US20030215575A1 - Multilayer plastic substrates - Google Patents
Multilayer plastic substrates Download PDFInfo
- Publication number
- US20030215575A1 US20030215575A1 US10/443,410 US44341003A US2003215575A1 US 20030215575 A1 US20030215575 A1 US 20030215575A1 US 44341003 A US44341003 A US 44341003A US 2003215575 A1 US2003215575 A1 US 2003215575A1
- Authority
- US
- United States
- Prior art keywords
- plastic substrate
- multilayer plastic
- polymer
- thin film
- polymer precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the present invention relates generally to plastic substrates which may be useful in products including, but not limited to, visual display devices, and more particularly to multilayer plastic substrates having improved light transmittance.
- (meth)acrylic is defined as “acrylic or methacrylic.”
- (meth)acrylate is defined as “acrylate or methacrylate.”
- average visible light transmittance means the average light transmittance over the visible range from 400 to 800 nm.
- peak visible light transmittance means the peak light transmittance over the visible range from 400 to 800 nm.
- the term “polymer precursor” includes monomers, oligomers, and resins, and combinations thereof.
- the term “monomer” is defined as a molecule of simple structure and low molecular weight that is capable of combining with a number of like or unlike molecules to form a polymer. Examples include, but are not limited to, simple acrylate molecules, for example, hexanedioldiacrylate, or tetraethyleneglycoldiacrylate, styrene, methyl styrene, and combinations thereof.
- the molecular weight of monomers is generally less than 1000, while for fluorinated monomers, it is generally less than 2000.
- Monomers may be combined to form oligomers and resins but do not combine to form other monomers.
- oligomer is defined as a compound molecule of at least two monomers that maybe cured by radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing. Oligomers include low molecular weight resins. Low molecular weight is defined herein as about 1000 to about 20,000 exclusive of fluorinated monomers. Oligomers are usually liquid or easily liquifiable. Oligomers do not combine to form monomers.
- the term “resin” is defined as a compound having a higher molecular weight (generally greater than 20,000) which is generally solid with no definite melting point. Examples include, but are not limited to, polystyrene resins, epoxy polyamine resins, phenolic resins, and acrylic resins (for example, polymethylmethacrylate), and combinations thereof.
- the oxygen transmission rates for materials such polyethylene terephthalate (PET) are as high as 1550 cc/m 2 /day/micron of thickness (or 8.7 cc/m 2 /day for 7 mil thickness PET), and the water vapor transmission rates are also in this range.
- Certain display applications, such as those using organic light emitting devices (OLEDs) require encapsulation that has a maximum oxygen transmission rate of 10 ⁇ 4 to 10 ⁇ 2 cc/m 2 /day, and a maximum water vapor transmission rate of 10 ⁇ 5 to 10 ⁇ 6 g/m 2 /day.
- Barrier coatings have been applied to plastic substrates to decrease their gas and liquid permeability.
- Barrier coatings typically consist of single layer thin film inorganic materials, such as Al, SiO x , AlO x , and Si 3 N 4 vacuum deposited on polymeric substrates.
- a single layer coating on PET reduces oxygen permeability to levels of about 0.1 to 1.0 cc/m 2 /day, and water vapor permeability to about 0.1 to 1.0 g/m 2 /day. However, those levels are still insufficient for many display devices.
- the high temperatures needed for such processes can deform and damage a plastic substrate, and subsequently destroy the display. If displays are to be manufactured on flexible plastic materials, the plastic must be able to withstand the necessary processing conditions, including high temperatures over 100° C., harsh chemicals, and mechanical damage.
- the present invention meets this need by providing a multilayer plastic substrate.
- the substrate consists essentially of a plurality of thin film layers of at least one polymer, the plurality of thin film layers being adjacent to one another and having sufficient strength to be self-supporting, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%.
- the average visible light transmittance is typically greater than about 85%, and it can be greater than about 90%.
- the peak visible transmittance is typically greater than about 85% and it can be greater than about 90%.
- the number of layers depends on the thickness of the thin film layers and the desired overall thickness of the multilayer plastic substrate.
- the multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick.
- Each thin film layer is typically less than about 50 ⁇ m thick.
- Polymers include, but are not limited to (meth)acrylate-containing polymers, styrene containing polymers, methyl styrene containing polymers, and fluorinated polymers, and combinations thereof.
- the glass transition temperature of the at least one polymer is generally greater than about 150° C., and it may be greater than about 200° C.
- the surface roughness of the multilayer plastic substrate is generally less than about 10 nm, and it may be less than about 5 nm, or less than about 2 nm.
- the multilayer plastic substrate can have a refractive index of greater than about 1.4 or greater than about 1.5.
- the multilayer plastic substrate can include additional layers, including, but not limited to, scratch resistant layers, antireflective coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, to provide functionality to the substrate if desired.
- Another aspect of the invention involves a method of making the multilayer plastic substrate.
- the method includes providing a support, depositing a plurality of thin film layers of at least one polymer on the support so that the plurality of thin film layers have sufficient strength to be self-supporting to form the multilayer substrate, and removing the support from the multilayer substrate, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%.
- the thin film layers can be deposited in a vacuum.
- a vacuum deposition process is flash evaporation.
- depositing the plurality of thin film layers includes flash evaporating a polymer precursor, condensing the polymer precursor as a liquid film, and cross-linking the polymer precursor to form the polymer.
- the polymer precursor can be cross-linked by any suitable method, including, but not limited to, radiation curing, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
- the plurality of thin film layers can be deposited by extruding or casting a layer of polymer precursor, and cross-linking the polymer precursor to form the polymer using any suitable cross-linking method.
- FIG. 1 is a cross-section of one embodiment of the substrate of the present invention.
- FIG. 1 shows one embodiment of a multilayer plastic substrate of the present invention.
- the multilayer plastic substrate 100 is formed on a support 110 . After the multilayer plastic substrate is formed, the support 110 is removed.
- the multilayer plastic substrate of the present invention consists essentially of a plurality of thin film layers 120 of at least one polymer adjacent to one another.
- adjacent we mean next to, but not necessarily directly next to.
- the polymer thin film layers will be directly next to one another.
- the plurality of thin film layers have sufficient strength to be self-supporting after they are formed.
- the exact number of thin film layers is not critical. It depends on the thickness of each of the individual thin film layers and the desired overall thickness of the multilayer plastic substrate. There must be enough thin film layers so that the plurality of thin film layers have sufficient strength to be self-supporting.
- the term self-supporting means the substrate can be handled and processed without the need for an underlying support once the plurality of thin film layers have been deposited. There are typically at least about 50 thin film layers, more typically at least about 100 thin film layers. There are generally in the range of about 500 thin film layers to about 1000 thin film layers or more.
- Each thin film layer is typically between about 0.05 to about 2 ⁇ m thick, generally between about 0.2 to about 0.3 ⁇ m. If the thin film layers are extruded, they are usually thicker, typically up to about 50 ⁇ m thick, in that case.
- the multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick. A 0.007 inch thick substrate would require about 90 to 350 passes of the web past the polymer precursor sources.
- the multilayer plastic substrate can be flexible or rigid.
- the average visible light transmittance of the multilayer plastic substrate is greater than about 80%, generally greater than 85%, and it may be greater than 90%.
- the peak visible light transmittance is generally greater than 85%, and it may be greater than 90%.
- the at least one polymer can be any suitable polymer, including, but not limited to, polymers made from styrene polymer precursors, polymers made from methyl styrene polymer precursors, polymers made from (meth)acrylate polymer precursors, for example, polymers made from hexanedioldiacrylate or tetraethyleneglycoldiacrylate polymer precursors, and fluorinated polymers, and combinations thereof. Polymers made from (meth)acrylate polymer precursors work well.
- the multilayer plastic substrate can be flexible or rigid.
- Multilayer plastic substrates made from polymers including, but not limited to, (meth)acrylate polymer precursors will be flexible.
- One advantage of multilayer laminated materials is that they typically have greater strength and flexibility than comparable single layer substrates.
- a multilayer plastic substrate of the present invention generally has hundreds of cross-linked layers that provide mechanical strength and sufficient rigidity to support the circuitry and devices on the display.
- a multilayer plastic substrate made from (meth)acrylate polymer precursors will have excellent transmission at visible wavelengths. Because polymers made from (meth)acrylate polymer precursors have very low optical absorption, a multilayer plastic substrate made entirely from such polymers will have high optical transparency, typically an average visible light transmittance of greater than about 90%. Multilayer substrates made entirely from fluorinated polymers will also have an average visible light transmittance of greater than 90%. Substrates made from styrene and methyl styrene polymers would have an average visible light transmittance of about 89%.
- Fully cured layers of polymers made from (meth)acrylate polymer precursors generally have a refractive index of greater than about 1.5, while fully cured fluorinated polymers generally have a refractive index of greater than about 1.4. Styrene containing polymers would have a refractive index of about 1.6.
- the multilayer plastic substrate can have a high glass transition temperature and excellent chemical resistance.
- the glass transition temperature of the at least one polymer is generally greater than about 150° C., and may be greater than about 200° C.
- Polymers including, but not limited to, (meth)acrylates, polycarbonates, polysulfones, polyethersulfones, polymides, polyamides, and polyether naphthenates have demonstrated excellent resistance to solvents. This provides protection from processing chemicals, ultraviolet light exposure, and photoresists during lithography processes used to manufacture flat panel displays and their devices.
- the thin film layers that form the multilayer substrate can be deposited by any suitable method, including vacuum flash evaporation, extrusion, or casting. With vacuum flash evaporation, deposition can be performed using a rotating drum or strap configuration.
- the polymer precursor is degassed and metered into a hot tube where it flash evaporates and exits through a nozzle as a polymer precursor gas.
- the flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, continuously atomizing the polymer precursor into a continuous flow of droplets, and continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid polymer precursor, but below a pyrolysis temperature, forming the evaporate.
- the droplets typically range in size from about 1 micrometer to about 50 micrometers, but they could be smaller or larger.
- the flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, and continuously directly vaporizing the liquid flow of the polymer precursor by continuously contacting the liquid polymer precursor on a heated surface having a temperature at or above the boiling point of the liquid polymer precursor, but below the pyrolysis temperature, forming the evaporate.
- This may be done using the vaporizer disclosed in U.S. Pat. Nos. 5,402,314, 5,536,323, and 5,711,816, which are incorporated herein by reference.
- the polymer precursor then condenses on the support as a liquid film which is subsequently cross-linked to form a polymer by any suitable method, including, but not limited to, radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
- radiation such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
- This process is capable of depositing thousands of polymer layers at web speeds up to 100 m/min.
- the polymer precursor can be deposited by extruding, spraying, or casting layers of polymer precursor on the support.
- the polymer precursor is then cross-linked using any suitable method, such as those described above.
- the functionality of the multilayer plastic substrate can be increased by the incorporation of functional layers 130 , 140 , and 150 during the deposition process.
- These functional layers 130 , 140 , and 150 can be deposited at any time during the deposition process. They can be deposited below, 130 , in between, 140 , or on top of, 150 , the plurality of thin film layers 120 of the multilayer plastic substrate, as shown in FIG. 1.
- depositing a coating adjacent to the multilayer plastic substrate includes: depositing the coating on the top layer of the multilayer plastic coating; depositing the coating on the multilayer plastic substrate and then depositing additional layers of the multilayer plastic substrate over the coating so that the coating is between the layers of the multilayer plastic substrate; and depositing the coating first and then depositing the layers of the multilayer plastic substrate, and combinations thereof.
- Functional layers 130 , 140 , and 150 include, but are not limited to, scratch resistant coatings, antireflective coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, and other functional layers. Depositing these additional layers allows the multilayer plastic substrate to be specifically tailored to different applications. Little or no surface modification is necessary for deposition of other layers because of the very smooth surface of the multilayer plastic substrate. Interfaces can be graded to bond all integrated functional layers firmly during the same coating run and pumpdown.
- the presence of functional layers not reduce the average visible light transmittance below 80%, for others, not below 85%, and still others, not below 90%. In others, it may be important that the peak visible light transmittance not drop below 85%, and for others, not below 90%. In others, it may be important that the functional layers not increase the surface roughness to greater than about 10 nm, for others, not greater than about 5 nm, and for others, not greater than 2 nm.
- the barrier coating can be a barrier stack having one or more barrier layers and one or more polymer layers. There could be one polymer layer and one barrier layer, there could be one or more polymer layers on one side of one or more barrier layers, or there could be one or more polymer layers on both sides of one or more barrier layers.
- the important feature is that the barrier stack have at least one polymer layer and at least one barrier layer.
- the barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material.
- the barrier layers are typically in the range of about 100-400 ⁇ thick, and the polymer layers are typically in the range of about 1000-10,000 ⁇ thick.
- the number of barrier stacks is not limited. The number of barrier stacks needed depends on the material used for the polymer of the substrate and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.
- the barrier layers should be transparent.
- Transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
- the metal oxides include, but are not limited to, silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof.
- the metal carbides include, but are not limited to, boron carbide, tungsten carbide, silicon carbide, and combinations thereof.
- the metal nitrides include, but are not limited to, aluminum nitride, silicon nitride, boron nitride, and combinations thereof.
- the metal oxynitrides include, but are not limited to, aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.
- the metal oxyborides include, but are not limited to, zirconium oxyboride, titanium oxyboride, and combinations thereof.
- the polymer layers of the barrier stacks can be made from (meth)acrylate polymer precursors.
- the polymer layers in the barrier stacks can be the same or different.
- the barrier stacks can be made by vacuum deposition.
- the barrier layer can be vacuum deposited onto, or into, the multilayer plastic substrate, or another functional layer.
- the polymer layer is then deposited on the barrier layer, preferably by flash evaporating (meth)acrylate polymer precursors, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber.
- flash evaporating (meth)acrylate polymer precursors condensing on the barrier layer, and polymerizing in situ in a vacuum chamber.
- Vacuum deposition includes flash evaporation of (meth)acrylate polymer precursors with in situ polymerization under vacuum, plasma deposition and polymerization of (meth)acrylate polymer precursors, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.
- ECR-PECVD electron cyclotron resonance-plasma enhanced vapor deposition
- the multilayer plastic substrate is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
Abstract
Description
- The present application is a division of U.S. patent application Ser. No. 09/835,768, filed Apr. 16, 2001.
- The present invention relates generally to plastic substrates which may be useful in products including, but not limited to, visual display devices, and more particularly to multilayer plastic substrates having improved light transmittance.
- As used herein, the term “(meth)acrylic” is defined as “acrylic or methacrylic.” Also, (meth)acrylate is defined as “acrylate or methacrylate.”
- As used herein, the term “average visible light transmittance” means the average light transmittance over the visible range from 400 to 800 nm.
- As used herein, the term “peak visible light transmittance” means the peak light transmittance over the visible range from 400 to 800 nm.
- As used herein, the term “polymer precursor” includes monomers, oligomers, and resins, and combinations thereof. As used herein, the term “monomer” is defined as a molecule of simple structure and low molecular weight that is capable of combining with a number of like or unlike molecules to form a polymer. Examples include, but are not limited to, simple acrylate molecules, for example, hexanedioldiacrylate, or tetraethyleneglycoldiacrylate, styrene, methyl styrene, and combinations thereof. The molecular weight of monomers is generally less than 1000, while for fluorinated monomers, it is generally less than 2000. Monomers may be combined to form oligomers and resins but do not combine to form other monomers.
- As used herein, the term “oligomer” is defined as a compound molecule of at least two monomers that maybe cured by radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing. Oligomers include low molecular weight resins. Low molecular weight is defined herein as about 1000 to about 20,000 exclusive of fluorinated monomers. Oligomers are usually liquid or easily liquifiable. Oligomers do not combine to form monomers.
- As used herein, the term “resin” is defined as a compound having a higher molecular weight (generally greater than 20,000) which is generally solid with no definite melting point. Examples include, but are not limited to, polystyrene resins, epoxy polyamine resins, phenolic resins, and acrylic resins (for example, polymethylmethacrylate), and combinations thereof.
- There is a need for versatile visual display devices for electronic products of many different types. Although many current displays use glass substrates, manufacturers have attempted to produce commercial products, primarily liquid crystal display devices, using unbreakable plastic substrates. These attempts have not been completely successful to date because of the quality, temperature, and permeation limitations of polymeric materials. Flexible plastic substrates, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES), have been used in thicknesses from about 0.004 inches to 0.007 inches. However, the surface quality of these substrates is often poor, with the surface having large numbers of scratches, digs, pits, and other defects.
- In addition, many polymers exhibit poor oxygen and water vapor permeation resistance, often several orders of magnitude below what is required for product performance. For example, the oxygen transmission rates for materials such polyethylene terephthalate (PET) are as high as 1550 cc/m 2/day/micron of thickness (or 8.7 cc/m2/day for 7 mil thickness PET), and the water vapor transmission rates are also in this range. Certain display applications, such as those using organic light emitting devices (OLEDs), require encapsulation that has a maximum oxygen transmission rate of 10−4 to 10−2 cc/m2/day, and a maximum water vapor transmission rate of 10−5 to 10−6 g/m2/day.
- Barrier coatings have been applied to plastic substrates to decrease their gas and liquid permeability. Barrier coatings typically consist of single layer thin film inorganic materials, such as Al, SiO x, AlOx, and Si3N4 vacuum deposited on polymeric substrates. A single layer coating on PET reduces oxygen permeability to levels of about 0.1 to 1.0 cc/m2/day, and water vapor permeability to about 0.1 to 1.0 g/m2/day. However, those levels are still insufficient for many display devices.
- Additionally, many processes used in the manufacture of displays require relatively high temperatures that most polymer substrates cannot tolerate. For example, the recrystallization of amorphous Si to poly-Si in thin film transistors requires substrate temperatures of at least 160°250° C., even with pulsed excimer laser anneals. The conductivity of a transparent electrode, which is typically made of indium tin oxide (ITO), is greatly improved if deposition occurs above 220° C. Polyimide curing generally requires temperatures of 250° C. In addition, many of the photolithographic process steps for patterning electrodes are operated in excess of 120° C. to enhance processing speeds in the fabrication. These processes are used extensively in the manufacture of display devices, and they have been optimized on glass and silicon substrates. The high temperatures needed for such processes can deform and damage a plastic substrate, and subsequently destroy the display. If displays are to be manufactured on flexible plastic materials, the plastic must be able to withstand the necessary processing conditions, including high temperatures over 100° C., harsh chemicals, and mechanical damage.
- Thus, there is a need for an improved plastic substrate for visual display devices, and for a method of making such a substrate.
- The present invention meets this need by providing a multilayer plastic substrate. The substrate consists essentially of a plurality of thin film layers of at least one polymer, the plurality of thin film layers being adjacent to one another and having sufficient strength to be self-supporting, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%. The average visible light transmittance is typically greater than about 85%, and it can be greater than about 90%. The peak visible transmittance is typically greater than about 85% and it can be greater than about 90%.
- There are typically at least about 50 thin film layers. The number of layers depends on the thickness of the thin film layers and the desired overall thickness of the multilayer plastic substrate. The multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick. Each thin film layer is typically less than about 50 μm thick.
- Polymers include, but are not limited to (meth)acrylate-containing polymers, styrene containing polymers, methyl styrene containing polymers, and fluorinated polymers, and combinations thereof. The glass transition temperature of the at least one polymer is generally greater than about 150° C., and it may be greater than about 200° C.
- The surface roughness of the multilayer plastic substrate is generally less than about 10 nm, and it may be less than about 5 nm, or less than about 2 nm.
- The multilayer plastic substrate can have a refractive index of greater than about 1.4 or greater than about 1.5.
- The multilayer plastic substrate can include additional layers, including, but not limited to, scratch resistant layers, antireflective coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, to provide functionality to the substrate if desired.
- Another aspect of the invention involves a method of making the multilayer plastic substrate. The method includes providing a support, depositing a plurality of thin film layers of at least one polymer on the support so that the plurality of thin film layers have sufficient strength to be self-supporting to form the multilayer substrate, and removing the support from the multilayer substrate, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%.
- The thin film layers can be deposited in a vacuum. One example of a vacuum deposition process is flash evaporation. In this method, depositing the plurality of thin film layers includes flash evaporating a polymer precursor, condensing the polymer precursor as a liquid film, and cross-linking the polymer precursor to form the polymer. The polymer precursor can be cross-linked by any suitable method, including, but not limited to, radiation curing, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
- Alternatively, the plurality of thin film layers can be deposited by extruding or casting a layer of polymer precursor, and cross-linking the polymer precursor to form the polymer using any suitable cross-linking method.
- Accordingly, it is an object of the present invention to provide an improved, multilayer plastic substrate and to provide a method of making such a substrate.
- FIG. 1 is a cross-section of one embodiment of the substrate of the present invention.
- FIG. 1 shows one embodiment of a multilayer plastic substrate of the present invention. The multilayer
plastic substrate 100 is formed on asupport 110. After the multilayer plastic substrate is formed, thesupport 110 is removed. - The multilayer plastic substrate of the present invention consists essentially of a plurality of thin film layers 120 of at least one polymer adjacent to one another. By adjacent, we mean next to, but not necessarily directly next to. In most of the multilayer plastic substrate, the polymer thin film layers will be directly next to one another. However, there can be additional layers intervening between some adjacent layers in order to provide additional functionality to the multilayer plastic substrate, as shown in FIG. 1 and described below.
- The plurality of thin film layers have sufficient strength to be self-supporting after they are formed. The exact number of thin film layers is not critical. It depends on the thickness of each of the individual thin film layers and the desired overall thickness of the multilayer plastic substrate. There must be enough thin film layers so that the plurality of thin film layers have sufficient strength to be self-supporting. As used herein, the term self-supporting means the substrate can be handled and processed without the need for an underlying support once the plurality of thin film layers have been deposited. There are typically at least about 50 thin film layers, more typically at least about 100 thin film layers. There are generally in the range of about 500 thin film layers to about 1000 thin film layers or more. Each thin film layer is typically between about 0.05 to about 2 μm thick, generally between about 0.2 to about 0.3 μm. If the thin film layers are extruded, they are usually thicker, typically up to about 50 μm thick, in that case. The multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick. A 0.007 inch thick substrate would require about 90 to 350 passes of the web past the polymer precursor sources. The multilayer plastic substrate can be flexible or rigid.
- The average visible light transmittance of the multilayer plastic substrate is greater than about 80%, generally greater than 85%, and it may be greater than 90%. The peak visible light transmittance is generally greater than 85%, and it may be greater than 90%.
- The at least one polymer can be any suitable polymer, including, but not limited to, polymers made from styrene polymer precursors, polymers made from methyl styrene polymer precursors, polymers made from (meth)acrylate polymer precursors, for example, polymers made from hexanedioldiacrylate or tetraethyleneglycoldiacrylate polymer precursors, and fluorinated polymers, and combinations thereof. Polymers made from (meth)acrylate polymer precursors work well.
- The multilayer plastic substrate can be flexible or rigid. Multilayer plastic substrates made from polymers including, but not limited to, (meth)acrylate polymer precursors will be flexible. One advantage of multilayer laminated materials is that they typically have greater strength and flexibility than comparable single layer substrates. A multilayer plastic substrate of the present invention generally has hundreds of cross-linked layers that provide mechanical strength and sufficient rigidity to support the circuitry and devices on the display.
- A multilayer plastic substrate made from (meth)acrylate polymer precursors will have excellent transmission at visible wavelengths. Because polymers made from (meth)acrylate polymer precursors have very low optical absorption, a multilayer plastic substrate made entirely from such polymers will have high optical transparency, typically an average visible light transmittance of greater than about 90%. Multilayer substrates made entirely from fluorinated polymers will also have an average visible light transmittance of greater than 90%. Substrates made from styrene and methyl styrene polymers would have an average visible light transmittance of about 89%.
- The birefringence present in many flexible substrates can be reduced or eliminated with the present invention because the multilayer plastic substrate is not mechanically stressed during deposition.
- Fully cured layers of polymers made from (meth)acrylate polymer precursors generally have a refractive index of greater than about 1.5, while fully cured fluorinated polymers generally have a refractive index of greater than about 1.4. Styrene containing polymers would have a refractive index of about 1.6.
- Many optical applications, such as mirrors and reflectors, and display applications, such as organic light emitting devices, require substrates with a surface roughness of less than 2 nm. Surface roughness is the root mean square of peak-to-valley measurement over a specified distance, usually 1 nm. It can be measured using an atomic force microscope or back reflection distribution function. Many substrates do not have the necessary surface smoothness. For example, the surface roughness of PET is about 20-50 nm with 100 nm spikes. In contrast, flash evaporated polymer coatings have a very low surface roughness, generally less than about 10 nm, and it may be less than 5 nm, or less than about 2 nm. Surface roughness on the order of 1 nm has been demonstrated. The surface of the multilayer plastic substrate is specular because of the exceptional smoothness of the polymer layers.
- Because the polymer material is highly cross-linked, the multilayer plastic substrate can have a high glass transition temperature and excellent chemical resistance. The glass transition temperature of the at least one polymer is generally greater than about 150° C., and may be greater than about 200° C.
- Polymers including, but not limited to, (meth)acrylates, polycarbonates, polysulfones, polyethersulfones, polymides, polyamides, and polyether naphthenates have demonstrated excellent resistance to solvents. This provides protection from processing chemicals, ultraviolet light exposure, and photoresists during lithography processes used to manufacture flat panel displays and their devices.
- The thin film layers that form the multilayer substrate can be deposited by any suitable method, including vacuum flash evaporation, extrusion, or casting. With vacuum flash evaporation, deposition can be performed using a rotating drum or strap configuration. The polymer precursor is degassed and metered into a hot tube where it flash evaporates and exits through a nozzle as a polymer precursor gas.
- The flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, continuously atomizing the polymer precursor into a continuous flow of droplets, and continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid polymer precursor, but below a pyrolysis temperature, forming the evaporate. The droplets typically range in size from about 1 micrometer to about 50 micrometers, but they could be smaller or larger.
- Alternatively, the flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, and continuously directly vaporizing the liquid flow of the polymer precursor by continuously contacting the liquid polymer precursor on a heated surface having a temperature at or above the boiling point of the liquid polymer precursor, but below the pyrolysis temperature, forming the evaporate. This may be done using the vaporizer disclosed in U.S. Pat. Nos. 5,402,314, 5,536,323, and 5,711,816, which are incorporated herein by reference.
- The polymer precursor then condenses on the support as a liquid film which is subsequently cross-linked to form a polymer by any suitable method, including, but not limited to, radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing. This process is capable of depositing thousands of polymer layers at web speeds up to 100 m/min.
- Alternatively, after degassing, the polymer precursor can be deposited by extruding, spraying, or casting layers of polymer precursor on the support. The polymer precursor is then cross-linked using any suitable method, such as those described above.
- The functionality of the multilayer plastic substrate can be increased by the incorporation of
130, 140, and 150 during the deposition process. Thesefunctional layers 130, 140, and 150 can be deposited at any time during the deposition process. They can be deposited below, 130, in between, 140, or on top of, 150, the plurality of thin film layers 120 of the multilayer plastic substrate, as shown in FIG. 1. As used herein, depositing a coating adjacent to the multilayer plastic substrate includes: depositing the coating on the top layer of the multilayer plastic coating; depositing the coating on the multilayer plastic substrate and then depositing additional layers of the multilayer plastic substrate over the coating so that the coating is between the layers of the multilayer plastic substrate; and depositing the coating first and then depositing the layers of the multilayer plastic substrate, and combinations thereof.functional layers 130, 140, and 150 include, but are not limited to, scratch resistant coatings, antireflective coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, and other functional layers. Depositing these additional layers allows the multilayer plastic substrate to be specifically tailored to different applications. Little or no surface modification is necessary for deposition of other layers because of the very smooth surface of the multilayer plastic substrate. Interfaces can be graded to bond all integrated functional layers firmly during the same coating run and pumpdown.Functional layers - For some applications, it may be important that the presence of functional layers not reduce the average visible light transmittance below 80%, for others, not below 85%, and still others, not below 90%. In others, it may be important that the peak visible light transmittance not drop below 85%, and for others, not below 90%. In others, it may be important that the functional layers not increase the surface roughness to greater than about 10 nm, for others, not greater than about 5 nm, and for others, not greater than 2 nm.
- One type of functional layer that can be included is a barrier coating. One example of a barrier coating is described in application Ser. No. 09/427,138, filed Oct. 25, 1999, entitled “Environmental Barrier Material for Organic Light Emitting Device and Method of Making,” which is incorporated herein by reference. The barrier coating can be a barrier stack having one or more barrier layers and one or more polymer layers. There could be one polymer layer and one barrier layer, there could be one or more polymer layers on one side of one or more barrier layers, or there could be one or more polymer layers on both sides of one or more barrier layers. The important feature is that the barrier stack have at least one polymer layer and at least one barrier layer. The barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material. The barrier layers are typically in the range of about 100-400 Å thick, and the polymer layers are typically in the range of about 1000-10,000 Å thick.
- The number of barrier stacks is not limited. The number of barrier stacks needed depends on the material used for the polymer of the substrate and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.
- The barrier layers should be transparent. Transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof. The metal oxides include, but are not limited to, silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof. The metal carbides include, but are not limited to, boron carbide, tungsten carbide, silicon carbide, and combinations thereof. The metal nitrides include, but are not limited to, aluminum nitride, silicon nitride, boron nitride, and combinations thereof. The metal oxynitrides include, but are not limited to, aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof. The metal oxyborides include, but are not limited to, zirconium oxyboride, titanium oxyboride, and combinations thereof.
- The polymer layers of the barrier stacks can be made from (meth)acrylate polymer precursors. The polymer layers in the barrier stacks can be the same or different.
- The barrier stacks can be made by vacuum deposition. The barrier layer can be vacuum deposited onto, or into, the multilayer plastic substrate, or another functional layer. The polymer layer is then deposited on the barrier layer, preferably by flash evaporating (meth)acrylate polymer precursors, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber. U.S. Pat. Nos. 5,440,446 and 5,725,909, which are incorporated herein by reference, describe methods of depositing thin film, barrier stacks.
- Vacuum deposition includes flash evaporation of (meth)acrylate polymer precursors with in situ polymerization under vacuum, plasma deposition and polymerization of (meth)acrylate polymer precursors, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.
- In order to protect the integrity of the barrier layer, the formation of defects and/or microcracks in the deposited layer subsequent to deposition and prior to downstream processing should be avoided. The multilayer plastic substrate is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.
- While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.
Claims (50)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/443,410 US6962671B2 (en) | 1999-10-25 | 2003-05-22 | Multilayer plastic substrates |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/427,138 US6522067B1 (en) | 1998-12-16 | 1999-10-25 | Environmental barrier material for organic light emitting device and method of making |
| US09/835,768 US6623861B2 (en) | 2001-04-16 | 2001-04-16 | Multilayer plastic substrates |
| US10/443,410 US6962671B2 (en) | 1999-10-25 | 2003-05-22 | Multilayer plastic substrates |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/835,768 Division US6623861B2 (en) | 1999-10-25 | 2001-04-16 | Multilayer plastic substrates |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| US20030215575A1 true US20030215575A1 (en) | 2003-11-20 |
| US20050158476A9 US20050158476A9 (en) | 2005-07-21 |
| US6962671B2 US6962671B2 (en) | 2005-11-08 |
Family
ID=25270403
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/835,768 Ceased US6623861B2 (en) | 1999-10-25 | 2001-04-16 | Multilayer plastic substrates |
| US10/443,410 Expired - Lifetime US6962671B2 (en) | 1999-10-25 | 2003-05-22 | Multilayer plastic substrates |
| US10/889,640 Expired - Lifetime USRE40787E1 (en) | 1999-10-25 | 2004-07-12 | Multilayer plastic substrates |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/835,768 Ceased US6623861B2 (en) | 1999-10-25 | 2001-04-16 | Multilayer plastic substrates |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/889,640 Expired - Lifetime USRE40787E1 (en) | 1999-10-25 | 2004-07-12 | Multilayer plastic substrates |
Country Status (2)
| Country | Link |
|---|---|
| US (3) | US6623861B2 (en) |
| WO (1) | WO2002083411A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080131635A1 (en) * | 2004-11-18 | 2008-06-05 | Centre National De La Racherche Scientifique | Laminate Comprising Multilayer Film Assembled By Hydrogen Bond, Self-Supported Thin Film Obtained Therefrom, and Production Method and Application of the Same |
| US20080192349A1 (en) * | 2005-02-28 | 2008-08-14 | Nalux Co., Ltd. | Optical Element with Laser Damage Suppression Film |
| US20090252862A1 (en) * | 2006-08-25 | 2009-10-08 | Nalux Co., Ltd. | Method for producing optical element having multi-layered film |
| US20120107829A1 (en) * | 2009-03-31 | 2012-05-03 | Leukocare Ag | Stabilizing compositions for immobilized biomolecules |
| US20150253532A1 (en) * | 2014-03-04 | 2015-09-10 | Largan Precision Co., Ltd. | Annular optical spacer, image lens system, and mobile terminal |
| CN109148711A (en) * | 2017-06-19 | 2019-01-04 | Tcl集团股份有限公司 | A kind of device packaging method based on inorganic thin film |
Families Citing this family (93)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040241454A1 (en) * | 1993-10-04 | 2004-12-02 | Shaw David G. | Barrier sheet and method of making same |
| US20040005482A1 (en) * | 2001-04-17 | 2004-01-08 | Tomio Kobayashi | Antireflection film and antireflection layer-affixed plastic substrate |
| TW548860B (en) | 2001-06-20 | 2003-08-21 | Semiconductor Energy Lab | Light emitting device and method of manufacturing the same |
| US7211828B2 (en) | 2001-06-20 | 2007-05-01 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic apparatus |
| JP4166455B2 (en) * | 2001-10-01 | 2008-10-15 | 株式会社半導体エネルギー研究所 | Polarizing film and light emitting device |
| TWI237716B (en) * | 2001-12-18 | 2005-08-11 | Chi Mei Optoelectronics Corp | Liquid crystal display device and its manufacturing method |
| US7038377B2 (en) | 2002-01-16 | 2006-05-02 | Seiko Epson Corporation | Display device with a narrow frame |
| US7164155B2 (en) | 2002-05-15 | 2007-01-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| US20070264564A1 (en) | 2006-03-16 | 2007-11-15 | Infinite Power Solutions, Inc. | Thin film battery on an integrated circuit or circuit board and method thereof |
| US8021778B2 (en) | 2002-08-09 | 2011-09-20 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
| US8394522B2 (en) | 2002-08-09 | 2013-03-12 | Infinite Power Solutions, Inc. | Robust metal film encapsulation |
| US7993773B2 (en) | 2002-08-09 | 2011-08-09 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
| US8236443B2 (en) | 2002-08-09 | 2012-08-07 | Infinite Power Solutions, Inc. | Metal film encapsulation |
| US8431264B2 (en) | 2002-08-09 | 2013-04-30 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
| US8404376B2 (en) | 2002-08-09 | 2013-03-26 | Infinite Power Solutions, Inc. | Metal film encapsulation |
| US8445130B2 (en) | 2002-08-09 | 2013-05-21 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
| US20040121146A1 (en) * | 2002-12-20 | 2004-06-24 | Xiao-Ming He | Composite barrier films and method |
| US7018713B2 (en) * | 2003-04-02 | 2006-03-28 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
| KR20060006840A (en) * | 2003-05-16 | 2006-01-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Barrier film for plastic substrate produced by atomic layer deposition |
| US8728285B2 (en) | 2003-05-23 | 2014-05-20 | Demaray, Llc | Transparent conductive oxides |
| JP2005123012A (en) * | 2003-10-16 | 2005-05-12 | Pioneer Electronic Corp | Organic electroluminescence display panel and manufacturing method thereof |
| US8722160B2 (en) * | 2003-10-31 | 2014-05-13 | Aeris Capital Sustainable Ip Ltd. | Inorganic/organic hybrid nanolaminate barrier film |
| US20050181535A1 (en) * | 2004-02-17 | 2005-08-18 | Yun Sun J. | Method of fabricating passivation layer for organic devices |
| US8642455B2 (en) * | 2004-02-19 | 2014-02-04 | Matthew R. Robinson | High-throughput printing of semiconductor precursor layer from nanoflake particles |
| US20090032108A1 (en) * | 2007-03-30 | 2009-02-05 | Craig Leidholm | Formation of photovoltaic absorber layers on foil substrates |
| US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
| KR101127370B1 (en) | 2004-12-08 | 2012-03-29 | 인피니트 파워 솔루션스, 인크. | Deposition of licoo2 |
| US20070020451A1 (en) * | 2005-07-20 | 2007-01-25 | 3M Innovative Properties Company | Moisture barrier coatings |
| US7722929B2 (en) | 2005-08-18 | 2010-05-25 | Corning Incorporated | Sealing technique for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device |
| US7829147B2 (en) | 2005-08-18 | 2010-11-09 | Corning Incorporated | Hermetically sealing a device without a heat treating step and the resulting hermetically sealed device |
| US20070040501A1 (en) | 2005-08-18 | 2007-02-22 | Aitken Bruce G | Method for inhibiting oxygen and moisture degradation of a device and the resulting device |
| US20070148346A1 (en) * | 2005-12-23 | 2007-06-28 | General Electric Company | Systems and methods for deposition of graded materials on continuously fed objects |
| US7790237B2 (en) * | 2006-02-21 | 2010-09-07 | Cbrite Inc. | Multilayer films for package applications and method for making same |
| US20070210420A1 (en) * | 2006-03-11 | 2007-09-13 | Nelson Curt L | Laser delamination of thin metal film using sacrificial polymer layer |
| US8158450B1 (en) * | 2006-05-05 | 2012-04-17 | Nanosolar, Inc. | Barrier films and high throughput manufacturing processes for photovoltaic devices |
| US20080006819A1 (en) * | 2006-06-19 | 2008-01-10 | 3M Innovative Properties Company | Moisture barrier coatings for organic light emitting diode devices |
| US8088502B2 (en) * | 2006-09-20 | 2012-01-03 | Battelle Memorial Institute | Nanostructured thin film optical coatings |
| JP2010505044A (en) | 2006-09-29 | 2010-02-18 | インフィニット パワー ソリューションズ, インコーポレイテッド | Material constraints for masking flexible substrates and depositing battery layers on flexible substrates |
| US8197781B2 (en) | 2006-11-07 | 2012-06-12 | Infinite Power Solutions, Inc. | Sputtering target of Li3PO4 and method for producing same |
| US8115326B2 (en) | 2006-11-30 | 2012-02-14 | Corning Incorporated | Flexible substrates having a thin-film barrier |
| CN101573471A (en) * | 2006-12-29 | 2009-11-04 | 3M创新有限公司 | Method of curing metal alkoxide-containing films |
| JP5576125B2 (en) * | 2006-12-29 | 2014-08-20 | スリーエム イノベイティブ プロパティズ カンパニー | Method for producing inorganic or inorganic / organic hybrid film |
| KR100875099B1 (en) * | 2007-06-05 | 2008-12-19 | 삼성모바일디스플레이주식회사 | Organic light emitting device and method for manufacturing same |
| US8268488B2 (en) | 2007-12-21 | 2012-09-18 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
| US9334557B2 (en) | 2007-12-21 | 2016-05-10 | Sapurast Research Llc | Method for sputter targets for electrolyte films |
| BRPI0819548A2 (en) * | 2007-12-28 | 2015-05-19 | 3M Innovative Properties Co | "flexible encapsulation film systems" |
| JP5705549B2 (en) | 2008-01-11 | 2015-04-22 | インフィニット パワー ソリューションズ, インコーポレイテッド | Thin film encapsulation for thin film batteries and other devices |
| US8350519B2 (en) | 2008-04-02 | 2013-01-08 | Infinite Power Solutions, Inc | Passive over/under voltage control and protection for energy storage devices associated with energy harvesting |
| JP5624033B2 (en) * | 2008-06-30 | 2014-11-12 | スリーエム イノベイティブプロパティズカンパニー | Method for producing inorganic or inorganic / organic hybrid barrier film |
| WO2010019577A1 (en) | 2008-08-11 | 2010-02-18 | Infinite Power Solutions, Inc. | Energy device with integral collector surface for electromagnetic energy harvesting and method thereof |
| JP5650646B2 (en) | 2008-09-12 | 2015-01-07 | インフィニット パワー ソリューションズ, インコーポレイテッド | Energy device with integral conductive surface for data communication via electromagnetic energy and method for data communication via electromagnetic energy |
| WO2010042594A1 (en) | 2008-10-08 | 2010-04-15 | Infinite Power Solutions, Inc. | Environmentally-powered wireless sensor module |
| EP2251454B1 (en) | 2009-05-13 | 2014-07-23 | SiO2 Medical Products, Inc. | Vessel coating and inspection |
| FR2938375A1 (en) * | 2009-03-16 | 2010-05-14 | Commissariat Energie Atomique | Flexible, transparent and self-supporting multi-layer film for e.g. organic LED device, has organic and inorganic layers whose thicknesses are chosen such that total thickness of film is greater than or equal to ten micrometers |
