numpy.array_equal#
- numpy.array_equal(a1, a2, equal_nan=False)[source]#
- True if two arrays have the same shape and elements, False otherwise. - Parameters:
- a1, a2array_like
- Input arrays. 
- equal_nanbool
- Whether to compare NaN’s as equal. If the dtype of a1 and a2 is complex, values will be considered equal if either the real or the imaginary component of a given value is - nan.
 
- Returns:
- bbool
- Returns True if the arrays are equal. 
 
 - See also - allclose
- Returns True if two arrays are element-wise equal within a tolerance. 
- array_equiv
- Returns True if input arrays are shape consistent and all elements equal. 
 - Examples - >>> import numpy as np - >>> np.array_equal([1, 2], [1, 2]) True - >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True - >>> np.array_equal([1, 2], [1, 2, 3]) False - >>> np.array_equal([1, 2], [1, 4]) False - >>> a = np.array([1, np.nan]) >>> np.array_equal(a, a) False - >>> np.array_equal(a, a, equal_nan=True) True - When - equal_nanis True, complex values with nan components are considered equal if either the real or the imaginary components are nan.- >>> a = np.array([1 + 1j]) >>> b = a.copy() >>> a.real = np.nan >>> b.imag = np.nan >>> np.array_equal(a, b, equal_nan=True) True