Overview
- Highlights FDTD analysis of functional plasmonic devices
- Describes frequency-dependent formulations of FDTD methods
- Presents applications of FDTD methods to various plasmonic devices from optical to terahertz regimes
Part of the book series: Springer Series in Optical Sciences (SSOS, volume 254)
Access this book
Tax calculation will be finalised at checkout
Other ways to access
About this book
This book offers a comprehensive exploration of the Finite-Difference Time-Domain (FDTD) analysis of plasmonic devices, shedding light on their applications from optical to terahertz regimes. By delving into frequency-dependent formulations and innovative computational methods, it provides a robust framework for understanding the intricacies of plasmonic devices.
Key concepts such as surface plasmon polariton, surface plasmon resonance, and metal-insulator-metal waveguides are meticulously examined. The book addresses critical questions about the efficiency and functionality of plasmonic sensors and demultiplexers, offering insights into the latest advancements in the field. With contributions from leading experts, it presents a blend of theoretical perspectives and practical case studies, making it an essential resource for anyone interested in cutting-edge plasmonic technology.
Engineers, researchers, and graduate students in the fields of optics and terahertz technology will find this book invaluable. It not only can enhance their understanding of FDTD methods but also will equip them with the knowledge to apply these techniques to real-world plasmonic device applications. Whether for a seasoned professional or a curious learner, this book is a gateway to the future of plasmonic research.
Similar content being viewed by others
Table of contents (11 chapters)
-
Front Matter
-
Back Matter
Authors and Affiliations
About the author
Jun Shibayama received his B.E., M.E., and D.Eng. degrees from Hosei University, Tokyo, Japan, in 1993, 1995, and 2001, respectively. In 1995, he joined Opto-Technology Laboratory, Furukawa Electric Co., Ltd., Ichihara, Chiba, Japan. He moved to Hosei University as an assistant professor in 1999 and has been a professor since 2015. His research interests include the numerical analysis of electromagnetic problems, particularly on optical and terahertz devices, and plasmonics. He was the first developer of an efficient implicit finite-difference time-domain (FDTD) algorithm called the locally one-dimensional FDTD (LOD-FDTD) method.
Dr. Shibayama was honored with the IEEE Ulrich L. Rohde Innovative Conference Paper Award on Computational Techniques in Electromagnetics in 2017 and the Best Paper Award during the International Symposium on Microwave and Optical Technology in 2017. He also received the Institute of Electronics, Information and Communication Engineers (IEICE) Electronics Society Award in 2018 for his contributions to pioneering research on high-performance numerical analysis of the LOD-FDTD method. He is a senior member of Optica, a member of IEEE and of the Applied Computational Electromagnetics Society (ACES), and a fellow of IEICE.
Accessibility Information
PDF accessibility summary
This PDF has been created in accordance with the PDF/UA-1 standard to enhance accessibility, including screen reader support, described non-text content (images, graphs), bookmarks for easy navigation, keyboard-friendly links and forms and searchable, selectable text. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com. Please note that a more accessible version of this eBook is available as ePub.
EPUB accessibility summary
This ebook is designed with accessibility in mind, aiming to meet the ePub Accessibility 1.0 AA and WCAG 2.2 Level AA standards. It features a navigable table of contents, structured headings, and alternative text for images, ensuring smooth, intuitive navigation and comprehension. The text is reflowable and resizable, with sufficient contrast. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com.
Bibliographic Information
Book Title: FDTD Analysis of Plasmonic Devices
Authors: Jun Shibayama
Series Title: Springer Series in Optical Sciences
DOI: https://doi.org/10.1007/978-981-96-8130-3
Publisher: Springer Singapore
eBook Packages: Physics and Astronomy, Physics and Astronomy (R0)
Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
Hardcover ISBN: 978-981-96-8129-7Published: 27 September 2025
Softcover ISBN: 978-981-96-8132-7Due: 11 October 2026
eBook ISBN: 978-981-96-8130-3Published: 26 September 2025
Series ISSN: 0342-4111
Series E-ISSN: 1556-1534
Edition Number: 1
Number of Pages: XVI, 189
Number of Illustrations: 82 b/w illustrations, 65 illustrations in colour
Topics: Optics, Lasers, Photonics, Optical Devices, Optical and Electronic Materials, Numerical Analysis, Classical Electrodynamics, Theoretical, Mathematical and Computational Physics, Materials Science, general