| DE102009018518A1 (en) * | 2009-04-24 | 2010-10-28 | Tesa Se | Transparent barrier laminates |
| US8823154B2 (en) * | 2009-05-08 | 2014-09-02 | The Regents Of The University Of California | Encapsulation architectures for utilizing flexible barrier films |
| US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
| WO2013170052A1 (en) | 2012-05-09 | 2013-11-14 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
| US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
| US20120127578A1 (en) * | 2009-08-03 | 2012-05-24 | Bright Clark I | Antireflective transparent emi shielding optical filter |
| WO2011028825A1 (en) | 2009-09-01 | 2011-03-10 | Infinite Power Solutions, Inc. | Printed circuit board with integrated thin film battery |
| US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
| KR101930561B1 (en) | 2010-06-07 | 2018-12-18 | 사푸라스트 리써치 엘엘씨 | Rechargeable high-density electrochemical device |
| US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
| US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
| US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
| CA2855353C (en) | 2011-11-11 | 2021-01-19 | Sio2 Medical Products, Inc. | Passivation, ph protective or lubricity coating for pharmaceutical package, coating process and apparatus |
| US20150297800A1 (en) | 2012-07-03 | 2015-10-22 | Sio2 Medical Products, Inc. | SiOx BARRIER FOR PHARMACEUTICAL PACKAGE AND COATING PROCESS |
| CN109375307A (en) * | 2012-08-15 | 2019-02-22 | 3M创新有限公司 | Polarizing beam splitter plates providing high resolution images and systems utilizing such polarizing beam splitter plates |
| US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
| US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
| AU2013352436B2 (en) | 2012-11-30 | 2018-10-25 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
| US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
| US20160015898A1 (en) | 2013-03-01 | 2016-01-21 | Sio2 Medical Products, Inc. | Plasma or cvd pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
| JP6453841B2 (en) | 2013-03-11 | 2019-01-16 | エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド | Coated packaging |
| US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
| US20160017490A1 (en) | 2013-03-15 | 2016-01-21 | Sio2 Medical Products, Inc. | Coating method |
| CN104124387A (en) * | 2013-04-28 | 2014-10-29 | 海洋王照明科技股份有限公司 | Flexible conductive electrode and preparation method thereof |
| KR102147843B1 (en) * | 2014-01-02 | 2020-08-26 | 삼성디스플레이 주식회사 | A flexible organic light emitting display device and the manufacturing method thereof |
| EP3122917B1 (en) | 2014-03-28 | 2020-05-06 | SiO2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
| JP6366089B2 (en) * | 2014-03-28 | 2018-08-01 | Necライティング株式会社 | Translucent substrate for organic EL panel, control method of refractive index anisotropy of translucent substrate for organic EL panel, production method of translucent substrate for organic EL panel, organic EL panel, organic EL device |
| US9909022B2 (en) | 2014-07-25 | 2018-03-06 | Kateeva, Inc. | Organic thin film ink compositions and methods |
| WO2016138195A1 (en) | 2015-02-25 | 2016-09-01 | Corning Incorporated | Optical structures and articles with multilayer stacks having high hardness and methods for making the same |
| KR102786617B1 (en) | 2015-08-18 | 2025-03-26 | 에스아이오2 메디컬 프로덕츠, 엘엘씨 | Packaging containers for pharmaceuticals and other products with low oxygen permeability |
| US10351077B2 (en) * | 2015-08-25 | 2019-07-16 | Mazda Motor Corporation | Vehicle member |
| WO2017039857A1 (en) | 2015-08-31 | 2017-03-09 | Kateeva, Inc. | Di- and mono(meth)acrylate based organic thin film ink compositions |
| CN105552247B (en) * | 2015-12-08 | 2018-10-26 | 上海天马微电子有限公司 | Composite substrate, flexible display device and preparation method thereof |
| CN105374952A (en) * | 2015-12-15 | 2016-03-02 | 信利半导体有限公司 | OLED member manufacture method and OLED member and application |
| EP3404074B1 (en) * | 2016-01-13 | 2021-04-28 | Nippon Paint Holdings Co., Ltd. | Infrared reflective coating composition |
| WO2017218561A1 (en) | 2016-06-13 | 2017-12-21 | Gvd Coproraton | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
| US11679412B2 (en) | 2016-06-13 | 2023-06-20 | Gvd Corporation | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
| KR102607711B1 (en) | 2017-04-21 | 2023-11-28 | 카티바, 인크. | Compositions and techniques for forming organic thin films |
| CN110372222B (en) * | 2019-06-28 | 2022-07-22 | 华为技术有限公司 | Glass panel, preparation method thereof, display screen comprising glass panel and terminal |
Citations (92)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US125822A (en) * | 1872-04-16 | Improvement in straw-cutters | ||
| US3607365A (en) * | 1969-05-12 | 1971-09-21 | Minnesota Mining & Mfg | Vapor phase method of coating substrates with polymeric coating |
| US4098965A (en) * | 1977-01-24 | 1978-07-04 | Polaroid Corporation | Flat batteries and method of making the same |
| US4266223A (en) * | 1978-12-08 | 1981-05-05 | W. H. Brady Co. | Thin panel display |
| US4283482A (en) * | 1979-03-29 | 1981-08-11 | Nihon Shinku Gijutsu Kabushiki Kaisha | Dry Lithographic Process |
| US4521458A (en) * | 1983-04-01 | 1985-06-04 | Nelson Richard C | Process for coating material with water resistant composition |
| US4581337A (en) * | 1983-07-07 | 1986-04-08 | E. I. Du Pont De Nemours And Company | Polyether polyamines as linking agents for particle reagents useful in immunoassays |
| US4695618A (en) * | 1986-05-23 | 1987-09-22 | Ameron, Inc. | Solventless polyurethane spray compositions and method for applying them |
| US4722515A (en) * | 1984-11-06 | 1988-02-02 | Spectrum Control, Inc. | Atomizing device for vaporization |
| US4768666A (en) * | 1987-05-26 | 1988-09-06 | Milton Kessler | Tamper proof container closure |
| US4842893A (en) * | 1983-12-19 | 1989-06-27 | Spectrum Control, Inc. | High speed process for coating substrates |
| US4855186A (en) * | 1987-03-06 | 1989-08-08 | Hoechst Aktiengesellschaft | Coated plastic film and plastic laminate prepared therefrom |
| US4954371A (en) * | 1986-06-23 | 1990-09-04 | Spectrum Control, Inc. | Flash evaporation of monomer fluids |
| US5032461A (en) * | 1983-12-19 | 1991-07-16 | Spectrum Control, Inc. | Method of making a multi-layered article |
| US5036249A (en) * | 1989-12-11 | 1991-07-30 | Molex Incorporated | Electroluminescent lamp panel and method of fabricating same |
| US5124204A (en) * | 1988-07-14 | 1992-06-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent (EL) panel |
| US5189405A (en) * | 1989-01-26 | 1993-02-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent panel |
| US5203898A (en) * | 1991-12-16 | 1993-04-20 | Corning Incorporated | Method of making fluorine/boron doped silica tubes |
| US5204314A (en) * | 1990-07-06 | 1993-04-20 | Advanced Technology Materials, Inc. | Method for delivering an involatile reagent in vapor form to a CVD reactor |
| US5237439A (en) * | 1991-09-30 | 1993-08-17 | Sharp Kabushiki Kaisha | Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide |
| US5393607A (en) * | 1992-01-13 | 1995-02-28 | Mitsui Toatsu Chemiclas, Inc. | Laminated transparent plastic material and polymerizable monomer |
| US5393067A (en) * | 1993-01-21 | 1995-02-28 | Igt | System, method and apparatus for generating large jackpots on live game card tables |
| US5395644A (en) * | 1992-08-21 | 1995-03-07 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers |
| US5402314A (en) * | 1992-02-10 | 1995-03-28 | Sony Corporation | Printed circuit board having through-hole stopped with photo-curable solder resist |
| US5427638A (en) * | 1992-06-04 | 1995-06-27 | Alliedsignal Inc. | Low temperature reaction bonding |
| US5440446A (en) * | 1993-10-04 | 1995-08-08 | Catalina Coatings, Inc. | Acrylate coating material |
| US5451449A (en) * | 1994-05-11 | 1995-09-19 | The Mearl Corporation | Colored iridescent film |
| US5536323A (en) * | 1990-07-06 | 1996-07-16 | Advanced Technology Materials, Inc. | Apparatus for flash vaporization delivery of reagents |
| US5554220A (en) * | 1995-05-19 | 1996-09-10 | The Trustees Of Princeton University | Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities |
| US5607789A (en) * | 1995-01-23 | 1997-03-04 | Duracell Inc. | Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same |
| US5620524A (en) * | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
| US5629389A (en) * | 1995-06-06 | 1997-05-13 | Hewlett-Packard Company | Polymer-based electroluminescent device with improved stability |
| US5652192A (en) * | 1992-07-10 | 1997-07-29 | Battelle Memorial Institute | Catalyst material and method of making |
| US5654084A (en) * | 1994-07-22 | 1997-08-05 | Martin Marietta Energy Systems, Inc. | Protective coatings for sensitive materials |
| US5660961A (en) * | 1996-01-11 | 1997-08-26 | Xerox Corporation | Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference |
| US5665280A (en) * | 1996-01-30 | 1997-09-09 | Becton Dickinson Co | Blood collection tube assembly |
| US5711816A (en) * | 1990-07-06 | 1998-01-27 | Advanced Technolgy Materials, Inc. | Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same |
| US5725909A (en) * | 1993-10-04 | 1998-03-10 | Catalina Coatings, Inc. | Acrylate composite barrier coating process |
| US5731661A (en) * | 1996-07-15 | 1998-03-24 | Motorola, Inc. | Passivation of electroluminescent organic devices |
| US5747182A (en) * | 1992-07-27 | 1998-05-05 | Cambridge Display Technology Limited | Manufacture of electroluminescent devices |
| US5757126A (en) * | 1995-11-30 | 1998-05-26 | Motorola, Inc. | Passivated organic device having alternating layers of polymer and dielectric |
| US5759329A (en) * | 1992-01-06 | 1998-06-02 | Pilot Industries, Inc. | Fluoropolymer composite tube and method of preparation |
| US5771562A (en) * | 1995-05-02 | 1998-06-30 | Motorola, Inc. | Passivation of organic devices |
| US5782355A (en) * | 1994-09-30 | 1998-07-21 | Fuji Photo Film Co., Ltd. | Cassette case |
| US5792550A (en) * | 1989-10-24 | 1998-08-11 | Flex Products, Inc. | Barrier film having high colorless transparency and method |
| US5811183A (en) * | 1995-04-06 | 1998-09-22 | Shaw; David G. | Acrylate polymer release coated sheet materials and method of production thereof |
| US5811177A (en) * | 1995-11-30 | 1998-09-22 | Motorola, Inc. | Passivation of electroluminescent organic devices |
| US5872355A (en) * | 1997-04-09 | 1999-02-16 | Hewlett-Packard Company | Electroluminescent device and fabrication method for a light detection system |
| US5891554A (en) * | 1994-02-25 | 1999-04-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
| US5902641A (en) * | 1997-09-29 | 1999-05-11 | Battelle Memorial Institute | Flash evaporation of liquid monomer particle mixture |
| US5902688A (en) * | 1996-07-16 | 1999-05-11 | Hewlett-Packard Company | Electroluminescent display device |
| US5904958A (en) * | 1998-03-20 | 1999-05-18 | Rexam Industries Corp. | Adjustable nozzle for evaporation or organic monomers |
| US5912069A (en) * | 1996-12-19 | 1999-06-15 | Sigma Laboratories Of Arizona | Metal nanolaminate composite |
| US5919328A (en) * | 1996-01-30 | 1999-07-06 | Becton Dickinson And Company | Blood collection tube assembly |
| US5922161A (en) * | 1995-06-30 | 1999-07-13 | Commonwealth Scientific And Industrial Research Organisation | Surface treatment of polymers |
| US5948552A (en) * | 1996-08-27 | 1999-09-07 | Hewlett-Packard Company | Heat-resistant organic electroluminescent device |
| US5952778A (en) * | 1997-03-18 | 1999-09-14 | International Business Machines Corporation | Encapsulated organic light emitting device |
| US5955161A (en) * | 1996-01-30 | 1999-09-21 | Becton Dickinson And Company | Blood collection tube assembly |
| US6013337A (en) * | 1996-01-30 | 2000-01-11 | Becton Dickinson And Company | Blood collection tube assembly |
| US6040017A (en) * | 1998-10-02 | 2000-03-21 | Sigma Laboratories, Inc. | Formation of multilayered photonic polymer composites |
| US6045864A (en) * | 1997-12-01 | 2000-04-04 | 3M Innovative Properties Company | Vapor coating method |
| US6066826A (en) * | 1998-03-16 | 2000-05-23 | Yializis; Angelo | Apparatus for plasma treatment of moving webs |
| US6084702A (en) * | 1998-10-15 | 2000-07-04 | Pleotint, L.L.C. | Thermochromic devices |
| US6083313A (en) * | 1999-07-27 | 2000-07-04 | Advanced Refractory Technologies, Inc. | Hardcoats for flat panel display substrates |
| US6083628A (en) * | 1994-11-04 | 2000-07-04 | Sigma Laboratories Of Arizona, Inc. | Hybrid polymer film |
| US6087007A (en) * | 1994-09-30 | 2000-07-11 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Heat-Resistant optical plastic laminated sheet and its producing method |
| US6092269A (en) * | 1996-04-04 | 2000-07-25 | Sigma Laboratories Of Arizona, Inc. | High energy density capacitor |
| US6106627A (en) * | 1996-04-04 | 2000-08-22 | Sigma Laboratories Of Arizona, Inc. | Apparatus for producing metal coated polymers |
| US6117266A (en) * | 1997-12-19 | 2000-09-12 | Interuniversifair Micro-Elektronica Cenirum (Imec Vzw) | Furnace for continuous, high throughput diffusion processes from various diffusion sources |
| US6118218A (en) * | 1999-02-01 | 2000-09-12 | Sigma Technologies International, Inc. | Steady-state glow-discharge plasma at atmospheric pressure |
| US6178082B1 (en) * | 1998-02-26 | 2001-01-23 | International Business Machines Corporation | High temperature, conductive thin film diffusion barrier for ceramic/metal systems |
| US6195142B1 (en) * | 1995-12-28 | 2001-02-27 | Matsushita Electrical Industrial Company, Ltd. | Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element |
| US6198220B1 (en) * | 1997-07-11 | 2001-03-06 | Emagin Corporation | Sealing structure for organic light emitting devices |
| US6198217B1 (en) * | 1997-05-12 | 2001-03-06 | Matsushita Electric Industrial Co., Ltd. | Organic electroluminescent device having a protective covering comprising organic and inorganic layers |
| US6207238B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition for high and/or low index of refraction polymers |
| US6207239B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition of conjugated polymer |
| US6217947B1 (en) * | 1998-12-16 | 2001-04-17 | Battelle Memorial Institute | Plasma enhanced polymer deposition onto fixtures |
| US6224948B1 (en) * | 1997-09-29 | 2001-05-01 | Battelle Memorial Institute | Plasma enhanced chemical deposition with low vapor pressure compounds |
| US6228434B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making a conformal coating of a microtextured surface |
| US6228436B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making light emitting polymer composite material |
| US6274204B1 (en) * | 1998-12-16 | 2001-08-14 | Battelle Memorial Institute | Method of making non-linear optical polymer |
| US6348237B2 (en) * | 1997-08-29 | 2002-02-19 | 3M Innovative Properties Company | Jet plasma process for deposition of coatings |
| US6358570B1 (en) * | 1999-03-31 | 2002-03-19 | Battelle Memorial Institute | Vacuum deposition and curing of oligomers and resins |
| US6413645B1 (en) * | 2000-04-20 | 2002-07-02 | Battelle Memorial Institute | Ultrabarrier substrates |
| US6522067B1 (en) * | 1998-12-16 | 2003-02-18 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
| US20030038590A1 (en) * | 2001-08-21 | 2003-02-27 | Silvernail Jeffrey Alan | Patterned oxygen and moisture absorber for organic optoelectronic device structures |
| US6537688B2 (en) * | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
| US20030085652A1 (en) * | 2001-11-06 | 2003-05-08 | Weaver Michael Stuart | Encapsulation structure that acts as a multilayer mirror |
| US6569515B2 (en) * | 1998-01-13 | 2003-05-27 | 3M Innovative Properties Company | Multilayered polymer films with recyclable or recycled layers |
| US6597111B2 (en) * | 2001-11-27 | 2003-07-22 | Universal Display Corporation | Protected organic optoelectronic devices |
| US6614057B2 (en) * | 2001-02-07 | 2003-09-02 | Universal Display Corporation | Sealed organic optoelectronic structures |
| US6624568B2 (en) * | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
Family Cites Families (249)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2382432A (en) | 1940-08-02 | 1945-08-14 | Crown Cork & Seal Co | Method and apparatus for depositing vaporized metal coatings |
| US2384500A (en) | 1942-07-08 | 1945-09-11 | Crown Cork & Seal Co | Apparatus and method of coating |
| US3475307A (en) | 1965-02-04 | 1969-10-28 | Continental Can Co | Condensation of monomer vapors to increase polymerization rates in a glow discharge |
| FR1393629A (en) | 1965-09-13 | 1965-03-26 | Continental Oil Co | Method and apparatus for coating solid sheets |
| US3941630A (en) | 1974-04-29 | 1976-03-02 | Rca Corporation | Method of fabricating a charged couple radiation sensing device |
| US4055530A (en) | 1975-02-27 | 1977-10-25 | Standard Oil Company (Indiana) | Aqueous dispersion of addition polymer of an alpha-beta-ethylenically unsaturated monomer and suspended polypropylene particles |
| US4313254A (en) | 1979-10-30 | 1982-02-02 | The Johns Hopkins University | Thin-film silicon solar cell with metal boride bottom electrode |
| US4426275A (en) | 1981-11-27 | 1984-01-17 | Deposition Technology, Inc. | Sputtering device adaptable for coating heat-sensitive substrates |
| JPS58104900U (en) | 1982-01-13 | 1983-07-16 | 石川島播磨重工業株式会社 | Raw material preheating device in arc furnace enclosure |
| JPS58156848A (en) | 1982-03-15 | 1983-09-17 | Fuji Photo Film Co Ltd | Ion selective electrode and its manufacture |
| JPS59138440A (en) | 1983-01-27 | 1984-08-08 | 豊田合成株式会社 | Resin shape with ceramics coating layer |
| JPS6010498A (en) | 1983-06-30 | 1985-01-19 | Asahi Glass Co Ltd | Shift register |
| DE3324106A1 (en) | 1983-07-05 | 1985-01-17 | Draiswerke Gmbh, 6800 Mannheim | METHOD FOR GLUING WOOD CHIPS AND THE LIKE WITH LIQUID GLUE AND DEVICE FOR CARRYING OUT THE METHOD |
| US4710426A (en) | 1983-11-28 | 1987-12-01 | Polaroid Corporation, Patent Dept. | Solar radiation-control articles with protective overlayer |
| US4557978A (en) | 1983-12-12 | 1985-12-10 | Primary Energy Research Corporation | Electroactive polymeric thin films |
| EP0147696B1 (en) | 1983-12-19 | 1991-07-10 | SPECTRUM CONTROL, INC. (a Pennsylvania corporation) | Miniaturized monolithic multi-layer capacitor and apparatus and method for making |
| DE3571772D1 (en) | 1984-03-21 | 1989-08-31 | Ulvac Corp | Improvements in or relating to the covering of substrates with synthetic resin films |
| DE3427057A1 (en) | 1984-07-23 | 1986-01-23 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | SYSTEM FOR THE PRODUCTION OF SEMICONDUCTOR LAYER STRUCTURES BY EPITACTIC GROWTH |
| JPH0128819Y2 (en) | 1984-10-27 | 1989-09-01 | ||
| JPH0448515Y2 (en) | 1985-09-30 | 1992-11-16 | ||
| JPH041440Y2 (en) | 1986-03-24 | 1992-01-17 | ||
| WO1987007848A1 (en) | 1986-06-23 | 1987-12-30 | Spectrum Control, Inc. | Flash evaporation of monomer fluids |
| JPH07105034B2 (en) | 1986-11-28 | 1995-11-13 | 株式会社日立製作所 | Magnetic recording body |
| JPH0519120Y2 (en) | 1986-12-16 | 1993-05-20 | ||
| JPS63136316U (en) | 1987-02-26 | 1988-09-07 | ||
| US4843036A (en) | 1987-06-29 | 1989-06-27 | Eastman Kodak Company | Method for encapsulating electronic devices |
| JP2627619B2 (en) | 1987-07-13 | 1997-07-09 | 日本電信電話株式会社 | Organic amorphous film preparation method |
| US4847469A (en) | 1987-07-15 | 1989-07-11 | The Boc Group, Inc. | Controlled flow vaporizer |
| JPH0626997Y2 (en) | 1987-07-22 | 1994-07-20 | シャープ株式会社 | Loading device for magnetic recording / reproducing device |
| JPS6441192A (en) | 1987-08-07 | 1989-02-13 | Alps Electric Co Ltd | Thin film electroluminescent display element |
| JPH0193129A (en) | 1987-10-02 | 1989-04-12 | Mitsubishi Electric Corp | chemical vapor deposition equipment |
| GB2210826B (en) | 1987-10-19 | 1992-08-12 | Bowater Packaging Ltd | Barrier packaging materials |
| US4854186A (en) | 1987-12-02 | 1989-08-08 | Kuster & Co. Gmbh | Apparatus for adjusting the length of a bowden cable |
| US4931158A (en) | 1988-03-22 | 1990-06-05 | The Regents Of The Univ. Of Calif. | Deposition of films onto large area substrates using modified reactive magnetron sputtering |
| US4977013A (en) | 1988-06-03 | 1990-12-11 | Andus Corporation | Tranparent conductive coatings |
| US4889609A (en) | 1988-09-06 | 1989-12-26 | Ovonic Imaging Systems, Inc. | Continuous dry etching system |
| JPH02183230A (en) | 1989-01-09 | 1990-07-17 | Sharp Corp | Organic nonlinear optical material and its manufacturing method |
| JP2678055B2 (en) | 1989-03-30 | 1997-11-17 | シャープ株式会社 | Manufacturing method of organic compound thin film |
| US5047131A (en) | 1989-11-08 | 1991-09-10 | The Boc Group, Inc. | Method for coating substrates with silicon based compounds |
| JPH0774378B2 (en) | 1989-12-09 | 1995-08-09 | 新日本製鐵株式会社 | Method for producing high strength hot rolled steel sheet with excellent hole expandability |
| JPH03183759A (en) | 1989-12-12 | 1991-08-09 | Toyobo Co Ltd | Laminated plastic film and its production |
| CA2038117A1 (en) | 1990-03-29 | 1991-09-30 | Mahfuza B. Ali | Controllable radiation curable photoiniferter prepared adhesives for attachment of microelectronic devices and a method of attaching microelectronic devices therewith |
| JPH03290375A (en) | 1990-04-09 | 1991-12-20 | Sumitomo Electric Ind Ltd | Coated carbon fiber reinforced composite material |
| US5059861A (en) | 1990-07-26 | 1991-10-22 | Eastman Kodak Company | Organic electroluminescent device with stabilizing cathode capping layer |
| US5047687A (en) | 1990-07-26 | 1991-09-10 | Eastman Kodak Company | Organic electroluminescent device with stabilized cathode |
| FR2666190B1 (en) | 1990-08-24 | 1996-07-12 | Thomson Csf | METHOD AND DEVICE FOR HERMETIC ENCAPSULATION OF ELECTRONIC COMPONENTS. |
| JP2793048B2 (en) | 1991-02-22 | 1998-09-03 | 三井化学株式会社 | Organic light emitting device sealing method |
| US5234762A (en) | 1991-11-14 | 1993-08-10 | Eastman Kodak Company | Compliant support with mutually adhered web for transfer of information |
| JP3359649B2 (en) | 1991-11-27 | 2002-12-24 | 東洋アルミニウム株式会社 | High moisture proof electrostatic damage prevention bag |
| US5336324A (en) | 1991-12-04 | 1994-08-09 | Emcore Corporation | Apparatus for depositing a coating on a substrate |
| US5372851A (en) | 1991-12-16 | 1994-12-13 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a chemically adsorbed film |
| JPH05182759A (en) | 1991-12-26 | 1993-07-23 | Pioneer Video Corp | Organic EL element |
| JP3203623B2 (en) | 1992-03-06 | 2001-08-27 | ソニー株式会社 | Organic electrolyte battery |
| JP2958186B2 (en) | 1992-04-20 | 1999-10-06 | シャープ株式会社 | Plastic substrate liquid crystal display |
| DE4232390A1 (en) | 1992-09-26 | 1994-03-31 | Roehm Gmbh | Process for producing silicon oxide scratch-resistant layers on plastics by plasma coating |
| JPH06158305A (en) | 1992-11-27 | 1994-06-07 | Shimadzu Corp | In-line sputtering equipment |
| JPH06158306A (en) | 1992-11-27 | 1994-06-07 | Vacuum Metallurgical Co Ltd | Production of target for sputtering by ga-deposition method and device therefor |
| JPH06182935A (en) | 1992-12-18 | 1994-07-05 | Bridgestone Corp | Gas barrier rubber laminate and manufacture thereof |
| DE69304038T2 (en) | 1993-01-28 | 1996-12-19 | Applied Materials Inc | Device for a vacuum process with improved throughput |
| JPH06234186A (en) | 1993-02-10 | 1994-08-23 | Mitsui Toatsu Chem Inc | Highly gas-barrier transparent electrode film |
| US5771177A (en) | 1993-05-17 | 1998-06-23 | Kyoei Automatic Control Technology Co., Ltd. | Method and apparatus for measuring dynamic load |
| JP3170105B2 (en) | 1993-07-01 | 2001-05-28 | キヤノン株式会社 | Solar cell module |
| US5510173A (en) | 1993-08-20 | 1996-04-23 | Southwall Technologies Inc. | Multiple layer thin films with improved corrosion resistance |
| US20040241454A1 (en) | 1993-10-04 | 2004-12-02 | Shaw David G. | Barrier sheet and method of making same |
| JPH07147189A (en) | 1993-11-25 | 1995-06-06 | Idemitsu Kosan Co Ltd | Organic electroluminescent device |
| JPH07192868A (en) | 1993-12-27 | 1995-07-28 | Ricoh Co Ltd | Organic thin film electroluminescent device |
| US5934856A (en) | 1994-05-23 | 1999-08-10 | Tokyo Electron Limited | Multi-chamber treatment system |
| US5795399A (en) | 1994-06-30 | 1998-08-18 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product |
| US5464667A (en) | 1994-08-16 | 1995-11-07 | Minnesota Mining And Manufacturing Company | Jet plasma process and apparatus |
| TW295677B (en) | 1994-08-19 | 1997-01-11 | Tokyo Electron Co Ltd | |
| JP3385292B2 (en) | 1994-09-02 | 2003-03-10 | 株式会社クラレ | Multilayer structure and its use |
| DE4438359C2 (en) | 1994-10-27 | 2001-10-04 | Schott Glas | Plastic container with a barrier coating |
| JPH08171988A (en) | 1994-12-20 | 1996-07-02 | Showa Shell Sekiyu Kk | Electroluminescence element |
| JP3565929B2 (en) | 1994-12-27 | 2004-09-15 | 大日本印刷株式会社 | Plastic substrate for liquid crystal display devices |
| JP3364081B2 (en) | 1995-02-16 | 2003-01-08 | 株式会社半導体エネルギー研究所 | Method for manufacturing semiconductor device |
| US5877895A (en) | 1995-03-20 | 1999-03-02 | Catalina Coatings, Inc. | Multicolor interference coating |
| GB9507862D0 (en) | 1995-04-18 | 1995-05-31 | Cambridge Display Tech Ltd | Fabrication of organic light-emitting devices |
| GB9507817D0 (en) | 1995-04-18 | 1995-05-31 | Philips Electronics Uk Ltd | Touch sensing devices and methods of making such |
| JPH08325713A (en) | 1995-05-30 | 1996-12-10 | Matsushita Electric Works Ltd | Formation of metallic film on organic substrate surface |
| US5681615A (en) | 1995-07-27 | 1997-10-28 | Battelle Memorial Institute | Vacuum flash evaporated polymer composites |
| JPH0959763A (en) | 1995-08-25 | 1997-03-04 | Matsushita Electric Works Ltd | Formation of metallic film on surface of organic substrate |
| US5723219A (en) | 1995-12-19 | 1998-03-03 | Talison Research | Plasma deposited film networks |
| WO1997016053A1 (en) | 1995-10-20 | 1997-05-01 | Robert Bosch Gmbh | Electroluminescent layer system |
| DE19603746A1 (en) | 1995-10-20 | 1997-04-24 | Bosch Gmbh Robert | Electroluminescent layer system |
| JP3533790B2 (en) | 1995-11-10 | 2004-05-31 | 富士電機ホールディングス株式会社 | Organic thin film light emitting device |
| JP3484891B2 (en) | 1995-11-21 | 2004-01-06 | 三菱化学株式会社 | Gas barrier olefin resin laminate |
| JPH09232553A (en) | 1995-12-20 | 1997-09-05 | Sony Corp | Optical device |
| US5684084A (en) | 1995-12-21 | 1997-11-04 | E. I. Du Pont De Nemours And Company | Coating containing acrylosilane polymer to improve mar and acid etch resistance |
| JPH1041067A (en) | 1996-07-24 | 1998-02-13 | Matsushita Electric Ind Co Ltd | Organic electroluminescent device |
| TW434301B (en) | 1996-01-30 | 2001-05-16 | Becton Dickinson Co | Non-ideal barrier coating composition comprising organic and inorganic materials |
| US5716683A (en) | 1996-01-30 | 1998-02-10 | Becton, Dickinson And Company | Blood collection tube assembly |
| JPH10725A (en) | 1996-06-18 | 1998-01-06 | Toppan Printing Co Ltd | Gas barrier laminate for packaging |
| JPH1013083A (en) | 1996-06-27 | 1998-01-16 | Tosoh Corp | Electromagnetic wave absorber |
| JPH1016150A (en) | 1996-07-02 | 1998-01-20 | Teijin Ltd | Gas barrier laminated film |
| US5693956A (en) | 1996-07-29 | 1997-12-02 | Motorola | Inverted oleds on hard plastic substrate |
| US5844363A (en) | 1997-01-23 | 1998-12-01 | The Trustees Of Princeton Univ. | Vacuum deposited, non-polymeric flexible organic light emitting devices |
| WO1998010116A1 (en) | 1996-09-05 | 1998-03-12 | Talison Research | Ultrasonic nozzle feed for plasma deposited film networks |
| KR19980033213A (en) | 1996-10-31 | 1998-07-25 | 조셉제이.스위니 | How to reduce the generation of particulate matter in the sputtering chamber |
| US5895228A (en) | 1996-11-14 | 1999-04-20 | International Business Machines Corporation | Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives |
| US5821692A (en) | 1996-11-26 | 1998-10-13 | Motorola, Inc. | Organic electroluminescent device hermetic encapsulation package |
| JPH10312863A (en) | 1997-05-09 | 1998-11-24 | Micronics Japan Co Ltd | Electrical connector |
| JP3478368B2 (en) | 1997-05-30 | 2003-12-15 | 住友ベークライト株式会社 | Transparent antistatic barrier film |
| JPH1117106A (en) | 1997-06-20 | 1999-01-22 | Sony Corp | Electronic device and manufacture thereof |
| US5920080A (en) | 1997-06-23 | 1999-07-06 | Fed Corporation | Emissive display using organic light emitting diodes |
| JP3743876B2 (en) | 1997-07-16 | 2006-02-08 | カシオ計算機株式会社 | Electroluminescent device and manufacturing method thereof |
| FR2766200B1 (en) | 1997-07-17 | 1999-09-24 | Toray Plastics Europ Sa | METAL COMPOSITE POLYESTER FILMS WITH BARRIER PROPERTIES |
| JPH1145779A (en) | 1997-07-25 | 1999-02-16 | Tdk Corp | Method and device for manufacturing organic el element |
| EP2098906A1 (en) * | 1997-08-29 | 2009-09-09 | Sharp Kabushiki Kaisha | Liquid crystal display device |
| US5994174A (en) | 1997-09-29 | 1999-11-30 | The Regents Of The University Of California | Method of fabrication of display pixels driven by silicon thin film transistors |
| US5965907A (en) | 1997-09-29 | 1999-10-12 | Motorola, Inc. | Full color organic light emitting backlight device for liquid crystal display applications |
| US6469437B1 (en) | 1997-11-03 | 2002-10-22 | The Trustees Of Princeton University | Highly transparent organic light emitting device employing a non-metallic cathode |
| EP0915105B1 (en) | 1997-11-07 | 2003-04-09 | Rohm And Haas Company | Plastic substrates for electronic display applications |
| DE69822270T2 (en) | 1997-11-14 | 2005-01-13 | Sharp K.K. | Method and device for the production of modified particles |
| JP3400324B2 (en) | 1997-11-17 | 2003-04-28 | 住友ベークライト株式会社 | Conductive film |
| KR100249784B1 (en) | 1997-11-20 | 2000-04-01 | 정선종 | Packaging method of organic or polymer electroluminescent device using polymer composite membrane |
| DE19802740A1 (en) | 1998-01-26 | 1999-07-29 | Leybold Systems Gmbh | Process for treating surfaces of plastic substrates |
| US6004660A (en) | 1998-03-12 | 1999-12-21 | E.I. Du Pont De Nemours And Company | Oxygen barrier composite film structure |
| US5996498A (en) | 1998-03-12 | 1999-12-07 | Presstek, Inc. | Method of lithographic imaging with reduced debris-generated performance degradation and related constructions |
| GB2335884A (en) | 1998-04-02 | 1999-10-06 | Cambridge Display Tech Ltd | Flexible substrates for electronic or optoelectronic devices |
| US6361885B1 (en) | 1998-04-10 | 2002-03-26 | Organic Display Technology | Organic electroluminescent materials and device made from such materials |
| US6146462A (en) | 1998-05-08 | 2000-11-14 | Astenjohnson, Inc. | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
| US6146225A (en) | 1998-07-30 | 2000-11-14 | Agilent Technologies, Inc. | Transparent, flexible permeability barrier for organic electroluminescent devices |
| CN1287636C (en) | 1998-08-03 | 2006-11-29 | 杜邦显示器股份有限公司 | Light-emitting device with protective inorganic material encapsulation layer and method for protecting the device |
| US6352777B1 (en) | 1998-08-19 | 2002-03-05 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
| US6322860B1 (en) * | 1998-11-02 | 2001-11-27 | Rohm And Haas Company | Plastic substrates for electronic display applications |
| WO2000026973A1 (en) | 1998-11-02 | 2000-05-11 | Presstek, Inc. | Transparent conductive oxides for plastic flat panel displays |
| US6837950B1 (en) | 1998-11-05 | 2005-01-04 | Interface, Inc. | Separation of floor covering components for recycling |
| EP1145338B1 (en) | 1998-12-16 | 2012-12-05 | Samsung Display Co., Ltd. | Environmental barrier material for organic light emitting device and method of making |
| DE19858132A1 (en) | 1998-12-16 | 2000-06-21 | Sprenger Herm Gmbh Co Kg | Horse snaffle bit with two side rings and a bracket |
| AU1669400A (en) | 1998-12-17 | 2000-07-03 | Cambridge Display Technology Limited | Organic light-emitting devices |
| WO2001087825A1 (en) | 2000-04-04 | 2001-11-22 | The Regents Of The University Of California | Methods, compositions and bi-functional catalysts for synthesis of silica, glass, silicones |
| WO2000035993A1 (en) | 1998-12-18 | 2000-06-22 | The Regents Of The University Of California | Methods, compositions, and biomimetic catalysts for in vitro synthesis of silica, polysilsequioxane, polysiloxane, and polymetallo-oxanes |
| JP2000208252A (en) | 1999-01-14 | 2000-07-28 | Tdk Corp | Organic EL device |
| JP3817081B2 (en) | 1999-01-29 | 2006-08-30 | パイオニア株式会社 | Manufacturing method of organic EL element |
| US6172810B1 (en) * | 1999-02-26 | 2001-01-09 | 3M Innovative Properties Company | Retroreflective articles having polymer multilayer reflective coatings |
| US6440277B1 (en) | 1999-03-10 | 2002-08-27 | American Bank Note Holographic | Techniques of printing micro-structure patterns such as holograms directly onto final documents or other substrates in discrete areas thereof |
| HK1043664A1 (en) | 1999-04-28 | 2002-09-20 | E‧I‧内穆尔杜邦公司 | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
| JP4261680B2 (en) | 1999-05-07 | 2009-04-30 | 株式会社クレハ | Moisture-proof multilayer film |
| US6660409B1 (en) | 1999-09-16 | 2003-12-09 | Panasonic Communications Co., Ltd | Electronic device and process for producing the same |
| US7198832B2 (en) | 1999-10-25 | 2007-04-03 | Vitex Systems, Inc. | Method for edge sealing barrier films |
| US6573652B1 (en) | 1999-10-25 | 2003-06-03 | Battelle Memorial Institute | Encapsulated display devices |
| US6548912B1 (en) | 1999-10-25 | 2003-04-15 | Battelle Memorial Institute | Semicoductor passivation using barrier coatings |
| US6866901B2 (en) | 1999-10-25 | 2005-03-15 | Vitex Systems, Inc. | Method for edge sealing barrier films |
| US6460369B2 (en) | 1999-11-03 | 2002-10-08 | Applied Materials, Inc. | Consecutive deposition system |
| US7394153B2 (en) | 1999-12-17 | 2008-07-01 | Osram Opto Semiconductors Gmbh | Encapsulation of electronic devices |
| JP2001249221A (en) * | 1999-12-27 | 2001-09-14 | Nitto Denko Corp | Transparent laminate, method for producing the same, and filter for plasma display panel |
| WO2001068360A1 (en) * | 2000-03-15 | 2001-09-20 | Cpfilms, Inc. | Flame retardant optical films |
| GB0006335D0 (en) | 2000-03-17 | 2000-05-03 | Thermaliner Insulation Sys Ltd | Panel |
| US6492026B1 (en) | 2000-04-20 | 2002-12-10 | Battelle Memorial Institute | Smoothing and barrier layers on high Tg substrates |
| US20020153129A1 (en) | 2000-04-25 | 2002-10-24 | White Stephen L. | Integral fin passage heat exchanger |
| US6465953B1 (en) | 2000-06-12 | 2002-10-15 | General Electric Company | Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices |
| US6867539B1 (en) | 2000-07-12 | 2005-03-15 | 3M Innovative Properties Company | Encapsulated organic electronic devices and method for making same |
| US6416872B1 (en) | 2000-08-30 | 2002-07-09 | Cp Films, Inc. | Heat reflecting film with low visible reflectance |
| US7094690B1 (en) | 2000-08-31 | 2006-08-22 | Micron Technology, Inc. | Deposition methods and apparatuses providing surface activation |
| US7255823B1 (en) | 2000-09-06 | 2007-08-14 | Institute Of Materials Research And Engineering | Encapsulation for oled devices |
| CN1341644A (en) | 2000-09-07 | 2002-03-27 | 上海博德基因开发有限公司 | A novel polypeptide-human heterogeneous nuclear-nucleoprotein 32.01 and polynucleotide for coding said polypeptide |
| CA2357324A1 (en) | 2000-09-15 | 2002-03-15 | James D. Huggins | Continuous feed coater |
| JP2002100469A (en) | 2000-09-25 | 2002-04-05 | Pioneer Electronic Corp | Organic electroluminescence display panel |
| US20020139303A1 (en) | 2001-02-01 | 2002-10-03 | Shunpei Yamazaki | Deposition apparatus and deposition method |
| US6468595B1 (en) | 2001-02-13 | 2002-10-22 | Sigma Technologies International, Inc. | Vaccum deposition of cationic polymer systems |
| US6576351B2 (en) | 2001-02-16 | 2003-06-10 | Universal Display Corporation | Barrier region for optoelectronic devices |
| US6881447B2 (en) | 2002-04-04 | 2005-04-19 | Dielectric Systems, Inc. | Chemically and electrically stabilized polymer films |
| US6664137B2 (en) | 2001-03-29 | 2003-12-16 | Universal Display Corporation | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
| TWI222838B (en) | 2001-04-10 | 2004-10-21 | Chi Mei Optoelectronics Corp | Packaging method of organic electroluminescence light-emitting display device |
| JP2002343580A (en) | 2001-05-11 | 2002-11-29 | Pioneer Electronic Corp | Light emitting display device and method of manufacturing the same |
| JP3678361B2 (en) | 2001-06-08 | 2005-08-03 | 大日本印刷株式会社 | Gas barrier film |
| US6397776B1 (en) | 2001-06-11 | 2002-06-04 | General Electric Company | Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators |
| EP1276292B1 (en) | 2001-07-13 | 2018-01-03 | Hewlett-Packard Development Company, L.P. | File transfer protocol |
| KR100413450B1 (en) | 2001-07-20 | 2003-12-31 | 엘지전자 주식회사 | protecting film structure for display device |
| EP1419286A1 (en) | 2001-08-20 | 2004-05-19 | Nova-Plasma Inc. | Coatings with low permeation of gases and vapors |
| JP2003077651A (en) | 2001-08-30 | 2003-03-14 | Sharp Corp | Method for manufacturing organic electroluminescence device |
| GB2379526A (en) | 2001-09-10 | 2003-03-12 | Simon Alan Spacey | A method and apparatus for indexing and searching data |
| US6803245B2 (en) | 2001-09-28 | 2004-10-12 | Osram Opto Semiconductors Gmbh | Procedure for encapsulation of electronic devices |
| US6737753B2 (en) | 2001-09-28 | 2004-05-18 | Osram Opto Semiconductor Gmbh | Barrier stack |
| TW519853B (en) | 2001-10-17 | 2003-02-01 | Chi Mei Electronic Corp | Organic electro-luminescent display and its packaging method |
| US6681716B2 (en) | 2001-11-27 | 2004-01-27 | General Electric Company | Apparatus and method for depositing large area coatings on non-planar surfaces |
| US6948448B2 (en) | 2001-11-27 | 2005-09-27 | General Electric Company | Apparatus and method for depositing large area coatings on planar surfaces |
| US6765351B2 (en) | 2001-12-20 | 2004-07-20 | The Trustees Of Princeton University | Organic optoelectronic device structures |
| KR100472502B1 (en) | 2001-12-26 | 2005-03-08 | 삼성에스디아이 주식회사 | Organic electro luminescence display device |
| US7012363B2 (en) | 2002-01-10 | 2006-03-14 | Universal Display Corporation | OLEDs having increased external electroluminescence quantum efficiencies |
| US6620657B2 (en) | 2002-01-15 | 2003-09-16 | International Business Machines Corporation | Method of forming a planar polymer transistor using substrate bonding techniques |
| US6936131B2 (en) | 2002-01-31 | 2005-08-30 | 3M Innovative Properties Company | Encapsulation of organic electronic devices using adsorbent loaded adhesives |
| JP2003258189A (en) | 2002-03-01 | 2003-09-12 | Toshiba Corp | Semiconductor device and manufacturing method thereof |
| JP2003272827A (en) | 2002-03-13 | 2003-09-26 | Matsushita Electric Ind Co Ltd | Organic light emitting device and method of manufacturing the same |
| JP4180831B2 (en) | 2002-03-25 | 2008-11-12 | パイオニア株式会社 | Organic electroluminescence display panel and manufacturing method |
| US6891330B2 (en) | 2002-03-29 | 2005-05-10 | General Electric Company | Mechanically flexible organic electroluminescent device with directional light emission |
| JP2003292394A (en) | 2002-03-29 | 2003-10-15 | Canon Inc | Liquid phase-growing method and liquid phase-growing apparatus |
| US20050174045A1 (en) | 2002-04-04 | 2005-08-11 | Dielectric Systems, Inc. | Organic light-emitting device display having a plurality of passive polymer layers |
| US6835950B2 (en) | 2002-04-12 | 2004-12-28 | Universal Display Corporation | Organic electronic devices with pressure sensitive adhesive layer |
| US6897474B2 (en) | 2002-04-12 | 2005-05-24 | Universal Display Corporation | Protected organic electronic devices and methods for making the same |
| NL1020634C2 (en) | 2002-05-21 | 2003-11-24 | Otb Group Bv | Method for passivating a semiconductor substrate. |
| NL1020635C2 (en) | 2002-05-21 | 2003-11-24 | Otb Group Bv | Method for manufacturing a polymeric OLED. |
| KR100477745B1 (en) | 2002-05-23 | 2005-03-18 | 삼성에스디아이 주식회사 | Encapsulation method of organic electro luminescence device and organic electro luminescence panel using the same |
| US6743524B2 (en) | 2002-05-23 | 2004-06-01 | General Electric Company | Barrier layer for an article and method of making said barrier layer by expanding thermal plasma |
| US7554712B2 (en) | 2005-06-23 | 2009-06-30 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
| US7221093B2 (en) | 2002-06-10 | 2007-05-22 | Institute Of Materials Research And Engineering | Patterning of electrodes in OLED devices |
| DE10230607A1 (en) | 2002-07-08 | 2004-02-05 | Abb Patent Gmbh | Method for monitoring a measuring device, in particular a flow measuring device, and a measuring device itself |
| JP4130555B2 (en) | 2002-07-18 | 2008-08-06 | 住友精密工業株式会社 | Gas humidifier |
| US6734625B2 (en) | 2002-07-30 | 2004-05-11 | Xerox Corporation | Organic light emitting device (OLED) with multiple capping layers passivation region on an electrode |
| US6818291B2 (en) | 2002-08-17 | 2004-11-16 | 3M Innovative Properties Company | Durable transparent EMI shielding film |
| TWI236862B (en) | 2002-09-03 | 2005-07-21 | Au Optronics Corp | Package for OLED device |
| US7015640B2 (en) | 2002-09-11 | 2006-03-21 | General Electric Company | Diffusion barrier coatings having graded compositions and devices incorporating the same |
| US20040229051A1 (en) | 2003-05-15 | 2004-11-18 | General Electric Company | Multilayer coating package on flexible substrates for electro-optical devices |
| US8704211B2 (en) | 2004-06-30 | 2014-04-22 | General Electric Company | High integrity protective coatings |
| US6994933B1 (en) | 2002-09-16 | 2006-02-07 | Oak Ridge Micro-Energy, Inc. | Long life thin film battery and method therefor |
| TW554639B (en) | 2002-10-04 | 2003-09-21 | Au Optronics Corp | Method for fabricating an OLED device and the solid passivation |
| US7056584B2 (en) | 2002-10-11 | 2006-06-06 | General Electric Company | Bond layer for coatings on plastic substrates |
| JP3953404B2 (en) | 2002-10-21 | 2007-08-08 | インターナショナル・ビジネス・マシーンズ・コーポレーション | ORGANIC ELECTROLUMINESCENCE ELEMENT, METHOD FOR PRODUCING THE ORGANIC ELECTROLUMINESCENCE ELEMENT, AND ORGANIC ELECTROLUMINESCENCE DISPLAY DEVICE |
| US20040099926A1 (en) | 2002-11-22 | 2004-05-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, display device, and light-emitting device, and methods of manufacturing the same |
| US7086918B2 (en) | 2002-12-11 | 2006-08-08 | Applied Materials, Inc. | Low temperature process for passivation applications |
| US6975067B2 (en) | 2002-12-19 | 2005-12-13 | 3M Innovative Properties Company | Organic electroluminescent device and encapsulation method |
| US7338820B2 (en) | 2002-12-19 | 2008-03-04 | 3M Innovative Properties Company | Laser patterning of encapsulated organic light emitting diodes |
| NL1022269C2 (en) | 2002-12-24 | 2004-06-25 | Otb Group Bv | Method for manufacturing an organic electroluminescent display device, substrate for use in such a method, as well as an organic electroluminescent display device obtained with the method. |
| JP2004224815A (en) | 2003-01-20 | 2004-08-12 | Fuji Photo Film Co Ltd | Gas-barrier laminated film and its manufacturing method |
| JP4491196B2 (en) | 2003-03-31 | 2010-06-30 | 富士フイルム株式会社 | GAS BARRIER LAMINATED FILM, PROCESS FOR PRODUCING THE SAME, AND SUBSTRATE AND IMAGE DISPLAY DEVICE USING THE FILM |
| US7018713B2 (en) | 2003-04-02 | 2006-03-28 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
| US7029765B2 (en) | 2003-04-22 | 2006-04-18 | Universal Display Corporation | Organic light emitting devices having reduced pixel shrinkage |
| JP4784308B2 (en) | 2003-05-29 | 2011-10-05 | コニカミノルタホールディングス株式会社 | Transparent film for display substrate, display substrate using the film and method for producing the same, liquid crystal display, organic electroluminescence display, and touch panel |
| WO2004112165A1 (en) | 2003-06-16 | 2004-12-23 | Koninklijke Philips Electronics N.V. | Barrier laminate for an electroluminescent device |
| ITMI20031281A1 (en) | 2003-06-24 | 2004-12-25 | Whirlpool Co | DOMESTIC REFRIGERANT APPLIANCE WITH REMOVABLE SHELF SUPPORTS. |
| NL1024090C2 (en) | 2003-08-12 | 2005-02-15 | Otb Group Bv | Method for applying a thin film barrier layer assembly to a microstructured device, as well as a device provided with such a thin film barrier layer assembly. |
| US6998648B2 (en) | 2003-08-25 | 2006-02-14 | Universal Display Corporation | Protected organic electronic device structures incorporating pressure sensitive adhesive and desiccant |
| US7282244B2 (en) | 2003-09-05 | 2007-10-16 | General Electric Company | Replaceable plate expanded thermal plasma apparatus and method |
| US7635525B2 (en) | 2003-09-30 | 2009-12-22 | Fujifilm Corporation | Gas barrier laminate film and method for producing the same |
| US7297414B2 (en) | 2003-09-30 | 2007-11-20 | Fujifilm Corporation | Gas barrier film and method for producing the same |
| US7052355B2 (en) | 2003-10-30 | 2006-05-30 | General Electric Company | Organic electro-optic device and method for making the same |
| US20050093437A1 (en) | 2003-10-31 | 2005-05-05 | Ouyang Michael X. | OLED structures with strain relief, antireflection and barrier layers |
| US8722160B2 (en) | 2003-10-31 | 2014-05-13 | Aeris Capital Sustainable Ip Ltd. | Inorganic/organic hybrid nanolaminate barrier film |
| US7271534B2 (en) | 2003-11-04 | 2007-09-18 | 3M Innovative Properties Company | Segmented organic light emitting device |
| US7432124B2 (en) | 2003-11-04 | 2008-10-07 | 3M Innovative Properties Company | Method of making an organic light emitting device |
| GB0327093D0 (en) | 2003-11-21 | 2003-12-24 | Koninkl Philips Electronics Nv | Active matrix displays and other electronic devices having plastic substrates |
| EP1548846A3 (en) | 2003-11-28 | 2007-09-19 | Sharp Kabushiki Kaisha | Solar cell module edge face sealing member and solar cell module employing same |
| US7075103B2 (en) | 2003-12-19 | 2006-07-11 | General Electric Company | Multilayer device and method of making |
| US7792489B2 (en) | 2003-12-26 | 2010-09-07 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, electronic appliance, and method for manufacturing light emitting device |
| JP2005251671A (en) | 2004-03-08 | 2005-09-15 | Fuji Photo Film Co Ltd | Display device |
| US20050238846A1 (en) | 2004-03-10 | 2005-10-27 | Fuji Photo Film Co., Ltd. | Gas barrier laminate film, method for producing the same and image display device utilizing the film |
| US20050212419A1 (en) | 2004-03-23 | 2005-09-29 | Eastman Kodak Company | Encapsulating oled devices |
| US8405193B2 (en) | 2004-04-02 | 2013-03-26 | General Electric Company | Organic electronic packages having hermetically sealed edges and methods of manufacturing such packages |
| US7220687B2 (en) | 2004-06-25 | 2007-05-22 | Applied Materials, Inc. | Method to improve water-barrier performance by changing film surface morphology |
| US7033850B2 (en) | 2004-06-30 | 2006-04-25 | Eastman Kodak Company | Roll-to-sheet manufacture of OLED materials |
| US20060063015A1 (en) | 2004-09-23 | 2006-03-23 | 3M Innovative Properties Company | Protected polymeric film |
| US7342356B2 (en) | 2004-09-23 | 2008-03-11 | 3M Innovative Properties Company | Organic electroluminescent device having protective structure with boron oxide layer and inorganic barrier layer |
| US7825582B2 (en) | 2004-11-08 | 2010-11-02 | Kyodo Printing Co., Ltd. | Flexible display and manufacturing method thereof |
| JP2006294780A (en) | 2005-04-08 | 2006-10-26 | Toppan Printing Co Ltd | Back sheet for solar cell module and solar cell module |
| US20060246811A1 (en) | 2005-04-28 | 2006-11-02 | Eastman Kodak Company | Encapsulating emissive portions of an OLED device |
| US20060250084A1 (en) | 2005-05-04 | 2006-11-09 | Eastman Kodak Company | OLED device with improved light output |
| US20070281089A1 (en) | 2006-06-05 | 2007-12-06 | General Electric Company | Systems and methods for roll-to-roll atomic layer deposition on continuously fed objects |
| NL1033860C2 (en) | 2007-05-16 | 2008-11-18 | Otb Group Bv | Method for applying a thin film encapsulation layer assembly to an organic device and an organic device provided with a thin film encapsulation layer assembly preferably applied by such a method. |
| JP2010528417A (en) | 2007-05-24 | 2010-08-19 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Encapsulation for electronic thin film devices |
-
2001
- 2001-04-16 US US09/835,768 patent/US6623861B2/en not_active Ceased
-
2002
- 2002-04-12 WO PCT/US2002/011325 patent/WO2002083411A1/en not_active Application Discontinuation
-
2003
- 2003-05-22 US US10/443,410 patent/US6962671B2/en not_active Expired - Lifetime
-
2004
- 2004-07-12 US US10/889,640 patent/USRE40787E1/en not_active Expired - Lifetime
Patent Citations (99)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US125822A (en) * | 1872-04-16 | Improvement in straw-cutters | ||
| US3607365A (en) * | 1969-05-12 | 1971-09-21 | Minnesota Mining & Mfg | Vapor phase method of coating substrates with polymeric coating |
| US4098965A (en) * | 1977-01-24 | 1978-07-04 | Polaroid Corporation | Flat batteries and method of making the same |
| US4266223A (en) * | 1978-12-08 | 1981-05-05 | W. H. Brady Co. | Thin panel display |
| US4283482A (en) * | 1979-03-29 | 1981-08-11 | Nihon Shinku Gijutsu Kabushiki Kaisha | Dry Lithographic Process |
| US4521458A (en) * | 1983-04-01 | 1985-06-04 | Nelson Richard C | Process for coating material with water resistant composition |
| US4581337A (en) * | 1983-07-07 | 1986-04-08 | E. I. Du Pont De Nemours And Company | Polyether polyamines as linking agents for particle reagents useful in immunoassays |
| US5032461A (en) * | 1983-12-19 | 1991-07-16 | Spectrum Control, Inc. | Method of making a multi-layered article |
| US4842893A (en) * | 1983-12-19 | 1989-06-27 | Spectrum Control, Inc. | High speed process for coating substrates |
| US4722515A (en) * | 1984-11-06 | 1988-02-02 | Spectrum Control, Inc. | Atomizing device for vaporization |
| US4695618A (en) * | 1986-05-23 | 1987-09-22 | Ameron, Inc. | Solventless polyurethane spray compositions and method for applying them |
| US4954371A (en) * | 1986-06-23 | 1990-09-04 | Spectrum Control, Inc. | Flash evaporation of monomer fluids |
| US4855186A (en) * | 1987-03-06 | 1989-08-08 | Hoechst Aktiengesellschaft | Coated plastic film and plastic laminate prepared therefrom |
| US4768666A (en) * | 1987-05-26 | 1988-09-06 | Milton Kessler | Tamper proof container closure |
| US5124204A (en) * | 1988-07-14 | 1992-06-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent (EL) panel |
| US5189405A (en) * | 1989-01-26 | 1993-02-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent panel |
| US5792550A (en) * | 1989-10-24 | 1998-08-11 | Flex Products, Inc. | Barrier film having high colorless transparency and method |
| US5036249A (en) * | 1989-12-11 | 1991-07-30 | Molex Incorporated | Electroluminescent lamp panel and method of fabricating same |
| US5536323A (en) * | 1990-07-06 | 1996-07-16 | Advanced Technology Materials, Inc. | Apparatus for flash vaporization delivery of reagents |
| US5204314A (en) * | 1990-07-06 | 1993-04-20 | Advanced Technology Materials, Inc. | Method for delivering an involatile reagent in vapor form to a CVD reactor |
| US5711816A (en) * | 1990-07-06 | 1998-01-27 | Advanced Technolgy Materials, Inc. | Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same |
| US5237439A (en) * | 1991-09-30 | 1993-08-17 | Sharp Kabushiki Kaisha | Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide |
| US5203898A (en) * | 1991-12-16 | 1993-04-20 | Corning Incorporated | Method of making fluorine/boron doped silica tubes |
| US5759329A (en) * | 1992-01-06 | 1998-06-02 | Pilot Industries, Inc. | Fluoropolymer composite tube and method of preparation |
| US5393607A (en) * | 1992-01-13 | 1995-02-28 | Mitsui Toatsu Chemiclas, Inc. | Laminated transparent plastic material and polymerizable monomer |
| US5402314A (en) * | 1992-02-10 | 1995-03-28 | Sony Corporation | Printed circuit board having through-hole stopped with photo-curable solder resist |
| US5427638A (en) * | 1992-06-04 | 1995-06-27 | Alliedsignal Inc. | Low temperature reaction bonding |
| US5652192A (en) * | 1992-07-10 | 1997-07-29 | Battelle Memorial Institute | Catalyst material and method of making |
| US5747182A (en) * | 1992-07-27 | 1998-05-05 | Cambridge Display Technology Limited | Manufacture of electroluminescent devices |
| US5547508A (en) * | 1992-08-21 | 1996-08-20 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers apparatus |
| US5395644A (en) * | 1992-08-21 | 1995-03-07 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers |
| US5393067A (en) * | 1993-01-21 | 1995-02-28 | Igt | System, method and apparatus for generating large jackpots on live game card tables |
| US6231939B1 (en) * | 1993-10-04 | 2001-05-15 | Presstek, Inc. | Acrylate composite barrier coating |
| US5725909A (en) * | 1993-10-04 | 1998-03-10 | Catalina Coatings, Inc. | Acrylate composite barrier coating process |
| US5440446A (en) * | 1993-10-04 | 1995-08-08 | Catalina Coatings, Inc. | Acrylate coating material |
| US5891554A (en) * | 1994-02-25 | 1999-04-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
| US5451449A (en) * | 1994-05-11 | 1995-09-19 | The Mearl Corporation | Colored iridescent film |
| US5654084A (en) * | 1994-07-22 | 1997-08-05 | Martin Marietta Energy Systems, Inc. | Protective coatings for sensitive materials |
| US6087007A (en) * | 1994-09-30 | 2000-07-11 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Heat-Resistant optical plastic laminated sheet and its producing method |
| US5782355A (en) * | 1994-09-30 | 1998-07-21 | Fuji Photo Film Co., Ltd. | Cassette case |
| US6214422B1 (en) * | 1994-11-04 | 2001-04-10 | Sigma Laboratories Of Arizona, Inc. | Method of forming a hybrid polymer film |
| US6083628A (en) * | 1994-11-04 | 2000-07-04 | Sigma Laboratories Of Arizona, Inc. | Hybrid polymer film |
| US5607789A (en) * | 1995-01-23 | 1997-03-04 | Duracell Inc. | Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same |
| US5620524A (en) * | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
| US5945174A (en) * | 1995-04-06 | 1999-08-31 | Delta V Technologies, Inc. | Acrylate polymer release coated sheet materials and method of production thereof |
| US5811183A (en) * | 1995-04-06 | 1998-09-22 | Shaw; David G. | Acrylate polymer release coated sheet materials and method of production thereof |
| US5771562A (en) * | 1995-05-02 | 1998-06-30 | Motorola, Inc. | Passivation of organic devices |
| US5554220A (en) * | 1995-05-19 | 1996-09-10 | The Trustees Of Princeton University | Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities |
| US5629389A (en) * | 1995-06-06 | 1997-05-13 | Hewlett-Packard Company | Polymer-based electroluminescent device with improved stability |
| US5922161A (en) * | 1995-06-30 | 1999-07-13 | Commonwealth Scientific And Industrial Research Organisation | Surface treatment of polymers |
| US5811177A (en) * | 1995-11-30 | 1998-09-22 | Motorola, Inc. | Passivation of electroluminescent organic devices |
| US5757126A (en) * | 1995-11-30 | 1998-05-26 | Motorola, Inc. | Passivated organic device having alternating layers of polymer and dielectric |
| US6195142B1 (en) * | 1995-12-28 | 2001-02-27 | Matsushita Electrical Industrial Company, Ltd. | Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element |
| US5660961A (en) * | 1996-01-11 | 1997-08-26 | Xerox Corporation | Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference |
| US5665280A (en) * | 1996-01-30 | 1997-09-09 | Becton Dickinson Co | Blood collection tube assembly |
| US5919328A (en) * | 1996-01-30 | 1999-07-06 | Becton Dickinson And Company | Blood collection tube assembly |
| US5955161A (en) * | 1996-01-30 | 1999-09-21 | Becton Dickinson And Company | Blood collection tube assembly |
| US6013337A (en) * | 1996-01-30 | 2000-01-11 | Becton Dickinson And Company | Blood collection tube assembly |
| US6106627A (en) * | 1996-04-04 | 2000-08-22 | Sigma Laboratories Of Arizona, Inc. | Apparatus for producing metal coated polymers |
| US6092269A (en) * | 1996-04-04 | 2000-07-25 | Sigma Laboratories Of Arizona, Inc. | High energy density capacitor |
| US5731661A (en) * | 1996-07-15 | 1998-03-24 | Motorola, Inc. | Passivation of electroluminescent organic devices |
| US5902688A (en) * | 1996-07-16 | 1999-05-11 | Hewlett-Packard Company | Electroluminescent display device |
| US5948552A (en) * | 1996-08-27 | 1999-09-07 | Hewlett-Packard Company | Heat-resistant organic electroluminescent device |
| US5912069A (en) * | 1996-12-19 | 1999-06-15 | Sigma Laboratories Of Arizona | Metal nanolaminate composite |
| US5952778A (en) * | 1997-03-18 | 1999-09-14 | International Business Machines Corporation | Encapsulated organic light emitting device |
| US5872355A (en) * | 1997-04-09 | 1999-02-16 | Hewlett-Packard Company | Electroluminescent device and fabrication method for a light detection system |
| US6198217B1 (en) * | 1997-05-12 | 2001-03-06 | Matsushita Electric Industrial Co., Ltd. | Organic electroluminescent device having a protective covering comprising organic and inorganic layers |
| US6198220B1 (en) * | 1997-07-11 | 2001-03-06 | Emagin Corporation | Sealing structure for organic light emitting devices |
| US6348237B2 (en) * | 1997-08-29 | 2002-02-19 | 3M Innovative Properties Company | Jet plasma process for deposition of coatings |
| US6224948B1 (en) * | 1997-09-29 | 2001-05-01 | Battelle Memorial Institute | Plasma enhanced chemical deposition with low vapor pressure compounds |
| US5902641A (en) * | 1997-09-29 | 1999-05-11 | Battelle Memorial Institute | Flash evaporation of liquid monomer particle mixture |
| US6045864A (en) * | 1997-12-01 | 2000-04-04 | 3M Innovative Properties Company | Vapor coating method |
| US6117266A (en) * | 1997-12-19 | 2000-09-12 | Interuniversifair Micro-Elektronica Cenirum (Imec Vzw) | Furnace for continuous, high throughput diffusion processes from various diffusion sources |
| US6569515B2 (en) * | 1998-01-13 | 2003-05-27 | 3M Innovative Properties Company | Multilayered polymer films with recyclable or recycled layers |
| US6178082B1 (en) * | 1998-02-26 | 2001-01-23 | International Business Machines Corporation | High temperature, conductive thin film diffusion barrier for ceramic/metal systems |
| US6066826A (en) * | 1998-03-16 | 2000-05-23 | Yializis; Angelo | Apparatus for plasma treatment of moving webs |
| US5904958A (en) * | 1998-03-20 | 1999-05-18 | Rexam Industries Corp. | Adjustable nozzle for evaporation or organic monomers |
| US6040017A (en) * | 1998-10-02 | 2000-03-21 | Sigma Laboratories, Inc. | Formation of multilayered photonic polymer composites |
| US6084702A (en) * | 1998-10-15 | 2000-07-04 | Pleotint, L.L.C. | Thermochromic devices |
| US6217947B1 (en) * | 1998-12-16 | 2001-04-17 | Battelle Memorial Institute | Plasma enhanced polymer deposition onto fixtures |
| US6613395B2 (en) * | 1998-12-16 | 2003-09-02 | Battelle Memorial Institute | Method of making molecularly doped composite polymer material |
| US6228434B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making a conformal coating of a microtextured surface |
| US6228436B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making light emitting polymer composite material |
| US6544600B2 (en) * | 1998-12-16 | 2003-04-08 | Battelle Memorial Institute | Plasma enhanced chemical deposition of conjugated polymer |
| US6274204B1 (en) * | 1998-12-16 | 2001-08-14 | Battelle Memorial Institute | Method of making non-linear optical polymer |
| US6207238B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition for high and/or low index of refraction polymers |
| US6207239B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition of conjugated polymer |
| US6509065B2 (en) * | 1998-12-16 | 2003-01-21 | Battelle Memorial Institute | Plasma enhanced chemical deposition of conjugated polymer |
| US6522067B1 (en) * | 1998-12-16 | 2003-02-18 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
| US6118218A (en) * | 1999-02-01 | 2000-09-12 | Sigma Technologies International, Inc. | Steady-state glow-discharge plasma at atmospheric pressure |
| US6358570B1 (en) * | 1999-03-31 | 2002-03-19 | Battelle Memorial Institute | Vacuum deposition and curing of oligomers and resins |
| US6083313A (en) * | 1999-07-27 | 2000-07-04 | Advanced Refractory Technologies, Inc. | Hardcoats for flat panel display substrates |
| US6413645B1 (en) * | 2000-04-20 | 2002-07-02 | Battelle Memorial Institute | Ultrabarrier substrates |
| US6537688B2 (en) * | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
| US6614057B2 (en) * | 2001-02-07 | 2003-09-02 | Universal Display Corporation | Sealed organic optoelectronic structures |
| US6624568B2 (en) * | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
| US20030038590A1 (en) * | 2001-08-21 | 2003-02-27 | Silvernail Jeffrey Alan | Patterned oxygen and moisture absorber for organic optoelectronic device structures |
| US20030085652A1 (en) * | 2001-11-06 | 2003-05-08 | Weaver Michael Stuart | Encapsulation structure that acts as a multilayer mirror |
| US6597111B2 (en) * | 2001-11-27 | 2003-07-22 | Universal Display Corporation | Protected organic optoelectronic devices |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080131635A1 (en) * | 2004-11-18 | 2008-06-05 | Centre National De La Racherche Scientifique | Laminate Comprising Multilayer Film Assembled By Hydrogen Bond, Self-Supported Thin Film Obtained Therefrom, and Production Method and Application of the Same |
| EP1815973A4 (en) * | 2004-11-18 | 2009-02-11 | Mitsui Chemicals Inc | LAMINATE COMPRISING A HYDROGEN BONDED MULTILAYER FILM, SELF-SUPPORTING THIN FILM PROVIDED THEREFROM AND THEIR MANUFACTURING AND USE PROCESS |
| US20080192349A1 (en) * | 2005-02-28 | 2008-08-14 | Nalux Co., Ltd. | Optical Element with Laser Damage Suppression Film |
| US7852562B2 (en) * | 2005-02-28 | 2010-12-14 | Nalux Co., Ltd. | Optical element with laser damage suppression film |
| US20090252862A1 (en) * | 2006-08-25 | 2009-10-08 | Nalux Co., Ltd. | Method for producing optical element having multi-layered film |
| US8263172B2 (en) * | 2006-08-25 | 2012-09-11 | Nalux Co., Ltd. | Method for producing optical element having multi-layered film |
| US20120107829A1 (en) * | 2009-03-31 | 2012-05-03 | Leukocare Ag | Stabilizing compositions for immobilized biomolecules |
| US9797895B2 (en) * | 2009-03-31 | 2017-10-24 | Leukocare Ag | Stabilizing compositions for immobilized biomolecules |
| US20150253532A1 (en) * | 2014-03-04 | 2015-09-10 | Largan Precision Co., Ltd. | Annular optical spacer, image lens system, and mobile terminal |
| US9946047B2 (en) * | 2014-03-04 | 2018-04-17 | Largan Precision Co., Ltd. | Annual optical spacer, image lens system, and mobile terminal |
| CN109148711A (en) * | 2017-06-19 | 2019-01-04 | Tcl集团股份有限公司 | A kind of device packaging method based on inorganic thin film |
Also Published As
| Publication number | Publication date |
|---|---|
| US20050158476A9 (en) | 2005-07-21 |
| USRE40787E1 (en) | 2009-06-23 |
| WO2002083411A1 (en) | 2002-10-24 |
| US6623861B2 (en) | 2003-09-23 |
| US6962671B2 (en) | 2005-11-08 |
| US20020150745A1 (en) | 2002-10-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| USRE40787E1 (en) | Multilayer plastic substrates | |
| TWI222764B (en) | Barrier coatings and methods of making same | |
| KR101119702B1 (en) | Flexible High Temperature Ultra Barrier | |
| JP2010058516A (en) | Smoothing layer and barrier layer on tg substrate | |
| JP5090197B2 (en) | LAMINATE MANUFACTURING METHOD, BARRIER FILM SUBSTRATE, DEVICE, AND OPTICAL MEMBER | |
| JPWO2007097454A1 (en) | Film having fine irregularities and method for producing the same | |
| CN104798211B (en) | Photovoltaic devices with encapsulating barrier film | |
| US11254101B2 (en) | Structured film and articles thereof | |
| JPWO2005100014A1 (en) | Transparent gas barrier laminate film | |
| CN115485620A (en) | Fluorinated photoinitiators and fluorinated (co)polymer layers prepared therefrom | |
| JP4059480B2 (en) | Laminated body and method for producing the same | |
| JP7580823B2 (en) | Light diffusing barrier film | |
| JP4145636B2 (en) | Optical film sheet and display element using the same | |
| US20200216950A1 (en) | Structured film and articles thereof | |
| JP2003341003A (en) | Laminated body and method for manufacturing the same | |
| JP2000108241A (en) | Transparent conductive film and its manufacture | |
| JP6469605B2 (en) | Gas barrier film | |
| JP2009172988A (en) | Barrier laminate, barrier film substrate, device, and method for producing barrier laminate | |
| US20210146651A1 (en) | Structured film and articles thereof | |
| JP2009285643A (en) | Method for manufacturing laminate and barrier film substrate, device, and optical member | |
| US20220001644A1 (en) | Structured film and articles thereof | |
| JPH09174747A (en) | Transparent conductive film | |
| JPH09277426A (en) | Transparent conductive film and its production | |
| JPH09234817A (en) | Layered film | |
| JP2006224577A (en) | Gas-barrier film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| CC | Certificate of correction | ||
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| AS | Assignment |
Owner name: SAMSUNG MOBILE DISPLAY CO., LTD., KOREA, REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BATTELLE MEMORIAL INSTITUTE;REEL/FRAME:025516/0773 Effective date: 20101028 |
|
| AS | Assignment |
Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: MERGER;ASSIGNOR:SAMSUNG MOBILE DISPLAY CO., LTD.;REEL/FRAME:028912/0083 Effective date: 20120702 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |