TWI866351B - Generative adversarial networks-based method for component anomaly detection and device thereof - Google Patents
Generative adversarial networks-based method for component anomaly detection and device thereof Download PDFInfo
- Publication number
- TWI866351B TWI866351B TW112127694A TW112127694A TWI866351B TW I866351 B TWI866351 B TW I866351B TW 112127694 A TW112127694 A TW 112127694A TW 112127694 A TW112127694 A TW 112127694A TW I866351 B TWI866351 B TW I866351B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- discriminator
- abnormal
- input data
- encoder
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 230000002159 abnormal effect Effects 0.000 claims abstract description 53
- 238000012549 training Methods 0.000 claims description 39
- 230000009467 reduction Effects 0.000 claims description 35
- 230000005856 abnormality Effects 0.000 claims description 27
- 238000007781 pre-processing Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000003860 storage Methods 0.000 claims description 5
- 238000010187 selection method Methods 0.000 claims 1
- 230000006870 function Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000013480 data collection Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
Images
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
本揭露是有關於一種檢測異常的方法及裝置,且特別是有關於一種基於生成對抗網路(GAN)的零件異常檢測方法及其裝置。The present disclosure relates to a method and device for detecting anomalies, and more particularly to a method and device for detecting anomalies of parts based on a generative adversarial network (GAN).
在檢測機台零件是否異常的過程中,主要會遭遇以下問題:In the process of detecting whether machine parts are abnormal, the following problems are encountered:
(1) 由於工業應用中所能收集到的資料大部分為正常運作下產生,因此造成正/異常資料數量不均。(1) Since most of the data that can be collected in industrial applications is generated under normal operation, the amount of positive and abnormal data is uneven.
(2) 因工單、模具、材料等生產因素的改變,一個連續的生產過程裡會包含多種工作狀況。處於不同的工作狀況下會造成AI模型在辨別正/異常狀態時有一定的困難度。(2) Due to changes in production factors such as work orders, molds, and materials, a continuous production process will include multiple working conditions. Different working conditions will cause the AI model to have certain difficulties in distinguishing normal/abnormal conditions.
(3) 監督式演算法的訓練資料需要具有較明確的標籤(Label)(例如: 造成異常的因素種類),在工業應用中很多異常因素是很少出現或是還沒發生過。採用非監督式演算法的適應性會比較好,然而有些非監督式演算法無法適應多種工作狀況下的問題。(3) The training data of supervised algorithms needs to have clear labels (e.g., the type of factor causing the anomaly). In industrial applications, many anomalies rarely occur or have never occurred. Unsupervised algorithms have better adaptability, but some unsupervised algorithms cannot adapt to problems under various working conditions.
在正/異常資料數量不平衡的情況下,由於可取得的異常資料過少,將導致AI模型訓練的效能不佳。此外,因機台零件具有多種工作狀況,大多數的演算法並無法有效辨別實際的異常狀態。When the amount of positive/abnormal data is unbalanced, the AI model training performance will be poor due to the small amount of abnormal data available. In addition, since machine parts have a variety of working conditions, most algorithms cannot effectively identify the actual abnormal state.
因此,需要一種基於生成對抗網路的零件異常檢測方法及其裝置,以改善上述問題。Therefore, a method and device for detecting abnormal parts based on generating an adversarial network are needed to improve the above problems.
因此,本揭露之主要目的即在於提供一種基於生成對抗網路的零件異常檢測方法及其裝置。Therefore, the main purpose of the present disclosure is to provide a component abnormality detection method and device based on generating a countermeasure network.
本揭露提出一種零件異常檢測方法,用於一工業自動化系統中,包括:藉由一降噪自編碼器推論一輸入資料的一第一異常分數,包括:提取上述輸入資料的一流形座標,以及計算上述流形座標與一正常資料平均座標之間的一距離,以作為上述第一異常分數;藉由一鑑別器,產生上述輸入資料的一第二異常分數;以及相加上述第一異常分數及上述第二異常分數,以計算上述輸入資料的一異常程度。The present disclosure provides a method for detecting abnormal parts in an industrial automation system, including: inferring a first abnormal score of input data by a noise reduction self-encoder, including: extracting a manifold coordinate of the above-mentioned input data, and calculating a distance between the above-mentioned manifold coordinate and an average coordinate of normal data as the above-mentioned first abnormal score; generating a second abnormal score of the above-mentioned input data by a discriminator; and adding the above-mentioned first abnormal score and the above-mentioned second abnormal score to calculate an abnormal degree of the above-mentioned input data.
本揭露提出零件異常檢測裝置,包括:一處理器;以及一電腦儲存媒體,耦接於上述處理器,並被配置以儲存電腦可讀取指令,用以指示上述處理器執行上述零件異常檢測方法。The present disclosure provides a component abnormality detection device, comprising: a processor; and a computer storage medium, coupled to the processor and configured to store computer-readable instructions for instructing the processor to execute the component abnormality detection method.
在具有梯度懲罰的瓦瑟斯坦生成對抗網路 (Wasserstein Generative Adversarial Network with Gradient Penalty,簡稱WGAN-GP)的基礎上,本揭露使用降噪自編碼器取代WGAN-GP的生成器並保留WGAN-GP的鑑別器,以構成一AI模型架構。本揭露的基於生成對抗網路的零件異常檢測方法及其裝置具備了以下優勢:Based on the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP), the present invention uses a denoising autoencoder to replace the generator of WGAN-GP and retains the discriminator of WGAN-GP to form an AI model architecture. The disclosed method and device for detecting abnormal parts based on the generative adversarial network have the following advantages:
(1)降噪自編碼器可提取輸入資料的流形座標。當輸入資料的維度越高且相異,流形座標的重疊機率越低,故鑑別度越高。因此,在工業自動化應用中,當機台零件面對複雜的工作狀況時,本揭露的基於生成對抗網路的零件異常檢測方法及其裝置具有較高的鑑別度。(1) The noise reduction self-encoder can extract the manifold coordinates of the input data. When the dimension of the input data is higher and different, the overlap probability of the manifold coordinates is lower, so the identification degree is higher. Therefore, in industrial automation applications, when machine parts face complex working conditions, the part abnormality detection method and device based on the generated adversarial network disclosed in the present invention have a higher identification degree.
(2) 本揭露的AI模型架構同時利用降噪自編碼器和鑑別器來進行推論,可提高鑑別度。(2) The AI model architecture disclosed herein utilizes both a denoising autoencoder and a discriminator for inference, which can improve the discrimination accuracy.
本揭露實施例提供一種基於生成對抗網路的零件異常檢測方法及其裝置。在工業自動化應用中不易取得異常資料的情況下,以正常訓練資料訓練基於生成對抗網路(Generative Adversarial Network,GAN)的一AI模型架構,以解決以往難以在多種工作情況下辨別正/異常狀態的問題。The disclosed embodiment provides a method and device for detecting abnormal parts based on a generative adversarial network. In industrial automation applications, when it is difficult to obtain abnormal data, an AI model architecture based on a generative adversarial network (GAN) is trained with normal training data to solve the problem of difficulty in distinguishing normal/abnormal states in various working conditions.
第1圖為根據本揭露實施例的零件異常檢測系統10的示意圖。零件異常檢測系統10包括一皮帶110、多個驅動輪112、一變頻驅動器(Variable Frequency Drive,VFD)12及一控制器13,其中控制器13可安裝一推論系統30。FIG. 1 is a schematic diagram of a component
如第1圖所示,皮帶110繞設於多個驅動輪112,多個驅動輪112連接並受控於馬達(圖未顯示),且馬達連接並受控於變頻驅動器12。當馬達持續運轉並帶動皮帶110時,由控制器13透過變頻驅動器12收集零件參數(例如,馬達電流、馬達扭力、馬達轉速以及運轉週期等馬達運作參數),以產生對應的一資料集。推論系統30被配置來根據輸入的即時資料進行線上推論,以預測零件的異常程度。As shown in FIG. 1 , the
一般而言,推論系統30必須先經過訓練才能夠推論零件的異常程度。於本實施例中,推論系統30是由控制器13所訓練,其中推論系統30接收零件參數而產生資料集,並根據資料集來進行訓練。於一實施例中,控制器13輸出資料集至外部裝置,推論系統30是由外部裝置(例如第7圖的電子裝置70)進行訓練,接著外部裝置將訓練過的推論系統30輸出至控制器13來進行線上推論。於另一實施例中,控制器13輸出資料集至外部裝置,推論系統30由外部裝置進行訓練,並於外部裝置內進行線上推論。外部裝置訓練推論系統30的優勢在於,可選用較高效能的計算機或處理器來加快訓練過程。推論系統30可儲存於控制器13或外部裝置內建或外接的記憶體中。Generally speaking, the
於一實施例中,控制器13可例如為中央處理單元(Central Process Unit,CPU)、微控制單元(Micro Control Unit,MCU)、系統單晶片(System on Chip,SoC)或可程式邏輯控制器(Programmable Logic Controller,PLC)等,但不以此為限。In one embodiment, the
第2圖為根據本揭露實施例的模型訓練系統20的示意圖。模型訓練系統20包括資料收集模組28、資料預處理模組21及模型訓練模組22。模型訓練系統20可安裝於控制器13或外部訓練裝置(例如第7圖的電子裝置70)。FIG. 2 is a schematic diagram of a
在資料收集模組28中,在進行模型訓練之前須收集用來訓練模型的相關歷史資料。以馬達運作為例,馬達電流、馬達扭力、馬達轉速以及運轉週期可被收集作為歷史資料。在一實施例中,相關歷史資料為數值資料或圖片。一部分的歷史資料可作為訓練資料(Training Data),而另一部分可作為測試資料(Test Data)。In the
資料預處理模組21被配置來對訓練資料和測試資料進行統計分析,以取得統計數值。接著,資料預處理模組21被配置來從統計數值中選擇多個具影響力特徵,以產生特徵集(Feature Set)供後續的模型訓練和測試。具體而言,在進行模型訓練和線上推論時,資料預處理模組21被配置來刪除不匹配特徵集的參數與資料,並保留匹配特徵集的參數與資料,使得此資料作為模型訓練模組22和推論系統30中的輸入資料。The
模型訓練模組22包括一降噪自編碼器(Denoising Auto-Encoder,DAE)23、一鑑別器(Discriminator)24、一雜訊生成器25、一第一目標函數26以及一第二目標函數27,其中降噪自編碼器23及鑑別器24符合一深度神經網路(Deep Neural Network,DNN)模型架構。The
在操作上,雜訊生成器25將正常資料加入雜訊來產生一嘈雜資料,接著輸出嘈雜資料至降噪自編碼器23。降噪自編碼器23為一初始降噪自編碼器,被配置來將嘈雜資料轉換為一生成資料,並將生成資料輸入至鑑別器24。In operation, the
鑑別器24為一初始鑑別器,被配置來分別產出生成資料的鑑別數值Dg及真實資料的鑑別數值Dn,反饋給降噪自編碼器23,其中鑑別數值Dg、Dn為任意實數,表示輸入資料為真實的程度。以我們的實驗結果顯示,此實數範圍落在1與-1之間,此實數越靠近1,則表示輸入資料被視為真實資料的程度越高;此實數越靠近-1,則表示輸入資料被視為是生成資料的程度越高。鑑別器24根據鑑別數值Dg、Dn,計算出第一期望值,調整參數,以達到最大化的第一目標函數26。透過多次訓練,可逐漸優化鑑別器24的效能。降噪自編碼器23根據反饋的鑑別數值Dg、Dn,計算出第二期望值,調整參數,接著進行下一次訓練,以達到最小化的第二目標函數27。透過多次訓練,可逐漸優化降噪自編碼器23的效能。The
進一步地,生成資料和真實資料(即正常資料)被輸入至鑑別器24產生鑑別數值Dg、Dn,並計算出第一及第二期望值,使得降噪自編碼器23及鑑別器24根據各自的目標函數來調整參數,其中鑑別器24的第一目標函數26的公式如下:
,
降噪自編碼器23的第二目標函數27的公式如下:
。
P
data、P
DAE分別為真實資料(即正常資料)與生成資料的機率分布,
、
分別為真實資料與生成資料的期望值。第一目標函數26的目的是讓鑑別數值Dg、Dn的差距最大化,即鑑別器24辨別真實資料與合成資料的能力較好,而第二目標函數27的目的是讓鑑別數值Dg、Dn的差距最小化,即生成資料更接近真實資料,導致鑑別器24無法有效區分。另外,透過加入一懲罰項(Penalty)改善以往GAN在訓練中時常無法收斂的問題。
Furthermore, the generated data and the real data (i.e., normal data) are input to the
具體來說,鑑別器24參考第一目標函數
來調整參數,經過多次的參數迭代後可逐漸優化鑑別器24;降噪自編碼器23參考第二目標函數
來調整參數,經過多次的參數迭代後可逐漸優化降噪自編碼器23。調整參數會不斷地重複以下步驟,包含:(1)固定降噪自編碼器23的參數,調整鑑別器24的參數,直到鑑別度差距最大化;(2) 固定鑑別器24的參數,調整降噪自編碼器23的參數,直到鑑別度差距最小化。
Specifically, the
第3圖為根據本揭露實施例的推論系統30的示意圖。推論系統30包括一資料預處理模組31以及一AI模型32,其中AI模型32包括一降噪自編碼器33、一鑑別器34、一數值轉換器35、一減法器36以及一加法器37。推論系統30可安裝於控制器13或外部檢測裝置(例如第7圖的電子裝置70)。FIG. 3 is a schematic diagram of an
在操作上,推論系統30透過控制器13取得機台零件運轉中的即時資料;以馬達運作為例,馬達電流、馬達扭力、馬達轉速以及運轉週期可被收集作為即時資料。資料預處理模組31對即時資料310進行預處理來產生輸入資料到降噪自編碼器33及鑑別器34。降噪自編碼器33及鑑別器34均為經過第2圖訓練後的降噪自編碼器及鑑別器。降噪自編碼器33被配置來提取輸入資料的流形座標(Manifold),接著減法器36計算流形座標與正常資料的平均座標之間的距離,以作為第一異常分數。在一實施例中,流形座標的維度對應至降噪自編碼器中隱藏層的節點數量。鑑別器34推論即時資料的鑑別數值D(x),其中鑑別數值D(x)為任意實數。鑑別數值D(x)越大表示輸入資料與正常資料的相似度越大;而鑑別數值D(x)數值越小表示輸入資料與正常資料的相似度越小。鑑別數值D(x)可用以下公式表示:
D(
x) = W×
x+ b
其中D(
x)表示鑑別器34對輸入資料
x的判斷結果,W是指神經網路最後一層的權重矩陣,以及b是偏權值(bias)。偏權值的作用是在鑑別器34中引入一個額外參數,使鑑別器34能夠更好的擬合輸入資料以提高效能,其中偏權值b通常會初始化為一個較小的常數。鑑別器34最後會透過一激勵函數(Activation Function)轉換判斷結果並得到鑑別數值,其中激勵函數可為一線性函數。
In operation, the
數值轉換器35被配置來將鑑別數值D(x)轉換為第二異常分數。為使鑑別數值D(x)的大小能夠直觀地表示輸入資料與正常資料的相似度,在一實施例中,數值轉換器35將鑑別數值D(x)乘以-1,以轉換為第二異常分數。在另一實施例中,數值轉換器35將一預設數值減去鑑別數值D(x),以轉換為第二異常分數。在另一實施例中,當鑑別數值D(x)大於零且小於1時,數值轉換器35取鑑別數值D(x)的倒數,以作為第二異常分數。最後,加法器37相加第一異常分數及第二異常分數,以計算輸入資料的異常程度。異常程度的數值越大表示輸入資料與正常資料之間的異常程度越大;反之,異常程度的數值越小表示輸入資料與正常資料之間的異常程度越小。The
值得注意的是,儘管第1圖至第3圖中檢測異常的對象是以馬達作為例子,但本揭露不應被限制於此。舉一例子說明,本揭露亦可應用於電腦數值控制(Computer Numerical Control,CNC)銑床加工過程。從CNC機器上所收集零件的工具條件、進給速率、夾緊壓力等數值可被用以判斷零件的磨損狀態為正常或異常。It is worth noting that although the object of abnormal detection in Figures 1 to 3 is a motor as an example, the present disclosure should not be limited to this. As an example, the present disclosure can also be applied to a computer numerical control (CNC) milling machine process. The tool condition, feed rate, clamping pressure and other values of the parts collected from the CNC machine can be used to determine whether the wear state of the parts is normal or abnormal.
第4圖為根據本揭露實施例訓練AI模型方法40的流程圖。訓練AI模型方法40可由第1圖的控制器13或是第7圖的電子裝置70所執行,並包括以下步驟。FIG. 4 is a flow chart of a
步驟S41:藉由鑑別器,推論多組輸入資料的鑑別數值,其中多組輸入資料包括真實資料與生成資料。Step S41: inferring identification values of multiple sets of input data by the discriminator, wherein the multiple sets of input data include real data and generated data.
步驟S42:利用真實資料與生成資料的鑑別數值,得到第一期望值,並計算第一目標函數。Step S42: Using the identification values of the real data and the generated data, a first expected value is obtained, and a first objective function is calculated.
步驟S43:判斷第一目標函數是否最大化,若是,進行步驟S45;若否,進行步驟S44。Step S43: Determine whether the first objective function is maximized, if so, proceed to step S45; if not, proceed to step S44.
步驟S44:固定降噪自編碼器參數,並調整鑑別器的參數。回到步驟S41。Step S44: fix the noise reduction self-encoder parameters and adjust the parameters of the discriminator. Return to step S41.
步驟S45:藉由鑑別器,推論真實資料與生成資料的鑑別數值,並回饋給降噪自編碼器,以計算第二期望值。Step S45: The discriminator is used to infer the discriminant values of the real data and the generated data, and the discriminant values are fed back to the noise reduction self-encoder to calculate the second expected value.
步驟S46:得到第二期望值,並計算第二目標函數。Step S46: Obtain a second expected value and calculate a second objective function.
步驟S47:判斷第二目標函數是否最小化。若是,結束;若否,進行步驟S48。Step S47: Determine whether the second objective function is minimized. If yes, end; if no, proceed to step S48.
步驟S48:固定鑑別器參數,並調整降噪自編碼器的參數。回到步驟S45。Step S48: Fix the discriminator parameters and adjust the noise reduction self-encoder parameters. Return to step S45.
步驟S41、S42、S43、S44、S45可由鑑別器24來執行,步驟S45、S46、S47、S48可由降噪自編碼器23來執行,步驟S42、S46可由第一及第二目標函數來執行。在一實施例中,於步驟S48之後,控制器13或處理器可視情況判斷是否要回到步驟S41以再次進行訓練。透過重複執行訓練AI模型方法40,可逐漸優化第2圖的降噪自編碼器23及鑑別器24的效能,以套用在第3圖的AI模型32中的降噪自編碼器33及鑑別器34。Steps S41, S42, S43, S44, and S45 may be performed by the
第5圖為根據本揭露實施例的基於生成對抗網路的零件異常檢測方法50的流程圖。零件異常檢測方法50可由第1圖的控制器13或是第7圖的電子裝置70所執行,並包括以下步驟。FIG. 5 is a flow chart of a component
步驟S51:藉由降噪自編碼器,推論輸入資料的第一異常分數。於本實施例中,步驟S51包括步驟S11:提取輸入資料的流形座標;以及步驟S12:計算流形座標與正常資料的平均座標之間的距離,以作為第一異常分數。Step S51: inferring a first anomaly score of the input data by using the noise reduction self-encoder. In this embodiment, step S51 includes step S11: extracting manifold coordinates of the input data; and step S12: calculating the distance between the manifold coordinates and the average coordinates of the normal data as the first anomaly score.
步驟S52:藉由鑑別器,推論輸入資料的第二異常分數。於本實施例中,步驟S52包括步驟S13:藉由鑑別器,推論輸入資料的鑑別數值;以及步驟S14:轉換鑑別數值為第二異常分數。Step S52: Inferring a second abnormality score of the input data by the discriminator. In this embodiment, step S52 includes step S13: Inferring a discriminator value of the input data by the discriminator; and step S14: Converting the discriminator value into the second abnormality score.
步驟S53:相加第一異常分數及第二異常分數,以計算輸入資料的異常程度。於一實施例中,當異常程度高於一自定義閥值時,控制器13或是電子裝置70判斷輸入資料為異常並發出警示訊號以通知使用者。Step S53: Add the first abnormal score and the second abnormal score to calculate the abnormality level of the input data. In one embodiment, when the abnormality level is higher than a custom threshold value, the
步驟S51、S11可由降噪自編碼器33來執行,步驟S12可由減法器36來執行,步驟S52、S13可由鑑別器34來執行,步驟S14可數值轉換器35由來執行,步驟S53可由加法器37來執行。Steps S51 and S11 can be executed by the
在零件異常檢測方法50開始之前,可先透過控制器13取得即時資料,並對即時資料進行預處理(包括統計分析、刪除不匹配特徵集資料及保留匹配特徵集資料),以產生輸入資料。透過執行零件異常檢測方法50,控制器13或是電子裝置70可進行線上推論,以產生零件的異常程度進而判斷輸入資料是否為異常。Before the part
第6圖為根據本揭露實施例的流形座標的資料特性座標圖60。本揭露實施例使用的歷史資料、訓練資料、測試資料及輸入資料可為數值資料或圖片。第6圖以圖片舉例說明,不同種類的圖片會各自聚集在高維空間中的低維流形空間,且不同種類圖片的流形座標幾乎是不重疊的。換言之,相異性越高且維度越高,重疊機率越低,故鑑別度越高。FIG. 6 is a data characteristic coordinate diagram 60 of manifold coordinates according to an embodiment of the present disclosure. The historical data, training data, test data, and input data used in the embodiment of the present disclosure may be numerical data or images. FIG. 6 uses images as examples to illustrate that different types of images are each clustered in a low-dimensional manifold space in a high-dimensional space, and the manifold coordinates of different types of images are almost non-overlapping. In other words, the higher the dissimilarity and the higher the dimension, the lower the probability of overlap, and therefore the higher the discrimination.
如上所述,本揭露零件異常檢測方法及其裝置僅須以正常訓練資料訓練降噪自編碼器及鑑別器,以解決異常資料數量過少且無法在多種工作狀況下辨別的問題。As described above, the disclosed method and device for detecting abnormal parts only need to train the noise reduction self-encoder and the discriminator with normal training data to solve the problem that the amount of abnormal data is too small and cannot be distinguished under various working conditions.
應須注意的是,第2圖至第3圖中降噪自編碼器23、33及鑑別器24、34被設置為可以硬體、軟體、韌體或其任何組合來實現。例如,降噪自編碼器23、33及鑑別器24、34可以被實現為被配置為在一個或多個處理器中執行的電腦程式代碼。或者,降噪自編碼器23、33及鑑別器24、34可以硬體邏輯/電路所實現。It should be noted that the noise reduction self-
第7圖為本發明實施例的電子裝置70的示意圖。FIG. 7 is a schematic diagram of an
本發明可在電腦程式碼或機器可使用指令來執行本發明,指令可為程式模組的電腦可執行指令,其程式模組由電腦或其它機器,例如個人數位助理或其它可攜式裝置執行。一般而言,程式模組包括例程、程式、物件、元件、數據結構等,程式模組指的是執行特定任務或實現特定抽象數據類型的程式碼。本發明可在各種系統組態中實現,包括可攜式裝置、消費者電子產品、通用電腦、更專業的計算裝置等。本發明還可在分散式運算環境中實現,處理由通訊網路所連結的裝置。The present invention may be implemented in computer program code or machine-usable instructions to perform the present invention, which may be computer-executable instructions of a program module, which is executed by a computer or other machine, such as a personal digital assistant or other portable device. Generally speaking, a program module includes routines, programs, objects, components, data structures, etc. A program module refers to a program code that performs a specific task or implements a specific abstract data type. The present invention can be implemented in a variety of system configurations, including portable devices, consumer electronic products, general-purpose computers, more professional computing devices, etc. The present invention can also be implemented in a distributed computing environment, processing devices connected by a communication network.
參考第7圖。電子裝置70包括直接或間接耦接以下裝置的匯流排77、記憶體71、一或多個處理器72、一或多個顯示元件73、輸入/輸出(I/O)埠口74、周邊元件75以及說明性電源供應器76。匯流排77表示可為一或多個匯流排之元件(例如,位址匯流排、數據匯流排或其組合)。7.
記憶體71包括但不侷限於隨機存取記憶體(Random Access Memory,RAM)、唯讀記憶體(Read-Only Memory,ROM)、電子抹除式可複寫唯讀記憶體(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、快閃記憶體或其它記憶體技術、唯讀記憶光碟(Compact Disc Read-Only Memory, CD-ROM)、數位多功能光碟(Digital Versatile Disc,DVD)或其它光碟儲存裝置、磁片、磁碟、磁片儲存裝置或其它磁儲存裝置,或可用於儲存所需的資訊並且可被電子裝置70存取的其它任何媒體。The
電子裝置70包括一處理器,其讀取來自像是記憶體71或周邊元件75各實體的數據。顯示元件73向使用者或其它裝置顯示資料或指示,例如顯示裝置、揚聲器、列印元件、振動元件等。The
I/O埠口74允許電子裝置70邏輯連接到包括周邊元件75的其它裝置,一些此種裝置為內建裝置。示例性元件包括麥克風、搖桿、遊戲台、碟形衛星訊號接收器、掃描器、印表機、無線裝置等。周邊元件75可提供一使用者介面,用於處理使用者生成的姿勢、聲音或其它生理輸入。在一些例子中,這些輸入可被傳送到一合適的網路元件以便進一步處理。電子裝置70可裝備有深度照相機,像是立體照相機系統、紅外線照相機系統、RGB照相機系統和這些系統的組合,以偵測與識別物件。I/
此外,電子裝置70中的處理器72也可執行記憶體71中之程式碼78及指令以呈現上述實施例的動作和步驟,或其它在說明書中內容的描述。In addition, the
本揭露已以實施範例揭露如上,任何熟悉此項技藝者,在不脫離本揭露之精神和範圍內,當可做些許更動與潤飾,因此本案之保護範圍當視後附之申請專利範圍所界定者為準。This disclosure has been disclosed as an implementation example as above. Anyone familiar with this technology can make some changes and modifications without departing from the spirit and scope of this disclosure. Therefore, the protection scope of this case shall be defined by the scope of the attached patent application.
10:零件異常檢測系統 110:皮帶 112:驅動輪 12:變頻驅動器 13:控制器 20:模型訓練系統 21:資料預處理模組 22:模型訓練模組 23:降噪自編碼器 24:鑑別器 25:雜訊生成器 26:第一目標函數 27:第二目標函數 28:資料收集模組 30:推論系統 31:資料預處理模組 32:AI模型 33:降噪自編碼器 34:鑑別器 35:數值轉換器 36:減法器 37:加法器 40:訓練AI模型方法 S41~S48:步驟 50:零件異常檢測方法 S51,S52,S53,S11,S12,S13,S14:步驟 60:資料特性座標圖 70:電子裝置 71:記憶體 72:處理器 73:顯示元件 74:I/O埠口 75:周邊元件 76:電源供應器 77:匯流排 78:程式碼 10: Parts abnormality detection system 110: Belt 112: Drive wheel 12: Variable frequency drive 13: Controller 20: Model training system 21: Data preprocessing module 22: Model training module 23: Noise reduction self-encoder 24: Discriminator 25: Noise generator 26: First objective function 27: Second objective function 28: Data collection module 30: Inference system 31: Data preprocessing module 32: AI model 33: Noise reduction self-encoder 34: Discriminator 35: Digital converter 36: Subtractor 37: Adder 40: AI model training method S41~S48: Steps 50: Parts abnormality detection method S51, S52, S53, S11, S12, S13, S14: Steps 60: Data characteristic coordinate diagram 70: Electronic device 71: Memory 72: Processor 73: Display element 74: I/O port 75: Peripheral components 76: Power supply 77: Bus 78: Program code
第1圖為根據本揭露實施例的零件異常檢測系統的示意圖。 第2圖為根據本揭露實施例的模型訓練系統的示意圖。 第3圖為根據本揭露實施例的推論系統的示意圖。 第4圖為根據本揭露實施例的訓練AI模型方法的流程圖。 第5圖為根據本揭露實施例的檢測異常方法的流程圖。 第6圖為根據本揭露實施例的流形座標的資料特性座標圖。 第7圖為根據本揭露實施例的電子裝置的示意圖。 FIG. 1 is a schematic diagram of a part anomaly detection system according to an embodiment of the present disclosure. FIG. 2 is a schematic diagram of a model training system according to an embodiment of the present disclosure. FIG. 3 is a schematic diagram of an inference system according to an embodiment of the present disclosure. FIG. 4 is a flow chart of a method for training an AI model according to an embodiment of the present disclosure. FIG. 5 is a flow chart of a method for detecting anomalies according to an embodiment of the present disclosure. FIG. 6 is a data characteristic coordinate diagram of a manifold coordinate according to an embodiment of the present disclosure. FIG. 7 is a schematic diagram of an electronic device according to an embodiment of the present disclosure.
50:方法 50: Methods
S51,S52,S53,S11,S12,S13,S14:步驟 S51,S52,S53,S11,S12,S13,S14: Steps
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112127694A TWI866351B (en) | 2023-07-25 | 2023-07-25 | Generative adversarial networks-based method for component anomaly detection and device thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112127694A TWI866351B (en) | 2023-07-25 | 2023-07-25 | Generative adversarial networks-based method for component anomaly detection and device thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI866351B true TWI866351B (en) | 2024-12-11 |
| TW202505427A TW202505427A (en) | 2025-02-01 |
Family
ID=94769293
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112127694A TWI866351B (en) | 2023-07-25 | 2023-07-25 | Generative adversarial networks-based method for component anomaly detection and device thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI866351B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210319302A1 (en) * | 2020-04-03 | 2021-10-14 | Baidu Usa Llc | Estimating the implicit likelihoods of generative adversarial networks |
| TW202209153A (en) * | 2020-08-17 | 2022-03-01 | 以色列商應用材料以色列公司 | Automatic optimization of an examination recipe |
| US20220374732A1 (en) * | 2021-05-07 | 2022-11-24 | Sas Institute Inc. | Automated control of a manufacturing process |
-
2023
- 2023-07-25 TW TW112127694A patent/TWI866351B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210319302A1 (en) * | 2020-04-03 | 2021-10-14 | Baidu Usa Llc | Estimating the implicit likelihoods of generative adversarial networks |
| TW202209153A (en) * | 2020-08-17 | 2022-03-01 | 以色列商應用材料以色列公司 | Automatic optimization of an examination recipe |
| US20220374732A1 (en) * | 2021-05-07 | 2022-11-24 | Sas Institute Inc. | Automated control of a manufacturing process |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202505427A (en) | 2025-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sun et al. | In-process tool condition forecasting based on a deep learning method | |
| Xie et al. | A novel bearing fault classification method based on XGBoost: The fusion of deep learning-based features and empirical features | |
| JP6764516B1 (en) | Machine tools and display devices | |
| Lorena et al. | Filter feature selection for one-class classification | |
| CN113780151B (en) | Bearing fault diagnosis method and system based on bilinear feature fusion | |
| CN115903741B (en) | A method for detecting data anomalies in industrial control systems | |
| CN113723734A (en) | Method and device for monitoring abnormity of time series data, electronic equipment and storage medium | |
| CN110672323A (en) | Bearing health state assessment method and device based on neural network | |
| CN118013443A (en) | Online real-time vacuum dry pump abnormality detection method based on generation model algorithm | |
| CN118643966A (en) | Machine tool processing strategy planning method, device, equipment and storage medium | |
| CN117260297A (en) | Full-automatic machining equipment | |
| CN117454165A (en) | A network model training method, motor temperature prediction method and related equipment | |
| CN119644917A (en) | Machine tool self-adaptive control system based on digital twin and implementation method thereof | |
| TWI866351B (en) | Generative adversarial networks-based method for component anomaly detection and device thereof | |
| Xu et al. | Imbalanced learning for gearbox fault detection via attention-based multireceptive field convolutional neural networks with an adaptive label regulation loss | |
| Zhou et al. | Time-frequency Representation-enhanced Transfer Learning for Tool Condition Monitoring during milling of Inconel 718 | |
| CN112541595B (en) | Model building method and device, storage medium and electronic device | |
| Li et al. | Improving clustering based anomaly detection with concave hull: An application in fault diagnosis of wind turbines | |
| WO2025020385A1 (en) | Generative adversarial network-based part anomaly detection method and apparatus therefor | |
| JP7500980B2 (en) | Information processing device, information processing method, and information processing program | |
| CN113138589A (en) | Industrial equipment control method, electronic device, and storage medium | |
| JP2020187616A (en) | Plant monitoring model creation device, plant monitoring model creation method, and plant monitoring model creation program | |
| CN116702839A (en) | Model training method and application system based on convolutional neural network | |
| CN115629942A (en) | Operation and maintenance data anomaly detection processing method and device based on big data and machine learning in trusted environment, processor and storage medium | |
| CN114861753A (en) | A large-scale network-based data classification method and device |