US20050233351A1 - Ultrasensitive immunoassays - Google Patents
Ultrasensitive immunoassays Download PDFInfo
- Publication number
- US20050233351A1 US20050233351A1 US11/011,438 US1143804A US2005233351A1 US 20050233351 A1 US20050233351 A1 US 20050233351A1 US 1143804 A US1143804 A US 1143804A US 2005233351 A1 US2005233351 A1 US 2005233351A1
- Authority
- US
- United States
- Prior art keywords
- oligonucleotides
- reagents
- macromolecule
- antibodies
- affinity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003018 immunoassay Methods 0.000 title abstract description 12
- 108091034117 Oligonucleotide Proteins 0.000 claims abstract description 51
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 239000003153 chemical reaction reagent Substances 0.000 claims description 33
- 229920002521 macromolecule Polymers 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 13
- 230000003321 amplification Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- 230000021615 conjugation Effects 0.000 claims description 8
- 238000003556 assay Methods 0.000 claims description 7
- 230000000295 complement effect Effects 0.000 claims description 7
- 230000027455 binding Effects 0.000 claims description 5
- 108020004707 nucleic acids Proteins 0.000 claims description 4
- 102000039446 nucleic acids Human genes 0.000 claims description 4
- 150000007523 nucleic acids Chemical class 0.000 claims description 4
- 102000004169 proteins and genes Human genes 0.000 claims description 3
- 108090000623 proteins and genes Proteins 0.000 claims description 3
- 238000009396 hybridization Methods 0.000 claims 8
- 239000000427 antigen Substances 0.000 abstract description 30
- 102000036639 antigens Human genes 0.000 abstract description 30
- 108091007433 antigens Proteins 0.000 abstract description 30
- 230000001900 immune effect Effects 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 abstract description 4
- 108020004414 DNA Proteins 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- JWDFQMWEFLOOED-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(pyridin-2-yldisulfanyl)propanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCSSC1=CC=CC=N1 JWDFQMWEFLOOED-UHFFFAOYSA-N 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 2
- 229960005542 ethidium bromide Drugs 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- PHVCDSGGLZGSOA-UHFFFAOYSA-N 1-hydroxypyrrolidine-2,5-dione;3-(pyridin-2-yldisulfanyl)propanoic acid Chemical compound ON1C(=O)CCC1=O.OC(=O)CCSSC1=CC=CC=N1 PHVCDSGGLZGSOA-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 241001534160 Escherichia virus Qbeta Species 0.000 description 1
- 102000018997 Growth Hormone Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 101000635854 Homo sapiens Myoglobin Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102100030856 Myoglobin Human genes 0.000 description 1
- 108010062374 Myoglobin Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 101710086015 RNA ligase Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 102000023732 binding proteins Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940027941 immunoglobulin g Drugs 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 238000010324 immunological assay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000036964 tight binding Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54306—Solid-phase reaction mechanisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/682—Signal amplification
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/81—Packaged device or kit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/975—Kit
Definitions
- the present invention relates to ultrasensitive immunoassays. More specifically, it relates to immunological test kits and processes for immunological detection of a specific antigen. In the present invention, the fields of immunology and molecular genetics are combined.
- Immunoassays represent powerful tools to identify a very wide range of compounds, such as antigens and antibodies. Examples of immunoassays are ELISA (enzyme linked immunosorbent assay), EIA (enzyme immunoassay), and RIA (radio immunoassay). Common to all these immunoassays, is that detection sensitivity is limited by the affinity of typical antibodies.
- the labeled DNA-antibody complexes are assembled in situ during the assay. This can create variable stoichiometry in the assembly of the components and in the attachment of the DNA label. Moreover, extra steps are required for addition of biotinylated reagents and binding proteins. Numerous wash steps are also needed to remove excess reagents and to free assay components of non-specifically bound reagents.
- WO 91/17442 describes a molecular probe for use as a signal amplifier in immunoassays for detecting i.a. antigens.
- the probe comprises an antibody, a double stranded polynucleotide functioning as a promoter for a DNA dependend RNA polymerase, and a single or double stranded template for the promoter.
- the transcription product is quantified and correlated to the amount of present antigen in a sample.
- the attached DNA is only used as a marker by being amplified to detectable levels.
- oligonucleotides attached to antibodies having bound antigen and oligonucleotides attached to antibodies not having bound antigen, i.e. those being non-specifically trapped.
- Non-specifically trapped antibodies give rise to an undesired background signal and limits the minimun number of antigen molecules that can be detected and it will not be possible to distinguish between false positive and true positive results below a certain number of antigen molecules.
- solid supports such as microtiter plates, are used for the reactions. According to prior art, there will always be an excess of oligonucleotide-labeled antibody that cannot be removed from the solid support by adding background-lowering agents and by repeated wash steps.
- the present invention enables detection of extremely low numbers of antigenic molecules, even down to a single molecule.
- the invention provides reliable immunoassays in situations where insufficient numbers of antigens are available for conventional assays.
- an immunological test kit comprising a first immobilized reagent having affinity for a specific macromolecule, such as a protein. Furthermore, the test kit comprises a second and a third affinity reagent specific for different determinantes of said macromolecule, and modified with crosslinkable compounds enabling a) conjugation of said second and third affinity reagent only when both are bound to the said, same macromolecule, and b) detection by amplification.
- the affinity reagents are antibodies and the crosslinkable compounds are oligonucleotide extensions attached to the second and third antibody, respectively.
- the macromolecule is in this case a specific antigen.
- an immundassay for detection of a specific antigen comprising the following steps:
- Products from the amplification reaction only result when two antibodies, i.e. the second and the third, have bound to the same antigen. Thus, amplification is specific for antibodies having bound to antigen. Non-specifically trapped antibodies do not give rise to any signal.
- FIG. 1 is a schematic view of the principles of the immunoassay according to the invention.
- FIG. 2 shows chemical coupling of amino-modified oligonucleotides to macromolecules.
- FIG. 1 there is shown an immobilized antibody to a specific antigen applied together with two other antibodies, specific for other determinants on the same antigen.
- antibodies other specifically interacting species with a known affinity, such as lectins, receptors, single chain antibodies, cofactors, oligonucleotides and other non-proteins, can be used in the invention.
- the interacting species are modified with crosslinkable compounds in the form of an interacting pair, preferably short oligonucleotide extentions.
- oligonucleotides of neighbouring antibodies are conjugated to each other.
- the conjugation may or may not necessitate an enzymatic ligation step depending on the orientation of the oligonucleotide extensions.
- ligation is necessary, such as by T4 RNA ligase or T4 DNA ligase.
- T4 RNA ligase or T4 DNA ligase.
- conjugation is between free 3′ ends these have to be designed to be mutually complementary to achieve base pairing and initiation of DNA synthesis extending the 3′ ends of the the molecules.
- FIG. 2 there is shown a suitable way to attach the oligonucleotide extension to the antibodies.
- the oligonucleotides are terminally amino-modified and then attached to primary amines on the antibodies via disulphide bonds, e.g. according to the technique of Chue and Orgel, Nucleic Acid Research, Vol. 16, No. 9, 1988.
- Another way is by direct covalent coupling as described by Hendrickson et el., supra.
- the antibodies used in the invention can be polyclonal, monoclonal or single chain antibodies produced by bacteriophages. In the latter case, it is possible to have antibodies equipped with an oligonucleotide binding part, rendering the above coupling step between antibody and oligonucleotide unnecessary.
- the amplification technique to obtain detectable products is, for example, PCR (Polymerase Chain Reaction), LCR (Ligase Chain Reaction), SDA (Strand Displacement Amplification) bacteriophage Q ⁇ replication, and 3SR (Self-Sustained Synthetic Reaction), of which the latter three methods do not require temperature cycling.
- the method for detecting amplified products can, for example, be direct incorporation of a label, such as radioisotopes, fluorochromes, and enzymes, into the amplified products with the use of label-conjugated primers or nucleotides.
- a label such as radioisotopes, fluorochromes, and enzymes
- the accumulation of amplified products is monitored via the fluorescence from intercalating dyes, such as propidium iodide, etidium bromide and SYBRTM green from Molecular Probes.
- the invention is not restricted to detection of any special kind of macromolecule, such as an antigen; the only criterion it has to fulfil is that it must be able to simultaneously bind three antibodies/affinity reagents.
- the affinity reagents are antibodies
- the three antibodies are specific for different epitopes on the antigen.
- macromolecules examples are human myoglobin and human growth hormone. Ultrasensitive assays for growth hormone will have significant value in clinical situations where hormone levels are undetectable by prior art assays.
- Immunoglobulins were modified in a reaction with SPDP (3-(-pyridyldithio)propionic acid N-hydroxysuccinimide ester, from Pharmacia Biotech) according to the manufacturer's suggestions. Oligonucleotides were thiolated, either through the addition of a suitable phosphoramidite according to Connolly (Connolly B A, Nucl. Acid. Res. 1987 15:3131), or 3′aminomodified oligonucleotides were reacted with SPDP, followed by reduction of the dithiopyridyl bond, using dithiothreitol.
- SPDP 3-(-pyridyldithio)propionic acid N-hydroxysuccinimide ester
- SPDP-modified antibodies were incubated with three equivalents of SH-containing oligonucleotides at 4° C. over night.
- the reaction mixture was separated using a Zorbax HPLC gel filtration column. Residual free antibody were removed from the isolated conjugate by ion exchange MonoQ FPLC separation.
- Oligo 1 5′Tr S C3-ATA GAC TGA GCG TGG ACA TTA ATA TGT ACG TAG GCT TAA TTG AGT 3′ and Oligo 2: 5′P ATG TAC GAC CCG TAG ATA TTA TCA TAC TGG CAT GGG CAT GAT GAA CAT C-NHSPDP T3′
- the immune test was performed by first binding 1 ⁇ g of biotinylated antibody (#1) to individual streptavidin-coated prongs on a manifold support. [Parik et al., Anal. Biochem; (1993) 211: 144-150B]. After washes using PBS (phosfhate buffered saline) with 0.5% Tween 20, the prongs were lowered into solutions of antigen (myoglobin) at variable concentrations. After further washes, the supports with bound antigen were incubated in a solution of two oligonucleotide-conjugated antibodies #2 and #3 at 5 ng each per reaction.
- PBS phosfhate buffered saline
- antigen myoglobin
- the supports were washed, an oligonucleotide complementary to the free ends of the antibody-conjugated oligonucleotides was added (4 pmol per reaction, 5 40 CTA CGG GTC GTA CAT ACT CAA TTA AGC GTA 3′), and the ends of oligonucleotides on nearby antibodies were joined covalently by ligation at 37° C. for 30 min using 1 U of T4 DNA ligase.
- the supports were then washed in a standard PCR buffer, and the supports were added as templates in a PCR mix, including two primers specific for sequences located at either side of the ligation junction (5′TTA ATG GCG AG 3′) and Taq polymerase. After two cycles, the supports were removed and the amplification was continued for 26 more cycles. Amplification products were examined by separation in an agarose gel and ethidium bromide staining.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The present invention relates to an immunological test kit and immunoassay using a first immobilized antibody having affinity for a specific antigen. The invention is characterized by a second and third antibody being specific for different determinants of the antigen and modified with cross-linkable oligonucleotides. For detection, the oligonucleotides are amplified, whereby only such oligonucleotides will be amplified which have been cross-linked to each other. In this way unspecific background is avoided and detection is possible down to single molecules.
Description
- The present invention relates to ultrasensitive immunoassays. More specifically, it relates to immunological test kits and processes for immunological detection of a specific antigen. In the present invention, the fields of immunology and molecular genetics are combined.
- Immunoassays represent powerful tools to identify a very wide range of compounds, such as antigens and antibodies. Examples of immunoassays are ELISA (enzyme linked immunosorbent assay), EIA (enzyme immunoassay), and RIA (radio immunoassay). Common to all these immunoassays, is that detection sensitivity is limited by the affinity of typical antibodies.
- With the prior art immunoassays, detection is not possible below a certain number of molecules, because the background, i.e. unspecifically bound material, interferes with the results. Detection of very low numbers of antigen is becoming increasingly important, especially for diagnostic applications. Therefore, further developments in sensitivity as well as specificity of immunological assays are desired.
- Cantor et al, Science, Vol. 258, 2 Oct. 1992, have previously reported the attachment of oligonucleotides to antibodies in order to permit detection of such antibodies having bound antigen in immune reactions. A streptavidin-protein A chimera that posseses tight and specific binding affinity for both biotin and immunoglobulin G was used to attach biotinylated DNA specifically to antigen-monoclonal antibody complexes that had been immobilized on microtiter plate wells. Then, a segment of the attached DNA was amplified by PCR (Polymerase Chain Reaction). Analysis of the PCR products by agarose gel electrophoresis after staining with ethidium bromide allowed detection of 580 antigen molecules (9.6×10−22 moles) which is a significant improvement compared to, for example, conventional ELISA.
- However, in Cantor et al., the labeled DNA-antibody complexes are assembled in situ during the assay. This can create variable stoichiometry in the assembly of the components and in the attachment of the DNA label. Moreover, extra steps are required for addition of biotinylated reagents and binding proteins. Numerous wash steps are also needed to remove excess reagents and to free assay components of non-specifically bound reagents.
- Hendrickson et al., Nucleic Acids Research, 1995, Vol 23, No.3, report an advancement of the Cantor et al. assay that reduces complexity. This is achieved through labeling antibody with DNA by direct covalent linkage of the DNA to the antibody. In this approach, the analyte specific antibody and the 5′ amino modified DNA oligonucleotide are independently activated by means of separate heterobifunctional cross-linking agents. The activated antibody and DNA label are then coupled in a single spontaneous reaction.
- International patent publication no. WO 91/17442 describes a molecular probe for use as a signal amplifier in immunoassays for detecting i.a. antigens. The probe comprises an antibody, a double stranded polynucleotide functioning as a promoter for a DNA dependend RNA polymerase, and a single or double stranded template for the promoter. The transcription product is quantified and correlated to the amount of present antigen in a sample.
- However, in all three of the above described immunoassays the attached DNA is only used as a marker by being amplified to detectable levels. There is no distinction between oligonucleotides attached to antibodies having bound antigen and oligonucleotides attached to antibodies not having bound antigen, i.e. those being non-specifically trapped. Non-specifically trapped antibodies give rise to an undesired background signal and limits the minimun number of antigen molecules that can be detected and it will not be possible to distinguish between false positive and true positive results below a certain number of antigen molecules. Commonly, solid supports such as microtiter plates, are used for the reactions. According to prior art, there will always be an excess of oligonucleotide-labeled antibody that cannot be removed from the solid support by adding background-lowering agents and by repeated wash steps.
- The present invention enables detection of extremely low numbers of antigenic molecules, even down to a single molecule. The invention provides reliable immunoassays in situations where insufficient numbers of antigens are available for conventional assays.
- According to a first aspect of the invention, there is provided an immunological test kit comprising a first immobilized reagent having affinity for a specific macromolecule, such as a protein. Furthermore, the test kit comprises a second and a third affinity reagent specific for different determinantes of said macromolecule, and modified with crosslinkable compounds enabling a) conjugation of said second and third affinity reagent only when both are bound to the said, same macromolecule, and b) detection by amplification.
- According to a preferred embodiment of the invention, the affinity reagents are antibodies and the crosslinkable compounds are oligonucleotide extensions attached to the second and third antibody, respectively. The macromolecule is in this case a specific antigen.
- According to a second aspect of the invention there is provided an immundassay for detection of a specific antigen, comprising the following steps:
- a) contacting a sample suspected of containing said specific antigen with a first antibody linked to a solid support, said first antibody being specific for a first epitope on the antigen,
- b) washing off excess reagents,
- c) incubating with a solution of a second and a third antibody specific for a second and third epitope of said antigen, and modified with crosslinkable oligonucleotides enabling conjugation of said second and third antibody when both are bound to the said, same antigen,
- d) washing off excess reagents,
- e) amplifying said crosslinked oligonucleotides, and
- f) detecting the amplified products.
- Products from the amplification reaction only result when two antibodies, i.e. the second and the third, have bound to the same antigen. Thus, amplification is specific for antibodies having bound to antigen. Non-specifically trapped antibodies do not give rise to any signal.
- The present invention will be described more detailed below with reference to the accompanying drawings, in which
-
FIG. 1 is a schematic view of the principles of the immunoassay according to the invention, and -
FIG. 2 shows chemical coupling of amino-modified oligonucleotides to macromolecules. - In
FIG. 1 there is shown an immobilized antibody to a specific antigen applied together with two other antibodies, specific for other determinants on the same antigen. Besides antibodies other specifically interacting species with a known affinity, such as lectins, receptors, single chain antibodies, cofactors, oligonucleotides and other non-proteins, can be used in the invention. - The interacting species are modified with crosslinkable compounds in the form of an interacting pair, preferably short oligonucleotide extentions. Upon the coordinated binding of several so modified antibodies, oligonucleotides of neighbouring antibodies are conjugated to each other. The conjugation may or may not necessitate an enzymatic ligation step depending on the orientation of the oligonucleotide extensions.
- If the conjugation is between free 3′ and 5′ ends ligation is necessary, such as by T4 RNA ligase or T4 DNA ligase. To facilitate the conjugation, it is convenient to use a stretch of oligonucleotides base pairing to and, thereby, juxtaposing the free ends of the oligonucleotides and permitting their joining through ligation.
- If the conjugation is between free 3′ ends these have to be designed to be mutually complementary to achieve base pairing and initiation of DNA synthesis extending the 3′ ends of the the molecules.
- Thus, only in those cases where the antibodies are brought close enough through binding to the same antigen molecule can the oligonucleotides be ligated. Ligated molecules subsequently serve as templates for nucleic acid amplification reactions.
- In
FIG. 2 , there is shown a suitable way to attach the oligonucleotide extension to the antibodies. First, the oligonucleotides are terminally amino-modified and then attached to primary amines on the antibodies via disulphide bonds, e.g. according to the technique of Chue and Orgel, Nucleic Acid Research, Vol. 16, No. 9, 1988. Another way is by direct covalent coupling as described by Hendrickson et el., supra. - The antibodies used in the invention can be polyclonal, monoclonal or single chain antibodies produced by bacteriophages. In the latter case, it is possible to have antibodies equipped with an oligonucleotide binding part, rendering the above coupling step between antibody and oligonucleotide unnecessary.
- The amplification technique to obtain detectable products is, for example, PCR (Polymerase Chain Reaction), LCR (Ligase Chain Reaction), SDA (Strand Displacement Amplification) bacteriophage Qβ replication, and 3SR (Self-Sustained Synthetic Reaction), of which the latter three methods do not require temperature cycling.
- The method for detecting amplified products can, for example, be direct incorporation of a label, such as radioisotopes, fluorochromes, and enzymes, into the amplified products with the use of label-conjugated primers or nucleotides. Preferably, the accumulation of amplified products is monitored via the fluorescence from intercalating dyes, such as propidium iodide, etidium bromide and SYBR™ green from Molecular Probes.
- The invention is not restricted to detection of any special kind of macromolecule, such as an antigen; the only criterion it has to fulfil is that it must be able to simultaneously bind three antibodies/affinity reagents. In the case where the affinity reagents are antibodies, the three antibodies are specific for different epitopes on the antigen. By biosensor analysis, it is possible to assure that the antibodies do not bind to overlapping epitopes on the antigen.
- Examples of macromolecules are human myoglobin and human growth hormone. Ultrasensitive assays for growth hormone will have significant value in clinical situations where hormone levels are undetectable by prior art assays.
- The invention will now be described below in a non-limiting Example.
- Immunoglobulins were modified in a reaction with SPDP (3-(-pyridyldithio)propionic acid N-hydroxysuccinimide ester, from Pharmacia Biotech) according to the manufacturer's suggestions. Oligonucleotides were thiolated, either through the addition of a suitable phosphoramidite according to Connolly (Connolly B A, Nucl. Acid. Res. 1987 15:3131), or 3′aminomodified oligonucleotides were reacted with SPDP, followed by reduction of the dithiopyridyl bond, using dithiothreitol.
- SPDP-modified antibodies were incubated with three equivalents of SH-containing oligonucleotides at 4° C. over night. The reaction mixture was separated using a Zorbax HPLC gel filtration column. Residual free antibody were removed from the isolated conjugate by ion exchange MonoQ FPLC separation.
- The two oligonucleotides used to conjugate the antibodies were Oligo 1: 5′Tr S C3-ATA GAC TGA GCG TGG ACA TTA ATA TGT ACG TAG GCT TAA TTG AGT 3′ and Oligo 2: 5′P ATG TAC GAC CCG TAG ATA TTA TCA TAC TGG CAT GGG CAT GAT GAA CAT C-NHSPDP T3′
- The immune test was performed by first binding 1 μg of biotinylated antibody (#1) to individual streptavidin-coated prongs on a manifold support. [Parik et al., Anal. Biochem; (1993) 211: 144-150B]. After washes using PBS (phosfhate buffered saline) with 0.5% Tween 20, the prongs were lowered into solutions of antigen (myoglobin) at variable concentrations. After further washes, the supports with bound antigen were incubated in a solution of two oligonucleotide-conjugated antibodies #2 and #3 at 5 ng each per reaction. The supports were washed, an oligonucleotide complementary to the free ends of the antibody-conjugated oligonucleotides was added (4 pmol per reaction, 540 CTA CGG GTC GTA CAT ACT CAA TTA AGC GTA 3′), and the ends of oligonucleotides on nearby antibodies were joined covalently by ligation at 37° C. for 30 min using 1 U of T4 DNA ligase. The supports were then washed in a standard PCR buffer, and the supports were added as templates in a PCR mix, including two primers specific for sequences located at either side of the ligation junction (5′TTA ATG GCG AG 3′) and Taq polymerase. After two cycles, the supports were removed and the amplification was continued for 26 more cycles. Amplification products were examined by separation in an agarose gel and ethidium bromide staining.
Claims (15)
1. Reagents for use in an assay for detection of a macromolecule comprising two affinity reagents, each reagent being specific for a different determinant of said macromolecule, and each reagent having attached thereto an oligonucleotide which is conjugatable to the oligonucleotide attached to the other of said two reagents, wherein said oligonucleotides are conjugatable by means of ligation or hybridization to each other only when said affinity reagents have became bound to the same said macromolecule and wherein said conjugated oligonucleotides may then serve as a template for a nucleic acid amplification reaction, for detection of said macromolecule.
2. The reagents of claim 1 , wherein said oligonucleotides conjugate through
i) hybridization of an oligonucleotide complementary to the conjugatable oligonucleotides;
ii) hybridization of the conjugatable oligonucleotides to each other; or
iii) ligation of the oligonucleotides.
3. The reagents of claim 1 , wherein said macromolecule is a protein.
4. The reagents according to claim 1 , wherein the reagents are antibodies.
5. The reagents of claim 1 , wherein said reagents are polyclonal antibodies, monoclonal antibodies or single chain antibodies.
6. The reagents according to claim 1 , wherein the oligonucleotides are complementary to each other.
7. The reagents of claim 1 , wherein said oligonucleotides have complementary 3′ ends.
8. A method for detection of a macromolecule, which comprises binding said macromolecule to a first affinity reagent having affinity for said macromolecule, said first affinity reagent being specific for a first determinant of said macromolecule;
incubating said first affinity reagent-bound macromolecule with said detection reagents of claim 1 , specific for second and third determinants of said macromolecule, wherein said oligonucleotides conjugate to each other by hybridization or ligation when said detection reagents are both bound to said macromolecule;
amplifying said conjugated oligonucleotides; and
detecting the amplified products.
9. The method of claim 8 , wherein said first affinity reagent is immobilized.
10. The method of claim 8 , wherein said oligonucleotides conjugate through
i) hybridization of an oligonucleotide complementary to the conjugatable oligonucleotides;
ii) hybridization of the conjugatable oligonucleotides to each other; or
iii) ligation of the oligonucleotides.
11. The method according to claim 8 , wherein the conjugation occurs through hybridization of an oligonucleotide complementary to the conjugatable oligonucleotides.
12. The method according to claim 8 , wherein the conjuation occurs through hybridization of the conjugatable oligonucleotides to each other.
13. The method according to claim 11 , wherein the conjugation occurs through ligation of the oligonucleotides.
14. The method claim 8 , wherein said affinity reagents are antibodies.
15. The method of claim 8 , wherein said affinity reagents are polyclonal antibodies, monoclonal antibodies or single chain antibodies.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/011,438 US20050233351A1 (en) | 1995-06-16 | 2004-12-15 | Ultrasensitive immunoassays |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE9502196-0 | 1995-06-16 | ||
| SE9502196A SE504798C2 (en) | 1995-06-16 | 1995-06-16 | Immunoassay and test kits with two reagents that can be cross-linked if adsorbed to the analyte |
| US08/981,310 US6878515B1 (en) | 1995-06-16 | 1996-06-14 | Ultrasensitive immunoassays |
| PCT/SE1996/000779 WO1997000446A1 (en) | 1995-06-16 | 1996-06-14 | Immunoassay and kit with two reagents that are cross-linked if they adhere to an analyte |
| US11/011,438 US20050233351A1 (en) | 1995-06-16 | 2004-12-15 | Ultrasensitive immunoassays |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/SE1996/000779 Continuation WO1997000446A1 (en) | 1995-06-16 | 1996-06-14 | Immunoassay and kit with two reagents that are cross-linked if they adhere to an analyte |
| US08/981,310 Continuation US6878515B1 (en) | 1995-06-16 | 1996-06-14 | Ultrasensitive immunoassays |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050233351A1 true US20050233351A1 (en) | 2005-10-20 |
Family
ID=20398643
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/981,310 Expired - Fee Related US6878515B1 (en) | 1995-06-16 | 1996-06-14 | Ultrasensitive immunoassays |
| US11/011,438 Abandoned US20050233351A1 (en) | 1995-06-16 | 2004-12-15 | Ultrasensitive immunoassays |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/981,310 Expired - Fee Related US6878515B1 (en) | 1995-06-16 | 1996-06-14 | Ultrasensitive immunoassays |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US6878515B1 (en) |
| EP (1) | EP0832431B1 (en) |
| JP (1) | JP4091113B2 (en) |
| AU (1) | AU702125B2 (en) |
| CA (1) | CA2224674C (en) |
| DE (1) | DE69614539T2 (en) |
| SE (1) | SE504798C2 (en) |
| WO (1) | WO1997000446A1 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080305479A1 (en) * | 2006-12-05 | 2008-12-11 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US20090111712A1 (en) * | 2006-12-05 | 2009-04-30 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| CN103454427A (en) * | 2012-06-03 | 2013-12-18 | 河北省健海生物芯片技术有限责任公司 | Method for detecting trace protein in blood by utilizing antibody-nucleic acid combined amplification technology |
| WO2014210376A1 (en) * | 2013-06-27 | 2014-12-31 | The Board Of Trustees Of The Leland Stanford Junior University | Dna-conjugated antibodies for improved antibody affinity and reduced antibody cross reactivity |
| US9404150B2 (en) | 2007-08-29 | 2016-08-02 | Sequenom, Inc. | Methods and compositions for universal size-specific PCR |
| US11149296B2 (en) * | 2015-04-17 | 2021-10-19 | The Regents Of The University Of California | Methods for detecting agglutination and compositions for use in practicing the same |
| WO2022250596A1 (en) | 2021-05-25 | 2022-12-01 | Cavidi Ab | Method for sensitive analyte detection assays and kits therefor |
| US12105084B2 (en) | 2019-12-03 | 2024-10-01 | Alamar Biosciences, Inc. | Nucleic acid linked immune-sandwich assay (NULISA) |
Families Citing this family (81)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE504798C2 (en) * | 1995-06-16 | 1997-04-28 | Ulf Landegren | Immunoassay and test kits with two reagents that can be cross-linked if adsorbed to the analyte |
| EP1985714B1 (en) * | 1998-03-25 | 2012-02-29 | Olink AB | Method and kit for detecting a target molecule employing at least two affinity probes and rolling circle replication of padlock probes |
| AT407160B (en) * | 1998-06-04 | 2001-01-25 | Immuno Ag | METHOD FOR DETERMINING ANTIGENS |
| US7306904B2 (en) | 2000-02-18 | 2007-12-11 | Olink Ab | Methods and kits for proximity probing |
| SE516272C2 (en) * | 2000-02-18 | 2001-12-10 | Ulf Landegren | Methods and kits for analyte detection using proximity probing |
| GB2378245A (en) | 2001-08-03 | 2003-02-05 | Mats Nilsson | Nucleic acid amplification method |
| WO2003029489A1 (en) * | 2001-10-03 | 2003-04-10 | Iseao Technologies Limited | Methods for detection of target molecules and molecular interactions |
| US20030109067A1 (en) | 2001-12-06 | 2003-06-12 | Immunetech, Inc. | Homogeneous immunoassays for multiple allergens |
| US20040229294A1 (en) | 2002-05-21 | 2004-11-18 | Po-Ying Chan-Hui | ErbB surface receptor complexes as biomarkers |
| US20040018577A1 (en) * | 2002-07-29 | 2004-01-29 | Emerson Campbell John Lewis | Multiple hybrid immunoassay |
| TWI375796B (en) | 2003-04-18 | 2012-11-01 | Becton Dickinson Co | Immuno-amplification |
| US20050095627A1 (en) * | 2003-09-03 | 2005-05-05 | The Salk Institute For Biological Studies | Multiple antigen detection assays and reagents |
| WO2005037071A2 (en) | 2003-10-14 | 2005-04-28 | Monogram Biosciences, Inc. | Receptor tyrosine kinase signaling pathway analysis for diagnosis and therapy |
| CA2544577C (en) | 2003-12-01 | 2013-01-08 | Dako Denmark A/S | Methods and compositions for immuno-histochemical detection |
| WO2005059509A2 (en) * | 2003-12-12 | 2005-06-30 | Saint Louis University | Biosensors for detecting macromolecules and other analytes |
| EP1704256A4 (en) * | 2004-01-13 | 2008-01-16 | Us Genomics Inc | Detection and quantification of analytes in solution using polymers |
| US7595160B2 (en) | 2004-01-13 | 2009-09-29 | U.S. Genomics, Inc. | Analyte detection using barcoded polymers |
| EP1756307A1 (en) * | 2004-05-20 | 2007-02-28 | Trillion Genomics Limited | Use of mass labelled probes to detect target nucleic acids using mass spectrometry |
| WO2005123963A2 (en) | 2004-06-14 | 2005-12-29 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for use in analyte detection using proximity probes |
| JP5037350B2 (en) | 2004-11-03 | 2012-09-26 | アイリス モレキュラー ダイアグノスティクス, インコーポレイテッド | Microbubbles for affinity separation |
| DE602005023529D1 (en) * | 2004-11-03 | 2010-10-21 | Iris Molecular Diagnostics Inc | HOMOGENEOUS DETECTION OF ANALYTES |
| US20060204999A1 (en) * | 2005-03-14 | 2006-09-14 | Stephen Macevicz | Detecting molecular complexes |
| US7795009B2 (en) * | 2005-06-15 | 2010-09-14 | Saint Louis University | Three-component biosensors for detecting macromolecules and other analytes |
| US8956857B2 (en) * | 2005-06-06 | 2015-02-17 | Mediomics, Llc | Three-component biosensors for detecting macromolecules and other analytes |
| WO2006135527A2 (en) | 2005-06-10 | 2006-12-21 | Saint Louis University | Methods for the selection of aptamers |
| US7811809B2 (en) * | 2005-06-15 | 2010-10-12 | Saint Louis University | Molecular biosensors for use in competition assays |
| US7883848B2 (en) * | 2005-07-08 | 2011-02-08 | Olink Ab | Regulation analysis by cis reactivity, RACR |
| GB0605584D0 (en) * | 2006-03-20 | 2006-04-26 | Olink Ab | Method for analyte detection using proximity probes |
| US8778846B2 (en) * | 2006-12-04 | 2014-07-15 | General Electric Company | Composition, device and associated method |
| US8993245B2 (en) | 2008-11-21 | 2015-03-31 | Mediomics, Llc | Biosensor for detecting multiple epitopes on a target |
| EP2408936A4 (en) * | 2009-03-18 | 2013-01-30 | Sequenom Inc | USE OF THERMOSTABLE ENDONUCLEASES FOR GENERATING REPORTER MOLECULES |
| WO2010127186A1 (en) | 2009-04-30 | 2010-11-04 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
| WO2011100561A1 (en) | 2010-02-12 | 2011-08-18 | Saint Louis University | Molecular biosensors capable of signal amplification |
| GB201004292D0 (en) | 2010-03-15 | 2010-04-28 | Olink Ab | Assay for localised detection of analytes |
| US10787701B2 (en) | 2010-04-05 | 2020-09-29 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
| HUE026666T2 (en) | 2010-04-05 | 2016-07-28 | Prognosys Biosciences Inc | Spatially encoded biological assays |
| US20190300945A1 (en) | 2010-04-05 | 2019-10-03 | Prognosys Biosciences, Inc. | Spatially Encoded Biological Assays |
| GB201011971D0 (en) | 2010-07-15 | 2010-09-01 | Olink Ab | Methods and product |
| WO2012049316A1 (en) | 2010-10-15 | 2012-04-19 | Olink Ab | Dynamic range methods |
| US20130323729A1 (en) * | 2010-10-29 | 2013-12-05 | Olink Ab | Proximity Ligation Technology for Western Blot Applications |
| JP5766296B2 (en) | 2010-12-23 | 2015-08-19 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Polypeptide-polynucleotide complexes and their use in targeted delivery of effector components |
| GB201101621D0 (en) | 2011-01-31 | 2011-03-16 | Olink Ab | Method and product |
| US20120258871A1 (en) | 2011-04-08 | 2012-10-11 | Prognosys Biosciences, Inc. | Peptide constructs and assay systems |
| GB201106254D0 (en) | 2011-04-13 | 2011-05-25 | Frisen Jonas | Method and product |
| GB201107863D0 (en) | 2011-05-11 | 2011-06-22 | Olink Ab | Method and product |
| US10597701B2 (en) | 2011-05-11 | 2020-03-24 | Navinci Diagnostics Ab | Unfolding proximity probes and methods for the use thereof |
| GB201108678D0 (en) | 2011-05-24 | 2011-07-06 | Olink Ab | Multiplexed proximity ligation assay |
| HK1207864A1 (en) | 2012-06-27 | 2016-02-12 | F. Hoffmann-La Roche Ag | Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof |
| CN104395340B9 (en) * | 2012-06-27 | 2018-11-30 | 弗·哈夫曼-拉罗切有限公司 | Method of tailoring selective and multispecific therapeutic molecules comprising at least two different targeting entities and uses thereof |
| WO2014001325A1 (en) | 2012-06-27 | 2014-01-03 | F. Hoffmann-La Roche Ag | Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof |
| CA2879499A1 (en) | 2012-09-14 | 2014-03-20 | F. Hoffmann-La Roche Ag | Method for the production and selection of molecules comprising at least two different entities and uses thereof |
| WO2014060483A1 (en) | 2012-10-17 | 2014-04-24 | Spatial Transcriptomics Ab | Methods and product for optimising localised or spatial detection of gene expression in a tissue sample |
| US20160369321A1 (en) | 2012-11-14 | 2016-12-22 | Olink Ab | RCA Reporter Probes and Their Use in Detecting Nucleic Acid Molecules |
| CN110308272B (en) * | 2013-03-13 | 2023-09-12 | 中尺度技术有限责任公司 | Improved measurement method |
| US10114015B2 (en) | 2013-03-13 | 2018-10-30 | Meso Scale Technologies, Llc. | Assay methods |
| EP2972352B1 (en) | 2013-03-14 | 2019-05-08 | The Regents of the University of California | Nanopipette device and method for subcellular analysis |
| MX347461B (en) | 2013-03-15 | 2017-04-26 | Lubrizol Advanced Mat Inc | Heavy metal free cpvc compositions. |
| EP2972366B1 (en) | 2013-03-15 | 2020-06-17 | Prognosys Biosciences, Inc. | Methods for detecting peptide/mhc/tcr binding |
| TWI553122B (en) | 2013-05-21 | 2016-10-11 | Src公司 | Methods and systems for quantitative fluorescence-based detection of molecules and proteins |
| CN105849275B (en) | 2013-06-25 | 2020-03-17 | 普罗格诺西斯生物科学公司 | Method and system for detecting spatial distribution of biological targets in a sample |
| US10288608B2 (en) | 2013-11-08 | 2019-05-14 | Prognosys Biosciences, Inc. | Polynucleotide conjugates and methods for analyte detection |
| US9957554B1 (en) | 2013-12-19 | 2018-05-01 | National Technology & Engineering Solutions Of Sandia, Llc | Microfluidic platform for multiplexed detection in single cells and methods thereof |
| GB201401885D0 (en) | 2014-02-04 | 2014-03-19 | Olink Ab | Proximity assay with detection based on hybridisation chain reaction (HCR) |
| EP3143401A4 (en) | 2014-05-15 | 2017-10-11 | Meso Scale Technologies, LLC | Improved assay methods |
| WO2016040830A1 (en) | 2014-09-12 | 2016-03-17 | Mediomics, Llc | Molecular biosensors with a modular design |
| JP6721590B2 (en) | 2014-12-03 | 2020-07-15 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | Multispecific antibody |
| CA2982146A1 (en) | 2015-04-10 | 2016-10-13 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| CA2999888C (en) | 2015-09-24 | 2024-04-09 | Abvitro Llc | Affinity-oligonucleotide conjugates and uses thereof |
| WO2018057051A1 (en) | 2016-09-24 | 2018-03-29 | Abvitro Llc | Affinity-oligonucleotide conjugates and uses thereof |
| GB201614023D0 (en) | 2016-08-16 | 2016-09-28 | Olink Bioscience Ab | Double-stranded circle probes |
| GB201700567D0 (en) | 2017-01-12 | 2017-03-01 | Genagon Therapeutics Ab | Therapeutic agents |
| US20210255189A1 (en) | 2018-06-15 | 2021-08-19 | Olink Proteomics Ab | Biomarker panel for ovarian cancer |
| CA3132154A1 (en) | 2019-03-01 | 2020-09-10 | Meso Scale Technologies, Llc. | Electrochemiluminescent labeled probes for use in immunoassay methods, methods using such and kits comprising same |
| EP3976820A1 (en) | 2019-05-30 | 2022-04-06 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
| EP4158054B1 (en) | 2020-06-02 | 2025-04-16 | 10X Genomics, Inc. | Spatial transcriptomics for antigen-receptors |
| EP4025692A2 (en) | 2020-06-02 | 2022-07-13 | 10X Genomics, Inc. | Nucleic acid library methods |
| EP4162074B1 (en) | 2020-06-08 | 2024-04-24 | 10X Genomics, Inc. | Methods of determining a surgical margin and methods of use thereof |
| WO2025111397A1 (en) | 2023-11-20 | 2025-05-30 | Alamar Biosciences, Inc. | Use of autoinhibition standard curves in proximity assays |
| WO2025111398A1 (en) | 2023-11-20 | 2025-05-30 | Alamar Biosciences, Inc. | Reduction of non-cognate signal in multiplex proximity ligation assays |
| WO2025111396A1 (en) | 2023-11-20 | 2025-05-30 | Alamar Biosciences, Inc. | Molecular barcode set and use thereof in multiplex proximity detection assays |
| CN119355276A (en) * | 2024-11-01 | 2025-01-24 | 上海伯杰医疗科技股份有限公司 | A multi-antibody linked capture immunoassay method |
Citations (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2079172A (en) * | 1934-02-28 | 1937-05-04 | Chandler & Price Co | Platen printing press |
| US4563417A (en) * | 1984-08-31 | 1986-01-07 | Miles Laboratories, Inc. | Nucleic acid hybridization assay employing antibodies to intercalation complexes |
| US4690890A (en) * | 1984-04-04 | 1987-09-01 | Cetus Corporation | Process for simultaneously detecting multiple antigens using dual sandwich immunometric assay |
| US4748111A (en) * | 1984-03-12 | 1988-05-31 | Molecular Diagnostics, Inc. | Nucleic acid-protein conjugate used in immunoassay |
| US4824775A (en) * | 1985-01-03 | 1989-04-25 | Molecular Diagnostics, Inc. | Cells labeled with multiple Fluorophores bound to a nucleic acid carrier |
| US4988617A (en) * | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
| US5011771A (en) * | 1984-04-12 | 1991-04-30 | The General Hospital Corporation | Multiepitopic immunometric assay |
| US5026653A (en) * | 1985-04-02 | 1991-06-25 | Leeco Diagnostic, Inc. | Scavenger antibody mixture and its use for immunometric assay |
| US5384255A (en) * | 1993-06-21 | 1995-01-24 | Rappaport Family Institute For Research In The Medical Sciences | Ubiquitin carrier enzyme E2-F1, purification, production, and use |
| US5415839A (en) * | 1993-10-21 | 1995-05-16 | Abbott Laboratories | Apparatus and method for amplifying and detecting target nucleic acids |
| US5635602A (en) * | 1993-08-13 | 1997-06-03 | The Regents Of The University Of California | Design and synthesis of bispecific DNA-antibody conjugates |
| US5652107A (en) * | 1993-01-15 | 1997-07-29 | The Public Health Research Institute Of The City Of New York, Inc. | Diagnostic assays and kits for RNA using RNA binary probes and a ribozyme ligase |
| US5656731A (en) * | 1987-10-15 | 1997-08-12 | Chiron Corporation | Nucleic acid-amplified immunoassay probes |
| US5667974A (en) * | 1995-06-07 | 1997-09-16 | Abbott Laboratories | Method for detecting nucleic acid sequences using competitive amplification |
| US5693764A (en) * | 1994-03-11 | 1997-12-02 | The University Of Kentucky Research Foundation | Nucleotide or nucleoside photoaffinity compound modified antibodies, methods for their manufacture and use thereof as diagnostics and therapeutics |
| US5759773A (en) * | 1993-01-15 | 1998-06-02 | The Public Health Research Institute Of The City Of New York, Inc. | Sensitive nucleic acid sandwich hybridization assay |
| US5780231A (en) * | 1995-11-17 | 1998-07-14 | Lynx Therapeutics, Inc. | DNA extension and analysis with rolling primers |
| US5804384A (en) * | 1996-12-06 | 1998-09-08 | Vysis, Inc. | Devices and methods for detecting multiple analytes in samples |
| US5812272A (en) * | 1997-01-30 | 1998-09-22 | Hewlett-Packard Company | Apparatus and method with tiled light source array for integrated assay sensing |
| US5814492A (en) * | 1995-06-07 | 1998-09-29 | Abbott Laboratories | Probe masking method of reducing background in an amplification reaction |
| US5830670A (en) * | 1988-12-21 | 1998-11-03 | The General Hospital Corporation | Neural thread protein gene expression and detection of Alzheimer's disease |
| US5876976A (en) * | 1990-05-01 | 1999-03-02 | Amgen Inc. | Method for reducing carryover contamination in an amplification procedure |
| US5919626A (en) * | 1997-06-06 | 1999-07-06 | Orchid Bio Computer, Inc. | Attachment of unmodified nucleic acids to silanized solid phase surfaces |
| US5962223A (en) * | 1984-12-13 | 1999-10-05 | The Perkin-Elmer Corporation | Detection of specific sequences in nucleic acids |
| US5985548A (en) * | 1993-02-04 | 1999-11-16 | E. I. Du Pont De Nemours And Company | Amplification of assay reporters by nucleic acid replication |
| US6143508A (en) * | 1989-06-29 | 2000-11-07 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Device and process for cell capture and recovery |
| US6235472B1 (en) * | 1994-02-16 | 2001-05-22 | Ulf Landegren | Nucleic acid detecting reagent |
| US20020051986A1 (en) * | 2000-06-13 | 2002-05-02 | Luis Baez | Method for the detection of an analyte by means of a nucleic acid reporter |
| US20020064779A1 (en) * | 2000-02-18 | 2002-05-30 | Ulf Landegren | Methods and kits for proximity probing |
| US6558928B1 (en) * | 1998-03-25 | 2003-05-06 | Ulf Landegren | Rolling circle replication of padlock probes |
| US20030148335A1 (en) * | 2001-10-10 | 2003-08-07 | Li Shen | Detecting targets by unique identifier nucleotide tags |
| US20030207300A1 (en) * | 2000-04-28 | 2003-11-06 | Matray Tracy J. | Multiplex analytical platform using molecular tags |
| US20040038200A1 (en) * | 2000-07-11 | 2004-02-26 | Wilson Stuart Mark | Distinguishing molecular forms |
| US20040234966A1 (en) * | 2003-05-23 | 2004-11-25 | Applera Corporation | Ionic liquid apparatus and method for biological samples |
| US20050009050A1 (en) * | 2003-04-18 | 2005-01-13 | James Nadeau | Immuno-amplification |
| US6878515B1 (en) * | 1995-06-16 | 2005-04-12 | Ulf Landegren | Ultrasensitive immunoassays |
| US20050287528A1 (en) * | 2002-04-04 | 2005-12-29 | Mount Sinai Hospital | Methods for detecting ovarian cancer |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5079172A (en) * | 1988-11-04 | 1992-01-07 | Board Of Trustees Operating Michigan State University | Method for detecting the presence of antibodies using gold-labeled antibodies and test kit |
| JP3034304B2 (en) | 1990-05-04 | 2000-04-17 | カイロン コーポレイション | Protein-nucleic acid probe and immunoassay using the same |
| EP1018649A3 (en) * | 1992-03-31 | 2000-11-29 | Abbott Laboratories | Immunochromatographic device and method for multiplex detection of multiple analytes |
-
1995
- 1995-06-16 SE SE9502196A patent/SE504798C2/en not_active IP Right Cessation
-
1996
- 1996-06-14 EP EP96918976A patent/EP0832431B1/en not_active Expired - Lifetime
- 1996-06-14 WO PCT/SE1996/000779 patent/WO1997000446A1/en active IP Right Grant
- 1996-06-14 US US08/981,310 patent/US6878515B1/en not_active Expired - Fee Related
- 1996-06-14 AU AU61439/96A patent/AU702125B2/en not_active Expired
- 1996-06-14 JP JP50299197A patent/JP4091113B2/en not_active Expired - Lifetime
- 1996-06-14 DE DE69614539T patent/DE69614539T2/en not_active Expired - Lifetime
- 1996-06-14 CA CA002224674A patent/CA2224674C/en not_active Expired - Lifetime
-
2004
- 2004-12-15 US US11/011,438 patent/US20050233351A1/en not_active Abandoned
Patent Citations (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2079172A (en) * | 1934-02-28 | 1937-05-04 | Chandler & Price Co | Platen printing press |
| US4748111A (en) * | 1984-03-12 | 1988-05-31 | Molecular Diagnostics, Inc. | Nucleic acid-protein conjugate used in immunoassay |
| US4690890A (en) * | 1984-04-04 | 1987-09-01 | Cetus Corporation | Process for simultaneously detecting multiple antigens using dual sandwich immunometric assay |
| US5011771A (en) * | 1984-04-12 | 1991-04-30 | The General Hospital Corporation | Multiepitopic immunometric assay |
| US4563417A (en) * | 1984-08-31 | 1986-01-07 | Miles Laboratories, Inc. | Nucleic acid hybridization assay employing antibodies to intercalation complexes |
| US5962223A (en) * | 1984-12-13 | 1999-10-05 | The Perkin-Elmer Corporation | Detection of specific sequences in nucleic acids |
| US4824775A (en) * | 1985-01-03 | 1989-04-25 | Molecular Diagnostics, Inc. | Cells labeled with multiple Fluorophores bound to a nucleic acid carrier |
| US5026653A (en) * | 1985-04-02 | 1991-06-25 | Leeco Diagnostic, Inc. | Scavenger antibody mixture and its use for immunometric assay |
| US5656731A (en) * | 1987-10-15 | 1997-08-12 | Chiron Corporation | Nucleic acid-amplified immunoassay probes |
| US4988617A (en) * | 1988-03-25 | 1991-01-29 | California Institute Of Technology | Method of detecting a nucleotide change in nucleic acids |
| US5830670A (en) * | 1988-12-21 | 1998-11-03 | The General Hospital Corporation | Neural thread protein gene expression and detection of Alzheimer's disease |
| US6143508A (en) * | 1989-06-29 | 2000-11-07 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Device and process for cell capture and recovery |
| US5876976A (en) * | 1990-05-01 | 1999-03-02 | Amgen Inc. | Method for reducing carryover contamination in an amplification procedure |
| US5652107A (en) * | 1993-01-15 | 1997-07-29 | The Public Health Research Institute Of The City Of New York, Inc. | Diagnostic assays and kits for RNA using RNA binary probes and a ribozyme ligase |
| US5759773A (en) * | 1993-01-15 | 1998-06-02 | The Public Health Research Institute Of The City Of New York, Inc. | Sensitive nucleic acid sandwich hybridization assay |
| US5985548A (en) * | 1993-02-04 | 1999-11-16 | E. I. Du Pont De Nemours And Company | Amplification of assay reporters by nucleic acid replication |
| US5384255A (en) * | 1993-06-21 | 1995-01-24 | Rappaport Family Institute For Research In The Medical Sciences | Ubiquitin carrier enzyme E2-F1, purification, production, and use |
| US5635602A (en) * | 1993-08-13 | 1997-06-03 | The Regents Of The University Of California | Design and synthesis of bispecific DNA-antibody conjugates |
| US5849878A (en) * | 1993-08-13 | 1998-12-15 | The Regents Of The University Of California | Design and synthesis of bispecific reagents: use of double stranded DNAs as chemically and spatially defined cross-linkers |
| US5415839A (en) * | 1993-10-21 | 1995-05-16 | Abbott Laboratories | Apparatus and method for amplifying and detecting target nucleic acids |
| US6235472B1 (en) * | 1994-02-16 | 2001-05-22 | Ulf Landegren | Nucleic acid detecting reagent |
| US5693764A (en) * | 1994-03-11 | 1997-12-02 | The University Of Kentucky Research Foundation | Nucleotide or nucleoside photoaffinity compound modified antibodies, methods for their manufacture and use thereof as diagnostics and therapeutics |
| US5667974A (en) * | 1995-06-07 | 1997-09-16 | Abbott Laboratories | Method for detecting nucleic acid sequences using competitive amplification |
| US5814492A (en) * | 1995-06-07 | 1998-09-29 | Abbott Laboratories | Probe masking method of reducing background in an amplification reaction |
| US6878515B1 (en) * | 1995-06-16 | 2005-04-12 | Ulf Landegren | Ultrasensitive immunoassays |
| US5780231A (en) * | 1995-11-17 | 1998-07-14 | Lynx Therapeutics, Inc. | DNA extension and analysis with rolling primers |
| US5804384A (en) * | 1996-12-06 | 1998-09-08 | Vysis, Inc. | Devices and methods for detecting multiple analytes in samples |
| US5812272A (en) * | 1997-01-30 | 1998-09-22 | Hewlett-Packard Company | Apparatus and method with tiled light source array for integrated assay sensing |
| US5919626A (en) * | 1997-06-06 | 1999-07-06 | Orchid Bio Computer, Inc. | Attachment of unmodified nucleic acids to silanized solid phase surfaces |
| US7074564B2 (en) * | 1998-03-25 | 2006-07-11 | Ulf Landegren | Rolling circle replication of padlock probes |
| US6558928B1 (en) * | 1998-03-25 | 2003-05-06 | Ulf Landegren | Rolling circle replication of padlock probes |
| US20020064779A1 (en) * | 2000-02-18 | 2002-05-30 | Ulf Landegren | Methods and kits for proximity probing |
| US20030207300A1 (en) * | 2000-04-28 | 2003-11-06 | Matray Tracy J. | Multiplex analytical platform using molecular tags |
| US6511809B2 (en) * | 2000-06-13 | 2003-01-28 | E. I. Du Pont De Nemours And Company | Method for the detection of an analyte by means of a nucleic acid reporter |
| US20020051986A1 (en) * | 2000-06-13 | 2002-05-02 | Luis Baez | Method for the detection of an analyte by means of a nucleic acid reporter |
| US20040038200A1 (en) * | 2000-07-11 | 2004-02-26 | Wilson Stuart Mark | Distinguishing molecular forms |
| US20030148335A1 (en) * | 2001-10-10 | 2003-08-07 | Li Shen | Detecting targets by unique identifier nucleotide tags |
| US20050287528A1 (en) * | 2002-04-04 | 2005-12-29 | Mount Sinai Hospital | Methods for detecting ovarian cancer |
| US20050009050A1 (en) * | 2003-04-18 | 2005-01-13 | James Nadeau | Immuno-amplification |
| US20040234966A1 (en) * | 2003-05-23 | 2004-11-25 | Applera Corporation | Ionic liquid apparatus and method for biological samples |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9051608B2 (en) | 2006-12-05 | 2015-06-09 | Agena Bioscience, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US20090111712A1 (en) * | 2006-12-05 | 2009-04-30 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US7902345B2 (en) | 2006-12-05 | 2011-03-08 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US20110160093A1 (en) * | 2006-12-05 | 2011-06-30 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US8133701B2 (en) | 2006-12-05 | 2012-03-13 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US8383795B2 (en) | 2006-12-05 | 2013-02-26 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US20080305479A1 (en) * | 2006-12-05 | 2008-12-11 | Sequenom, Inc. | Detection and quantification of biomolecules using mass spectrometry |
| US9404150B2 (en) | 2007-08-29 | 2016-08-02 | Sequenom, Inc. | Methods and compositions for universal size-specific PCR |
| CN103454427A (en) * | 2012-06-03 | 2013-12-18 | 河北省健海生物芯片技术有限责任公司 | Method for detecting trace protein in blood by utilizing antibody-nucleic acid combined amplification technology |
| WO2014210376A1 (en) * | 2013-06-27 | 2014-12-31 | The Board Of Trustees Of The Leland Stanford Junior University | Dna-conjugated antibodies for improved antibody affinity and reduced antibody cross reactivity |
| US11149296B2 (en) * | 2015-04-17 | 2021-10-19 | The Regents Of The University Of California | Methods for detecting agglutination and compositions for use in practicing the same |
| US12054768B2 (en) | 2015-04-17 | 2024-08-06 | The Regents Of The University Of California | Methods for detecting agglutination and compositions for use in practicing the same |
| US12105084B2 (en) | 2019-12-03 | 2024-10-01 | Alamar Biosciences, Inc. | Nucleic acid linked immune-sandwich assay (NULISA) |
| US12188929B2 (en) | 2019-12-03 | 2025-01-07 | Alamar Biosciences, Inc. | Nucleic acid linked immune-sandwich assay (NULISA) |
| WO2022250596A1 (en) | 2021-05-25 | 2022-12-01 | Cavidi Ab | Method for sensitive analyte detection assays and kits therefor |
Also Published As
| Publication number | Publication date |
|---|---|
| DE69614539D1 (en) | 2001-09-20 |
| CA2224674A1 (en) | 1997-01-03 |
| JPH11508040A (en) | 1999-07-13 |
| DE69614539T2 (en) | 2002-05-23 |
| SE9502196L (en) | 1996-12-17 |
| WO1997000446A1 (en) | 1997-01-03 |
| AU6143996A (en) | 1997-01-15 |
| AU702125B2 (en) | 1999-02-11 |
| SE504798C2 (en) | 1997-04-28 |
| EP0832431A1 (en) | 1998-04-01 |
| US6878515B1 (en) | 2005-04-12 |
| CA2224674C (en) | 2009-02-24 |
| SE9502196D0 (en) | 1995-06-16 |
| JP4091113B2 (en) | 2008-05-28 |
| EP0832431B1 (en) | 2001-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0832431B1 (en) | Immunoassay and kit with two reagents that are cross-linked if they adhere to an analyte | |
| US5985548A (en) | Amplification of assay reporters by nucleic acid replication | |
| US5989813A (en) | Detection of amplified nucleic acid sequences using bifunctional haptenization and dyed microparticles | |
| US8013134B2 (en) | Kit for proximity probing with multivalent proximity probes | |
| EP0625211B1 (en) | Amplification of assay reporters by nucleic acid replication | |
| EP1563100B1 (en) | Displacement sandwich immuno-pcr | |
| CN101137758B (en) | Homogeneous analyte detection | |
| Joerger et al. | Analyte detection with DNA-labeled antibodies and polymerase chain reaction | |
| US6511809B2 (en) | Method for the detection of an analyte by means of a nucleic acid reporter | |
| CA2437043A1 (en) | Ligand detection method | |
| JP5341291B2 (en) | Improved binding interaction in the dipstick test | |
| US20020110846A1 (en) | Amplified array analysis method and system | |
| WO1989009281A1 (en) | Method for amplifying and detecting nucleic acid in a test liquid | |
| US7118864B2 (en) | Amplifiable probe | |
| WO2001030993A1 (en) | Method of detecting target nucleic acid | |
| US20050239078A1 (en) | Sequence tag microarray and method for detection of multiple proteins through DNA methods | |
| HK1003719B (en) | Amplification of assay reporters by nucleic acid replication |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |