[go: up one dir, main page]

Skip to main content

R Programming

Statistical Data Analysis in Research

  • Book
  • © 2024

Overview

  • Provides information on different types of statistical data analysis and methods and its use for each case in R
  • Presents statistical data analysis using R-OOP language and RStudio integrated development environment (IDE)
  • Includes different research experiments, case scenarios, and examples
  • 50k Accesses

  • 210 Citations

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook EUR 154.07
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book is written for statisticians, data analysts, programmers, researchers, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using R object-oriented programming language and RStudio integrated development environment (IDE). R is an open-source software with a development environment (RStudio) for computing statistics and graphical displays through data manipulation, modeling, and calculation. R packages and supported libraries provide a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical software, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system. Therefore, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the users. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and nonparametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for the reliability and validity of the available datasets. Different research experiments, case scenarios, and examples are explained in this book. The book provides a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations thus congruence of Statistics and Computer programming in Research.

Similar content being viewed by others

Table of contents (13 chapters)

  1. Fundamental Concepts of R Programming and Statistical Data Analysis in Research

  2. Application and Implementation of Advanced Methods for Statistical Data Analysis in Research Using R

Authors and Affiliations

  • Department of Computer Science, School of Engineering and Sciences, Institute for Future of Education, Tecnologico de Monterrey, Monterrey, Mexico

    Kingsley Okoye

  • Institute for Future of Education, School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Mexico

    Samira Hosseini

About the authors

Dr. Kingsley Okoye received his Ph.D. in Software Engineering from the University of East London, UK, in 2017. He has worked as Data Architect and currently a Research Professor and Mentor at The Institute for Future of Education, Tecnologico de Monterrey and Department of Computer Science, School of Engineering and Sciences, Tecnologico de Monterrey, Mexico. He is a Senior Member of The Institute of Electrical and Electronics Engineers (IEEE). His research interests include Process Mining and Automation, Semantic Web Technologies, Learning Analytics and Systems Design, Data Science, Artificial Intelligence, Text Mining, Computer and Education, Educational Innovation, Educational Technologies, Knowledge Engineering and Data Management, Internet Applications and Ontology.

 

Dr. Samira Hosseini obtained her Ph.D. in Biomedical Engineering from the University of Malaya, Kuala Lumpur, Malaysia. She served as a postdoctoral associate at Department of Electrical engineering, School of Engineering and Sciences, Tecnologico de Monterrey, Mexico, and as a postdoctoral fellow at Research Laboratories of Electronics (RLE) at Massachusetts Institute of Technology, Cambridge, USA. Currently, she is the director of Writing Lab at the Institute for the Future of Education within Tecnologico de Monterrey which focuses on educational research, faculty training, and enhancing the publication record of Tecnologico de Monterrey. She also holds the position of research professor at the School of Engineering and Sciences, Tecnologico de Monterrey, Mexico. 

Accessibility Information

PDF accessibility summary

This PDF does not fully comply with PDF/UA standards, but does feature limited screen reader support, described non-text content (images, graphs), bookmarks for easy navigation and searchable, selectable text. Users of assistive technologies may experience difficulty navigating or interpreting content in this document. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.

EPUB accessibility summary

This ebook is designed with accessibility in mind, aiming to meet the ePub Accessibility 1.0 AA and WCAG 2.0 Level AA standards. Its features include described images and other non-text content, screenreader-friendly navigation and accessible math. Math is represented either as MathML, LaTeX or in images. If math is represented as image, Alt Text might not be present. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.

Bibliographic Information

Keywords

Publish with us