US20030011411A1 - Power-up control circuit - Google Patents
Power-up control circuit Download PDFInfo
- Publication number
- US20030011411A1 US20030011411A1 US09/903,348 US90334801A US2003011411A1 US 20030011411 A1 US20030011411 A1 US 20030011411A1 US 90334801 A US90334801 A US 90334801A US 2003011411 A1 US2003011411 A1 US 2003011411A1
- Authority
- US
- United States
- Prior art keywords
- supply voltage
- power
- control circuit
- output signal
- generate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000007704 transition Effects 0.000 claims description 12
- 230000001419 dependent effect Effects 0.000 claims 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/22—Modifications for ensuring a predetermined initial state when the supply voltage has been applied
- H03K17/223—Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0036—Means reducing energy consumption
Definitions
- This invention relates generally to power-up control circuits, and more particularly to a power-up control circuit having an architecture that senses a rising and falling supply voltage while consuming no current during normal operation.
- Circuits, products and processes that presently employ one or more dedicated power-up control circuits are problematic in that once the circuit(s), product(s) and/or process(es) become fully operational following the initial power-up, current continues to be consumed, and therefore wasted, by the one or more dedicated power-up control circuits.
- These known power-up circuit solutions and architectures require current flow throughout the power-up circuit(s) at any time the associated circuit, product, or process is in operation; and are limited in that there is presently no power-up circuit solution that requires no current during normal operation while still being able to sense a falling supply voltage.
- the present invention is directed to a power-up control circuit architecture that utilizes zero current under normal operation.
- the power-up control circuit will sense a common supply voltage, Vcc, and turn an output on and off at a desired threshold voltage, providing a substantially faster on/off switch than that achievable solely by sensing the common supply voltage.
- FIG. 1 is a schematic diagram illustrating a power-up control circuit according to one embodiment of the present invention.
- FIG. 1 is a schematic diagram illustrating a power-up control circuit 10 according to one embodiment of the present invention.
- Power-up control circuit 10 can be seen connected to a common supply voltage, Vcc, as well as a common ground, GND.
- Power-up control circuit 10 has two main sections, including a first section 12 that controls the low-to-high common supply voltage transition, and a second section 14 that controls the high-to-low common supply voltage transition.
- the output signal (OutA) 16 of the first section 12 is combined in a third section 18 with the output signal (OutB) 20 of the second section.
- the third section 18 comprises a logic AND function for the output signals 16 , 20 produced by the first section 12 and the second section 14 .
- the output signal at OutB 20 is already high due to the pulldown resistor R 1 ( 32 ) at the gates 23 , 25 of its associated inverter 24 , causing the output signal at Out 26 to pull high. After the signal at OutA 16 has transitioned high, it will turn off transistors M 3 and M 4 and turn on transistor M 2 , removing all current flow such that the signal at OutA 16 will be held in a high state.
- Vcc As the common supply voltage, Vcc, stays high, capacitor C 1 ( 28 ) is being charged to Vcc-Vdiode, wherein Vdiode is provided by diode 30 . At this time, transistor M 5 is off. As Vcc starts its transition downward, capacitor 28 remains charged, and transistor MS stays off until Vcc goes low enough to turn on transistor M 5 . When transistor M 5 turns on, capacitor 28 discharges into pulldown resistor 32 , and for a sufficiently large pulldown resistance value, bumps up the voltage at the gates 23 , 25 of inverter 24 . The gates 23 , 25 to the inverter 24 associated with OutB 20 then go high, causing the signal at OutB to transition low. The action will pull the output signal at Out 26 low. As Vcc continues dropping to zero, the signal at OutA 16 will also drop to zero, turning on transistors M 3 and M 4 and turning off transistor M 2 , placing the power-up control circuit 10 back into its initial condition.
- the present invention presents a significant advancement in the art of power-up control circuits. Further, this invention has been described in considerable detail in order to provide those skilled in the power-up control circuit art with the information needed to apply the novel principles and to construct and use such specialized components as are required. In view of the foregoing descriptions, it should be apparent that the present invention represents a significant departure from the prior art in construction and operation. However, while particular embodiments of the present invention have been described herein in detail, it is to be understood that various alterations, modifications and substitutions can be made therein without departing in any way from the spirit and scope of the present invention, as defined in the claims which follow.
Landscapes
- Electronic Switches (AREA)
Abstract
A power-up control circuit architecture that utilizes zero current under normal operation. The power-up control circuit will sense a common supply voltage, Vcc, and turn an output on and off at a desired threshold voltage, providing a substantially faster on/off switch than that achievable solely by sensing the common supply voltage.
Description
- 1. Field of the Invention
- This invention relates generally to power-up control circuits, and more particularly to a power-up control circuit having an architecture that senses a rising and falling supply voltage while consuming no current during normal operation.
- 2. Description of the Prior Art
- Circuits, products and processes that presently employ one or more dedicated power-up control circuits are problematic in that once the circuit(s), product(s) and/or process(es) become fully operational following the initial power-up, current continues to be consumed, and therefore wasted, by the one or more dedicated power-up control circuits. These known power-up circuit solutions and architectures require current flow throughout the power-up circuit(s) at any time the associated circuit, product, or process is in operation; and are limited in that there is presently no power-up circuit solution that requires no current during normal operation while still being able to sense a falling supply voltage.
- In view of the foregoing, a need exists for a power-up control circuit that requires no current during normal operation while maintaining sense on the supply voltage, regardless of whether the supply voltage is rising or falling.
- The present invention is directed to a power-up control circuit architecture that utilizes zero current under normal operation. The power-up control circuit will sense a common supply voltage, Vcc, and turn an output on and off at a desired threshold voltage, providing a substantially faster on/off switch than that achievable solely by sensing the common supply voltage.
- Other aspects, features and advantages of the present invention will be readily appreciated as the invention becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing figure wherein:
- FIG. 1 is a schematic diagram illustrating a power-up control circuit according to one embodiment of the present invention.
- While the above-identified drawing figure sets forth a particular embodiment, other embodiments of the present invention are also contemplated, as noted in the discussion. In all cases, this disclosure presents illustrated embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of this invention.
- FIG. 1 is a schematic diagram illustrating a power-up
control circuit 10 according to one embodiment of the present invention. Power-upcontrol circuit 10 can be seen connected to a common supply voltage, Vcc, as well as a common ground, GND. Power-upcontrol circuit 10 has two main sections, including afirst section 12 that controls the low-to-high common supply voltage transition, and asecond section 14 that controls the high-to-low common supply voltage transition. The output signal (OutA) 16 of thefirst section 12 is combined in athird section 18 with the output signal (OutB) 20 of the second section. Thethird section 18 comprises a logic AND function for theoutput signals 16, 20 produced by thefirst section 12 and thesecond section 14. - When the common supply voltage, Vcc, is low, output signal (OutA) 16 is low, transistors M3 and M4 are on, and transistors M1 and M2 are off. As the common supply voltage, Vcc, starts to rise, signal OutA 16 remains low due to the pull-up of transistor M4 at the
19, 21 ofgates inverter 22. When a sufficient turn-on voltage is reached at the gate of transistor M1, transistor M1 will turn on and pull-down the 19, 21 of thegates inverter 22, causing the output signal at OutA 16 to be pulled high. The output signal at OutB 20 is already high due to the pulldown resistor R1 (32) at the 23, 25 of its associatedgates inverter 24, causing the output signal at Out 26 to pull high. After the signal at OutA 16 has transitioned high, it will turn off transistors M3 and M4 and turn on transistor M2, removing all current flow such that the signal at OutA 16 will be held in a high state. - As the common supply voltage, Vcc, stays high, capacitor C 1 (28) is being charged to Vcc-Vdiode, wherein Vdiode is provided by
diode 30. At this time, transistor M5 is off. As Vcc starts its transition downward,capacitor 28 remains charged, and transistor MS stays off until Vcc goes low enough to turn on transistor M5. When transistor M5 turns on,capacitor 28 discharges into pulldown resistor 32, and for a sufficiently large pulldown resistance value, bumps up the voltage at the 23, 25 ofgates inverter 24. The 23, 25 to thegates inverter 24 associated withOutB 20 then go high, causing the signal at OutB to transition low. The action will pull the output signal at Out 26 low. As Vcc continues dropping to zero, the signal at OutA 16 will also drop to zero, turning on transistors M3 and M4 and turning off transistor M2, placing the power-upcontrol circuit 10 back into its initial condition. - In view of the above, it can be seen the present invention presents a significant advancement in the art of power-up control circuits. Further, this invention has been described in considerable detail in order to provide those skilled in the power-up control circuit art with the information needed to apply the novel principles and to construct and use such specialized components as are required. In view of the foregoing descriptions, it should be apparent that the present invention represents a significant departure from the prior art in construction and operation. However, while particular embodiments of the present invention have been described herein in detail, it is to be understood that various alterations, modifications and substitutions can be made therein without departing in any way from the spirit and scope of the present invention, as defined in the claims which follow.
Claims (7)
1. A power-up control circuit comprising:
a first sensing circuit configured to sense a low-to-high supply voltage transition and further configured to generate a first output signal when the supply voltage reaches a desired level;
a second sensing circuit configured to sense a high-to-low supply voltage transition and further configured to generate a second output signal when the supply voltage reaches a desired level; and
a logic circuit configured to sense high and low signal states associated with the first output signal and the second output signal and further configured to generate a power-up control circuit output signal that is dependent upon the signal states, such that when the supply voltage reaches a steady-state condition, the power-up control circuit draws substantially no current.
2. The power-up control circuit according to claim 1 wherein the logic circuit is configured as an AND circuit.
3. A power-up control circuit comprising:
first sensing means for sensing a low-to-high supply voltage transition to generate a first output signal when the supply voltage reaches a desired level;
second sensing means for sensing a high-to-low supply voltage transition to generate a second output signal when the supply voltage reaches a desired level; and
third sensing means for sensing high and low signal states associated with the first output signal and the second output signal to generate a power-up control circuit output signal that is dependent upon the signal states, such that when the supply voltage reaches a steady-state condition, the power-up control circuit draws substantially no current.
4. The power-up control circuit according to claim 3 wherein the third sensing means comprises an AND logic circuit.
5. A power-up control circuit operational to sense a low-to-high supply voltage transition and generate a first output signal when the supply voltage reaches a desired level, and further operational to sense a high-to-low supply voltage transition and generate a second output signal when the supply voltage reaches a desired level, such that the first and second output signals are combined to generate a power-up control circuit output signal that is dependent upon the first and second output signals, and further such that the power-up control circuit draws substantially zero current when the power-up control circuit reaches a steady state condition.
6. A power-up control circuit comprising:
a first inverter circuit;
a first switching circuit configured to sense a low-to-high supply voltage transition and cause the first inverter circuit to generate a first output signal when the supply voltage reaches a desired level;
a second inverter circuit;
a second switching circuit configured to sense a high-to-low supply voltage transition and cause the second inverter circuit to generate a second output signal when the supply voltage reaches a desired level; and
a logic circuit responsive to the first and second output signals to generate a power-up control circuit output signal, wherein the power-up control circuit draws substantially zero current when the supply voltage reaches a steady state condition.
