-02-20 Westinghouse Electric Corp. Apparatus for film cooling of turbine van shrouds
GB2296295A (en) * 1994-12-23 1996-06-26 Rolls Royce Plc Sealing arrangement for a gas turbine engine
US5868398A (en) * 1997-05-20 1999-02-09 United Technologies Corporation Gas turbine stator vane seal
JPH1150805A (en) * 1997-08-06 1999-02-23 Mitsubishi Heavy Ind Ltd Sealing structure for gas turbine stator blade shroud
DE59710924D1 (en) * 1997-09-15 2003-12-04 Alstom Switzerland Ltd Cooling device for gas turbine components

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090016873A1 (en) * 2007-07-10 2009-01-15 United Technologies Corp. Gas Turbine Systems Involving Feather Seals
US8182208B2 (en) * 2007-07-10 2012-05-22 United Technologies Corp. Gas turbine systems involving feather seals
US20090092485A1 (en) * 2007-10-09 2009-04-09 Bridges Jr Joseph W Seal assembly retention feature and assembly method
US8308428B2 (en) * 2007-10-09 2012-11-13 United Technologies Corporation Seal assembly retention feature and assembly method
US8769817B2 (en) 2007-10-09 2014-07-08 United Technologies Corporation Seal assembly retention method
US20170306771A1 (en) * 2016-04-20 2017-10-26 Rolls-Royce Deutschland Ltd & Co Kg Rotor with overhang at blades for a locking element
US10526904B2 (en) * 2016-04-20 2020-01-07 Rolls-Royce Deutschland Ltd & Co Kg Rotor with overhang at blades for a locking element
CN108361084A (en) * 2017-01-26 2018-08-03 赛峰航空助推器股份有限公司 The compressor with segmented interior shield for axial-flow turbine engine
CN110325709A (en) * 2017-02-24 2019-10-11 通用电气公司 The spline of turbogenerator
US20180355755A1 (en) * 2017-02-24 2018-12-13 General Electric Company Spline for a turbine engine
US20180355741A1 (en) * 2017-02-24 2018-12-13 General Electric Company Spline for a turbine engine
CN110325712A (en) * 2017-02-24 2019-10-11 通用电气公司 The spline of turbogenerator
CN110325711A (en) * 2017-02-24 2019-10-11 通用电气公司 The spline of turbogenerator
US20180340437A1 (en) * 2017-02-24 2018-11-29 General Electric Company Spline for a turbine engine
US10648362B2 (en) * 2017-02-24 2020-05-12 General Electric Company Spline for a turbine engine
US20200040753A1 (en) * 2018-08-06 2020-02-06 General Electric Company Turbomachinery sealing apparatus and method
US10927692B2 (en) * 2018-08-06 2021-02-23 General Electric Company Turbomachinery sealing apparatus and method
US11299998B2 (en) 2018-08-06 2022-04-12 General Electric Company Turbomachinery sealing apparatus and method
US20200063586A1 (en) * 2018-08-24 2020-02-27 General Electric Company Spline Seal with Cooling Features for Turbine Engines
US10982559B2 (en) * 2018-08-24 2021-04-20 General Electric Company Spline seal with cooling features for turbine engines
US11187094B2 (en) * 2019-08-26 2021-11-30 General Electric Company Spline for a turbine engine

Also Published As

Publication number Publication date
ATE366864T1 (en) 2007-08-15
EP1595058A1 (en) 2005-11-16
EP1595058B1 (en) 2007-07-11
KR20050105476A (en) 2005-11-04
MXPA05008823A (en) 2005-10-18
US20060263204A1 (en) 2006-11-23
AU2003203130A1 (en) 2004-09-09
WO2004074640A1 (en) 2004-09-02
US7261514B2 (en) 2007-08-28
KR100928176B1 (en) 2009-11-25
ES2289256T3 (en) 2008-02-01
DE50307673D1 (en) 2007-08-23
ATE369228T1 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US7261514B2 (en) Sealing arrangement, in particular for the blade segments of gas turbines
EP1443180B1 (en) Snap-on turbine blade shim
EP1813771B1 (en) Bladed rotor assembly
US8613599B2 (en) Turbine blade assembly and seal strip
US5868398A (en) Gas turbine stator vane seal
EP2357321B1 (en) Turbine disk and blade arrangement
EP1959098B1 (en) Turbine rotor blade and turbine rotor
US6074185A (en) Scroll compressor with improved tip seal
EP2360350B1 (en) Combined featherseal slot and lightening pocket
US7419361B1 (en) Blade/disk dovetail backcut for blade/disk stress reduction (7FA+e, stage 2)
US4940389A (en) Assembly of rotor blades in a rotor disc for a compressor or a turbine
US7476083B2 (en) Blade/disk dovetail backcut for blade/disk stress reduction (7FA+e, stage 1)
JPS6220602A (en) Rotor assembly of gas turbine engine
US20080260535A1 (en) Blade/disk dovetail backcut for blade/disk stress reduction (6fa+e, stage2)
EP1219788A2 (en) Arrangement of vane platforms in an axial turbine for reducing the gap losses
US7419362B2 (en) Blade/disk dovetail backcut for blade/disk stress reduction (9FA+e, stage 1)
US7438532B2 (en) Blade/disk dovetail backcut for blade/disk stress reduction (9FA+e, stage 2)
US20080101938A1 (en) Blade/disk dovetail backcut for blade/disk stress reduction (7FA, stage 1)
WO2006124618A1 (en) BLADE/DISK DOVETAIL BACKCUT FOR BLADE/DISK STRESS REDUCTION (6FA AND 6FA+e, STAGE 1)
US4464096A (en) Self-actuating rotor seal
US20140356172A1 (en) Turbine wheel in a turbine engine
GB2280935A (en) Cooled sealing strip for nozzle guide vane segments
WO2007133204A1 (en) BLADE/DISK DOVETAIL BACKCUT FOR BLADE/DISK STRESS REDUCTION (6FA+e, STAGE 2)
JPH10196307A (en) Device composed of large number of fixing grooves to install blades on rotor or stator of fluid machine
US5580218A (en) Bladed rotor

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM TECHNOLOGY LTD., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LONDON, RICHARD;MARX, PETER;REEL/FRAME:017972/0506

Effective date: 20051018

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION