numpy.sinc#
- numpy.sinc(x)[source]#
- Return the normalized sinc function. - The sinc function is equal to \(\sin(\pi x)/(\pi x)\) for any argument \(x\ne 0\). - sinc(0)takes the limit value 1, making- sincnot only everywhere continuous but also infinitely differentiable.- Note - Note the normalization factor of - piused in the definition. This is the most commonly used definition in signal processing. Use- sinc(x / np.pi)to obtain the unnormalized sinc function \(\sin(x)/x\) that is more common in mathematics.- Parameters:
- xndarray
- Array (possibly multi-dimensional) of values for which to calculate - sinc(x).
 
- Returns:
- outndarray
- sinc(x), which has the same shape as the input.
 
 - Notes - The name sinc is short for “sine cardinal” or “sinus cardinalis”. - The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. - For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. - References [1]- Weisstein, Eric W. “Sinc Function.” From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/SincFunction.html [2]- Wikipedia, “Sinc function”, https://en.wikipedia.org/wiki/Sinc_function - Examples - >>> import numpy as np >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 41) >>> np.sinc(x) array([-3.89804309e-17, -4.92362781e-02, -8.40918587e-02, # may vary -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) - >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") Text(0.5, 1.0, 'Sinc Function') >>> plt.ylabel("Amplitude") Text(0, 0.5, 'Amplitude') >>> plt.xlabel("X") Text(0.5, 0, 'X') >>> plt.show()