7. The power-up control circuit according to claim 6 wherein the logic circuit comprises an AND gate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/903,348 US6515524B1 (en) | 2001-07-11 | 2001-07-11 | Power-up control circuit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/903,348 US6515524B1 (en) | 2001-07-11 | 2001-07-11 | Power-up control circuit |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20030011411A1 true US20030011411A1 (en) | 2003-01-16 |
| US6515524B1 US6515524B1 (en) | 2003-02-04 |
Family
ID=25417353
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/903,348 Expired - Lifetime US6515524B1 (en) | 2001-07-11 | 2001-07-11 | Power-up control circuit |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US6515524B1 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7078944B1 (en) * | 2003-07-16 | 2006-07-18 | Cypress Semiconductor Corporation | Power on reset circuit |
| US7126391B1 (en) | 2003-07-16 | 2006-10-24 | Cypress Semiconductor Corporation | Power on reset circuits |
| US7265595B1 (en) | 2006-03-03 | 2007-09-04 | Cypress Semiconductor Corporation | Stochastic reset circuit |
| US7417476B1 (en) * | 2007-04-24 | 2008-08-26 | Smartech Worldwide Limited | Power-on-reset circuit with output reset to ground voltage during power off |
| US8604847B2 (en) * | 2012-05-03 | 2013-12-10 | Texas Instruments Incorporated | Detection of fast supply ramp in reset circuit |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6677787B1 (en) * | 2002-07-12 | 2004-01-13 | Intel Corporation | Power indication circuit for a processor |
| US6859077B1 (en) * | 2003-08-25 | 2005-02-22 | National Semiconductor Corporation | Startup circuit for analog integrated circuit applications |
| US7755419B2 (en) | 2006-01-17 | 2010-07-13 | Cypress Semiconductor Corporation | Low power beta multiplier start-up circuit and method |
| US7830200B2 (en) * | 2006-01-17 | 2010-11-09 | Cypress Semiconductor Corporation | High voltage tolerant bias circuit with low voltage transistors |
| US8312298B2 (en) | 2006-11-17 | 2012-11-13 | National Instruments Corporation | PXI express controller power control state machine |
| US7952402B2 (en) * | 2009-02-06 | 2011-05-31 | Standard Microsystems Corporation | Power-up control for very low-power systems |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6362669B1 (en) * | 2000-04-10 | 2002-03-26 | Xilinx, Inc. | Structure and method for initializing IC devices during unstable power-up |
-
2001
- 2001-07-11 US US09/903,348 patent/US6515524B1/en not_active Expired - Lifetime
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7078944B1 (en) * | 2003-07-16 | 2006-07-18 | Cypress Semiconductor Corporation | Power on reset circuit |
| US7126391B1 (en) | 2003-07-16 | 2006-10-24 | Cypress Semiconductor Corporation | Power on reset circuits |
| US7265595B1 (en) | 2006-03-03 | 2007-09-04 | Cypress Semiconductor Corporation | Stochastic reset circuit |
| US20070205815A1 (en) * | 2006-03-03 | 2007-09-06 | Harold Kutz | Stochastic reset circuit |
| US7417476B1 (en) * | 2007-04-24 | 2008-08-26 | Smartech Worldwide Limited | Power-on-reset circuit with output reset to ground voltage during power off |
| US8604847B2 (en) * | 2012-05-03 | 2013-12-10 | Texas Instruments Incorporated | Detection of fast supply ramp in reset circuit |
Also Published As
| Publication number | Publication date |
|---|---|
| US6515524B1 (en) | 2003-02-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0329285B1 (en) | Output buffer | |
| US6281730B1 (en) | Controlled slew rate driver | |
| US8754679B2 (en) | Low current power-on reset circuit and method | |
| US6624672B2 (en) | Output buffer with constant switching current | |
| US5537070A (en) | Output driver with slew rate control | |
| US6515524B1 (en) | Power-up control circuit | |
| US5510739A (en) | Circuit and method for enhancing logic transitions appearing on a line | |
| KR20080038866A (en) | Power-on reset circuit | |
| JP2007228310A (en) | Power detection circuit | |
| US5917255A (en) | Power-on-reset circuit having reduced size charging capacitor | |
| US4638182A (en) | High-level CMOS driver circuit | |
| US5059823A (en) | Supply bounce controlled output buffer circuit | |
| US20060220699A1 (en) | Circuit and method for transistor turn-off with strong pulldown | |
| US6281723B1 (en) | Device and method for power-on/power-off checking of an integrated circuit | |
| US5610542A (en) | Power-up detection circuit | |
| US6982577B2 (en) | Power-on reset circuit | |
| US20050258890A1 (en) | Switching control circuit with reduced dead time | |
| US5160860A (en) | Input transition responsive CMOS self-boost circuit | |
| US10348292B1 (en) | Power-on reset signal generating apparatus and voltage detection circuit thereof | |
| KR100323987B1 (en) | Integrated circuit | |
| US20020180495A1 (en) | CMOS output circuit | |
| KR930007560B1 (en) | Output circuit | |
| KR100715601B1 (en) | Power-On Reset Circuit | |
| US12021524B2 (en) | Level shifter and gate driver including the level shifter | |
| EP0630111B1 (en) | Output buffer circuit for a low voltage device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STERRANTINO, SCOTT;ZHOU, JIAN;REEL/FRAME:012208/0544 Effective date: 20010808 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |