三角形面积的教学反思(必备20篇)
三角形面积的教学反思(1)
本节课中,我觉得比较成功的地方有以下几点:
一、渗透“转化”的思想
在课的开始,学生把一个长方形的花坛平均分成了两个直角三角形,借助长方形的面积算出一个直角三角形的面积。学生初步感到直角三角形和长方形有一定的联系。课中,通过两次的实践操作,学生更加明白了其实三角形可以转化成已学过的图形。在课的结尾,我再适时进行了总结:当我们遇到一个新问题时就可以动脑筋把它转化成我们以前学过的就知识。这样,“转化”思想贯穿于课的始终。
二、注重学生间的合作与交流
在这节课中,我注重学生间的合作与交流:以小组为单位让学生对三角形进行拼摆,再让他们上台展示自己的作品,并让其他小组的同学对黑板上的图形做及时的补充;在小组合作推导三角形的面积公式时,我也尽量让学生对其他各组的推导过程进行补充或提出异议,让学生在交流中学到了知识,在交流中看到了可以用许多方法解决同一个问题。
三、重视数学的应用性
学以致用是数学教学的一个基本原则。课的开始,我让学生把一块长方形花坛平均分成两半,你认为应该怎样分开呢?如果平均分成了两个直角三角形,那每个三角形的面积又是多少呢?课中,我又让学生求红领巾的面积、算出标志牌的大小。这些都让学生认识到了数学在生活中是无处不在的,体会到了数学的应用性。
当然,本节课也存在一些不足,如:
推导三角形面积的方式太过单一,在推导三角形的面积时,我只让学生进行了拼摆,其实对于部分学生来说,他完全有可能想出如割补、折叠的方法。我考虑到课堂时间的有限,自己驾驭课堂的能力也不强,就没有设计了这样的环节。
三角形面积的教学反思(2)
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生在学习了平行四边形面积计算时已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,在教学中我注重学生自己动手操作,小组合作探索,给每个学生提供思考、表现和发言的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想
通过让学生求阴影部分三角形的面积来猜测三角形的面积该怎么求,在学生“你争我吵”中激发学生的对这节课的兴趣。
二、动手操作,剪一剪,拼一拼,验证猜想。
在教学中我让学生动手操作,课前我让学生剪下三组完全一样的三角形,然后在小组中拼一拼说说自己的想法,并比较每个三角形与由它拼成的平行四边形的面积关系,以及各部分的关系,在动手活动中学生表现出了很高的热情,学生的主体性得到了充分的发挥,学生对学习也产生了浓厚的兴趣,个个投入操作,体验成功的喜悦。
当然在整个活动的过程中,我也发现了自己的不足,首先是课堂纪律的把握,其次是我发现个别学生动手能力十分有限,有的学生干脆就是坐着,无从下手,有的学生只是模仿其他好的学生一起动手。用两个完全一样的三角形拼成一个平行四边形。从表面上看,学生动手是在操作,可实际上学生只是机械地拼一拼,没有感受到这样的操作的目的,学后只做了一次“机械的操作工”,而为什么要这样去动手,学生却不得而知。看来,在今后的教学中,在学生小组合作,动手操作时,教师必要的引导是不可少的。
三、总结得出公式。
经过学生的动手操作,学生都知道了三角行的面积等于它拼成平行四边形面积的一半,让每个小组都起来说说自己小组探索的结果,最后得出公式:S=ab÷2
四、应用公式解决实际问题
让学生运用三角形的面积公式去解决实际问题,去求一块三角形交通标志的面积,这样学生就会感觉到学有所用,可以激发学生学习数学的兴趣。
由于教学经验不足存在着在课上不能顾及到每个学生,在学生的评价上还不够到位,总结性的语言还不够精炼等等缺点,不过我在以后的教学中会慢慢改进的。
三角形面积的教学反思(3)
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点::
1、学生掌握了学习了平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习了平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
三角形面积的教学反思(4)
《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程理念的要求,教学重点应该是引导学生学会学习。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。我感觉:在探究三角形面积计算时,让学生用书后面剪下的几对完全一样的三角形进行探究,再进行班级交流。学生用两个完全一样的三角形拼出了平行四边形,用平行四边形的`面积公式轻松地推导出三角形的面积公式:s=ah÷2。从表面上看,学生动手操作了,实际上学生只是被老师牵着鼻子走。学生没有主动地思考,没有猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。
这样提供材料思维含量低,不利于展现知识的生成过程,缺失了学生主动寻找材料的过程,影响学生解决问题策略意识的培养。这样的操作是肤浅的,没有起到促进学生建构知识的作用。
三角形面积的教学反思(5)
个有生命的课堂,应该是思维灵动的课堂,既要通过精心的预设,激发思维的灵动,更应巧用生成的教学资源,应情境而变,敏锐捕捉不期而至的生成点,才能演绎不曾预约的精彩应情境而变,提升课堂思维的灵动。
课堂教学是一个动态生成的过程,无论我们预设得如何的充分,都无可避免地存在着许许多多的不确定因素:
记得我在上《三角形的面积计算》一课时,引导学生通过探究得出三角形面积公式后,出示这样一道判断题:等底等高的三角形面积相等。()
在预设中,我认为这样的判断在前面的探究基础上让学生判断应该是没有什么问题的,可是当我让学生用手势判断时,竟然有三分之一的学生判断是错误的。于是我有意引导持不同意见的学生来一场辩论。
我首先请一名判断错误的学生起来说理由。
生1:等底等高的三角形,就有可能存在形状不同的情况,那就有可能面积不同。
这时持反方意见的一个学生站起来:老师让我来问问他。
生2:你先说说求三角形的面积要知道哪两个条件?
生1:要知道三角形相对应的底和高。
生2:怎么求三角形的面积?
生1:用底乘高除以2呀!
这时很多判断错误的学生开始反思了。
生2:那底和高相等,用公式来计算面积会不相等吗?
生1也在反思,但仍坚持:但它们的形状……
生3:老师,我来画图给他看。
于是,学生上讲台先用直尺在黑板上画了一组平行线,并在两条平行线之间画了几个等底等高的三角形。
生1:哦,我懂了。
这个本来在教学预设中学生应该在可以轻松解决的问题,打乱了我按部就班的教学,但学生的学习积极性和主动性被充分调动起来,迸发出智慧的火花。
我们在日常教学中,要尊重学生不同的思维层次,灵活的利用教学资源进行重组,沿着学生思维的轨迹,多角度地去引导学生,与学生一起生成。在预设中体现教师的匠心,在生成中展现师生智慧互动的火花!让课堂充满生成的美丽。
三角形面积的教学反思(6)
《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。因此我认为教学重点应该是引导学生学会学习(比如渗透转化的思想和方法)。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
为了达到这个目标,我设计了三个学生的学习活动。
一、动手操作尝试转化。
在教学中,我让学生动手操作,但是并没有直接让孩子用两个完全一样的三角形去拼,而是给了它们一个装有不同的三角形的学具袋,让其选择材料尝试转化,目的是看学生能否想到不同的转化方法,去体验和感知三角形面积公式的推导过程,调动学生思维活动,让学生真正成为学习的主体。同时在操作中向学生渗透旋转、平移的方法。
二、引导学生发现问题、思考问题,汇报关系。
转化成学过的会求面积的图形,这只是学习的第一步,发现转化后的图形与原三角形的关系,才能使三角形面积公式的出现水到渠成自然而然。所以,在这个环节,我给了他们充足的独立思考时间和小组交流的时间。
三、得出结论,总结公式。
如果学生能在第二个学习活动中把功课做足的话,自己总结写出三角形面积公式是不成问题的,但是不是有没有理解透的,所以我又追问三个问题:“为什么除以2”“除以2之前算的是什么?”“对于这个公式还有疑问吗?”包括让孩子回头想并口述整个推导过程,都是为了让学生加深理解。
教学反思:
反思整个环节,我感觉虽然学生动手操作了,但多多少少还是有点牵着学生鼻子走的意思,没有更多的猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。缺失了学生主动寻找材料的过程,影响了学生解决问题策略意识的培养和对知识的建构。
基于以上思考,我想再教学这一内容时,能不能引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。
三角形面积的教学反思(7)
学了《三角形面积》的计算公式后,很多学生在作业中经常在计算三角形面积时,总是忘记除以2。订正作业时,大部分同学都知道自己是忘除以2了,可是这样的情况还是时常出现。我很是困惑,难道是我的教学在哪里出了问题?我反思我的课堂教学。
我回忆了自己的教学过程,在探究三角形面积计算前,先让学生用书上剪下的几对完全一样的三角形进行探究,再进行班级交流。学生顺理成章地用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:S=ah2。从表面上看,学生动手操作了,实际上学生只是根据教师的设计机械地拼一拼。为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?学生根本就没有主动地思考,更谈不上猜想和创造。这样的操作是肤浅的,因此学生的记忆也是不深刻的。这样想来,学生作业时会忘记除以2也是情有可原。
反思整个教学过程,教师用一条无形的线牢牢地捆住了学生,让学生用2个完全一样的三角形拼成一个平形四边形,老师预先设置了一个坑,让学生往下跳,这怎么还叫探究呢?我想,在探究学习的过程中,我们为学生提供的探究性的学习材料要有一定的思维含量,要有利于展现知识的生成过程,要为促进学生的发展服务。要让学生自己跳着摘到果子,而不是为学生架好了梯子让他们去摘。现行教材直接为学生提供两个完全一样的三角形,让他们尝试拼成已学会面积计算的图形,这样的材料,其思维含量明显偏低,这样的探究,缺失了学生主动寻找材料的过程,就会影响学生解决问题策略意识的培养。
基于以上思考,我给学生留了这样一个回家作业:
你还能用其他的方法推导三角形的面积计算公式吗?结合你的推导方法说一说为什么计算三角形面积时要除以2。
第二天,在交流时,学生兴致很高。有的把三角形拦腰截断,拼成平行四边形,并作了说明:因为这里的高是原来三角形高的一半,所以用三角形的底乘高后要除以2;还有的把三角形转化成长方形(同教科书P16上你知道吗?半广以乘正从的做法),并说明:这里的底是原来的一半了,所以要除以2。这里,由于三角形的面积计算是学生自己想办法探索发现的,他们对计算方法的理解就非常深刻。我想,这种探究不是依靠教师一厢情愿的暗示、授意,而是一种真正意义上的探究。探究中,学生经历了主动建构的过程,这才是有价值的探究。
三角形面积的教学反思(8)
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的。学生在学平行四边形面积计算时已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,在教学中我注重学生自己动手操作,小组合作探索,给每个学生提供思考、表现和发言的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
一、猜想
通过让学生求阴影部分三角形的面积来猜测三角形的面积该怎么求,在学生“你争我吵”中激发学生的对这节课的兴趣。
二、动手操作,剪一剪,拼一拼,验证猜想。
在教学中我让学生动手操作,课前我让学生剪下三组完全一样的三角形,然后在小组中拼一拼说说自己的想法,并比较每个三角形与由它拼成的平行四边形的面积关系,以及各部分的关系,在动手活动中学生表现出了很高的热情,学生的主体性得到了充分的发挥,学生对学习也产生了浓厚的兴趣,个个投入操作,体验成功的喜悦。
当然在整个活动的过程中,我也发现了自己的不足,首先是课堂纪律的把握,其次是我发现个别学生动手能力十分有限,有的学生干脆就是坐着,无从下手,有的学生只是模仿其他好的学生一起动手。用两个完全一样的三角形拼成一个平行四边形。从表面上看,学生动手是在操作,可实际上学生只是机械地拼一拼,没有感受到这样的操作的目的,学后只做了一次“机械的操作工”,而为什么要这样去动手,学生却不得而知。看来,在今后的教学中,在学生小组合作,动手操作时,教师必要的引导是不可少的。
三、总结得出公式。
经过学生的动手操作,学生都知道了三角行的面积等于它拼成平行四边形面积的一半,让每个小组都起来说说自己小组探索的结果,最后得出公式:S=ab÷2
四、应用公式解决实际问题
让学生运用三角形的面积公式去解决实际问题,去求一块三角形交通标志的面积,这样学生就会感觉到学有所用,可以激发学生学习数学的兴趣。
由于教学经验不足存在着在课上不能顾及到每个学生,在学生的评价上还不够到位,总结性的语言还不够精炼等等缺点,不过我在以后的教学中会慢慢改进的。
三角形面积的教学反思(9)
《三角形面积的计算》这节内容是在学生已初步掌握了平行四边形、三角形特征、长方形、正方形的面积计算方法,以及初步认识图形的平移、旋转等基础上进行教学的。为了使学生轻松地投入到学习中,激发学生学习兴趣,真正掌握本节知识,我在设计这堂课时是这样构思的。
一、导入环节
我从学生最熟悉的平行四边形入手,通过复习平行四边形的面积推导公式,为探究新知作了很好的铺垫。同时直接引出本节的课题:三角形面积的计算。
二、观察图片、提出问题
出示课本三角形图,先让学生观察每个三角形的形状、底和高各是多少?讨论“图中涂色三角形的面积各是多少平方厘米?”并鼓励学生多角度思考问题,积极说出自己不同的方法,在此培养了学生的发散思维能力,从而提出猜想:图中三角形的面积是平行四边形面积的一半吗?调动了学生的积极性,为学生主动探索打下了良好的心理基础。
三、动手操作、验证猜想、得出三角形面积公式
在教师的引导下,把两个完全一样的三角形拼成平行四边形,得出三角形面积是平行四边形面积的一半。又根据三角形的底等于平行四边形的底,三角形的高等于平行四边形的高,平行四边形的面积等于底乘高,所以三角形的面积就等于底乘高除以2,从而沟通了新旧知识间的联系。培养了学生的思维能力,渗透了“平移”、“转化”思想。经历探究出三角形面积公式的活动,体验了知识的形成过程以及合作探究的兴趣。
四、实际应用、解决问题
在这个练习中,主要运用所学知识来解决问题,使学生尝到应用知识的乐趣。
三角形面积的教学反思(10)
“自主探索、合作交流、亲身实践”是《数学课程标准》大力倡导的学习方式,这种学习方式使学生真正成为学习的主人。本节课在设计时改变了教师“讲”知识,学生“用”知识的教学模式,把学习的主动权交给学生,使学生的主体地位落在实处,使学生学的积极、主动。让学生通过动手实践、自主探索,推导出三角形的面积的计算方法。这也是本节课的一个亮点。
在设计教学环节时我注意了学生已有的知识基础和经验背景,按照学生的认知规律组织教学,先复习了平行四边形面积的推导过程,然后让学生去探究三角形的面积计算方法。根据学生已有的知识由旧引新,衔接自如。
充分体现“动手做数学”的理念是这节课的又一亮点。纵观本节课,处处都充满了“做”。建构主义认为:小学生数学学习应该是一个主动构建知识的过程。小学生的数学知识不应该完全被动的吸收课本知识,而应该让他们在丰富生动的思维活动中“做数学”。
本节课通过学生的动手操作、实践探索两个环节,时时处处体现了学生在“做数学”,而教师也真正起到了一个好的组织者、引导者和参与者的作用。使学生在一个轻松、和谐、民主的氛围中探索出了三角形面积的计算方法,获得了成功的体验,增加了学好数学的信心,不仅培养了学生的动手操作能力,还培养了学生解决问题多样化的意识。
纵观这个教学过程,初步体现了提出问题———大胆猜测———反复验证———总结规律———灵活应用这一科学探究的方法,让学生通过自身的实践活动对科学探究的方法有了初步的了解,体验到知识的产生都经历了曲折艰苦的过程,由于学生的活动是独立自主的,因此面对同样的问题学生会出现不同的思维方式,让学生在独立思考的基础上进行合作交流,不仅能满足学生展示自我的心理需求,同时能使学生从不同的角度去思考问题在合作中互相启发,互相激励,共同发展。
三角形面积的教学反思(11)
三角形面积的计算这节知识是在学生已经掌握平行四边形面积的计算以及平移等知识与能力之后学习的。为了能充分地调动学生的学习积极性,使他们由厌学、苦学变为喜学、乐学,因此在设计这节课的时候,我是这样构思的:
一、运用跃进式提问引入情境教学。
情境教学,是指教师运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法。首先在复习这一部分我出示两个一大一小的三角形让学生比较,两个三角形的面积谁大谁小,这是一目了然的,每个学生都能回答。然后进行跳跃性提问:“大多少”?这种简捷的跃进式提问,强烈地激发了学生的探究心理,很快便产生期待学习的最佳心理状态,去引导学生探究新课。此时,所面临的问题的实质,就是求两个三角形的面积各是多少?由此引出了这节课的课题:三角形面积的计算。
二、以动激趣,揭示三角形面积的计算方法。
动手操作,一方面可以为学生架起由感性认识到理性认识的桥梁,帮助理解和掌握新知识;另一方面,丰富的情感体验可把客观上的“要我学”内化为主观上的“我要学”,改变学生消极被动的学习局面。学生在学习三角形面积计算之前已有了平行四边形面积计算的知识基础,直接将平行四边形剪成两个全等三角形来进行三角形面积计算的思路,比用两个全等三角形拼成一个平行四边形的思路来得简捷、明快,更易于被学生接受。因此,我改变了教材用两个完全一样的三角形拼成平行四边形的方法,而是先在复习部分利用手中已有的一个平行四边形的图形,问:平行四边形的面积怎么求?使学生回顾起平行四边形的面积。然后教师边说边画对角线进行演示,将这个平行四边形沿着对角线把它剪成两个三角形,并将其重叠在一起,说明得到的一个三角形面积是原来平行四边形面积的一半,即三角形面积应该等于底乘高除以2。这样,用不到几分钟的时间,就揭示了三角形的面积算法。动手操作,创设情境,具体形象且具有直观的特点,使知觉和思维变得更直接、更迅速、更深刻,从而获得成功的乐趣。
三、多方验证,创设探索性问题的情景。
情景教学的一个长处是设障布疑,鼓励学生去探索,在此基础上引导学生训练思维的灵活性和深刻性,以培养学生的能力。为此,我接着引导学生深入验证活动。用沿着平行四边形对角线剪出两个完全一样的三角形,得到了三角形面积计算方法,这一方法对用“底×高÷2”计算三角形面积是否可*?我顺势引导,进行深入质疑。三角形有锐角三角形、直角三角形、钝角三角形,用“底×高÷2”这个方法是否适用于所有三角形面积的计算呢?从而将学生的思维活动推向一个新的高潮。这时,又让学生运用已有的各种学具进行摆弄、操作,这样学生学到的不只是公式本身,而是动手操作的`能力,极大地调动了学生的参与意识,产生了强烈的情绪感染,学习气氛非常浓厚。
综观整节课的课堂教学,注重了培养学生的动手操作能力与分析推理的能力;同时激发了学生应用所学知识解决实际问题的能力,发展学生的空间观念。学生真正的成为了学习的主人,真正的掌握了学习的主动权。但是,通过本节课也看到了教师需要努力的方向。譬如由于比较紧张而导致教态不自然或教学中间环节有遗漏等现象。虽然今后的教育道路还很长,但我现在就会努力,每一节课都会与我的学生共同成长。
三角形面积的教学反思(12)
三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算基础上进行学的,同时它又是学生以后学梯形、组合图形的面积计算的基础,三角形面积计算的教学着重要求学生通过动手操作、合作探究出三角形面积计算公式,
从而加深三角形与已学图形之间的联系。重点在于理解三角形公式的推导过程,会根据公式进行计算,还要强调学生不能忽略三角形面积公式中除以2。
上课前我带领学生一起复我们所学过的图形的面积公式,长方形面积=长宽,S=ab,正方形面积=边长边长,S=a2 ,平行四边形面积=底高,S=ah。然后引导学生回忆平行四边形是如何推导出来的,沿着平行四边形的任意一条高剪开,通过平移后得到长方形,长方形的面积和原平行四边形的面积相等,长方形的长等于原平行四边形的底,长方形的宽等于原平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。帮助学生回忆转化的教学思想,并直接引出课题,开门见山。
让学生拿出提前准备好的各种三角形,六人一组,动手拼一拼,想一想,怎么把三角形转化成我们所学过的图形。这一活动安排主要是为学生提供一个开放的空间,让学生亲身经历自主探索的过程。当同学们都拼好之后,我找个别小组介绍他们是怎么拼的,第一小组汇报,学生告诉我,他们是用两个锐角三角形拼成的一个平行四边形。我随即拿了两个不一样大小的锐角三角形拼在一起,问学生,为什么我拼不成?学生立马就能指出因为它们形状不一样大。然后引导学生指出是两个完全相同的三角形,加深学生对完全相同的理解。第二组是用两个完全相同的钝角三角形拼出的平行四边形,第三组是两个完全相同的直角三角形拼出了长方形。让学生继续讨论,这几种拼法有
什么共同点,在交流比较中概括出结论,即用两个形状完全相同的三角形拼出一个平行四边形,当学生指出所拼出的都是平行四边形时,我设下问题,直角三角形拼出的不是长方形吗?学生一起告诉我长方形是特殊的平行四边形,加深学生对长方形和平行四边形的关系的理解。当学生把三角形和平行四边形联系起来时,引导学生去共同发现三角形和所拼成的平行四边形之间的关系,它们等底等高,每个三角形的面积是所拼成的平行四边形面积的一半,让学生自己去体验,加深学生对三角形计算公式的深刻理解。并且强调为什么要除以2。根据平行四边形公式让学生自己总结三角形面积公式=底高2,S=ah2。
三角形面积的教学反思(13)
在这堂课中,我根据教学知识结构、特点、教学任务和教学目标,创设了在操作中学,研讨交流中学、探究发现中学等自主学习方法与活动。使学生在拼一拼,摆一摆等实践活动中尝试失败与成功,在研讨交流、聆听、评价中自主学习,和谐发展。本节课中,尽管要解决的问题具有挑战性,探究的过程也有一定的难度,但是由于将解决三角形面积计算(新问题)置于已学图形面积计算(旧知识)这个“背景”之中,学生已有的知识经验被“激活”,因此就能够在磕磕碰碰的探索中主动完成认知的建构,把直角三角形、钝角三角形的面积计算,分别同化到已有的长(正)方形、平行四边形面积计算的知识结构中去。
一、具体做法:
1、 这节课我采用了通过实践操作组织教学,通过大胆放手,让学生在猜、拼、想、议中学习数学,在学生动口、动手、动脑中研究数学,在自主、自由中“发展”数学。
2、培养实践能力:动手操作的过程,是学生手、眼、脑等多种感官协同活动的过程,让学生多种感官参与学习活动,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固,还有利于发展学生的思维,培养学生的创新精神和实践能力。本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。让学生自己去发现和概括三角形的面积公式,使学生在拼的过程中体验学习的乐趣。为了达到这一目的,先让学生独立操作,分组合作探究,从不同的角度进一步验证得出结论,初步概括出三角形的面积公式,这样采用了拼一拼、操作讨论的方法,找到了三角形如何转换成长方形、正方形、平行四边形的方法,为图形之间的关系架设了桥梁,使知识融会贯通。如果把推导三角形面积公式这一环节照本宣科,学生也能理解,但只是按部就班,谈不上对学生创新精神和实践能力的培养,也就没有了学生的创新和实践。因此,课堂教学必须为学生提供更广阔的创新舞台和时空,顺着学生的思路,让学生在亲身实践的过程中感悟知识。
3、实现合作互动:这节课一系列活动的设计给了学生充足的用眼看、用耳听、用嘴说、用脑想的时间和空间,让学生尽情地表现、发展自己,充分体现了教师指导者、合作者的作用。我提供了多次学生交流的机会,学生们可通过互相帮助、分工合作、互相激励来促进彼此的学习,形成面对面的促进性互动,学生学会了交流,充分发扬了教学民主。
二、不足之处:
例如:在第二次操作活动中,参与面不够广,部分学生手中拿着两个三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我们需要反思的问题。
三角形面积的教学反思(14)
《三角形的面积》的教学反思
城内小学 樊翠萍
三角形的.面积”一课是建立在长方形面积计算的基础上的,重点是推导三角形的面积计算公式。依据儿童“从直观的动作思维到具体的形象思维,最后达到抽象的逻辑思维”的认知规律,所引入生活中的数学问题,通过学生操作学具,把动手操作、动脑思考、动口表达结合起来,在操作中使“操作”与“思维”紧密结合,从而提高逻辑思维能力。
三角形面积的教学反思(15)
《三角形面积的计算》教学反思范文
成功之处:
在本节课教学中,我引导学生发现问题、解决问题。在解决问题的过程中,我充分放手,让学生自己探索计算方法,学生通过独立思考,小组交流讨论,经历与他人交流的过程,培养学生思维的独立性和灵活性。同时,我让学生用自己的语言进行表述,而不是强求统一的语言进行操练,使学生在一种自由、民主、和谐的氛围中学习。在教流过程中让学生感受到集体的智慧是无穷的,懂得欣赏别人,能够取长补短。
不足之处:
我发现学生动手的能力十分有限,有的学生干脆就是坐着,无从下手,有的学生只是模仿其他好的学生一起动手。用两个完全一样的三角形拼成一个平行四边形和用三角形的'中位线剪拼后成为一个平行四边形。从表面上看,学生动手是在操作,可实际上学生只是机械地拼一拼,没有感受到这样的操作是为什么,学后只做了一次“机械的操作工”而为什么要这样去动手,学生却不得而知。看来,在今后的教学中,在学生小组合作,动手操作时,教师必要的引导是不可少的。
三角形面积的教学反思(16)
《三角形的面积》课堂教学反思
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
知道的学生不多。可能出现的原因有:一是学生没有把预习当成作业;二是学生不知道怎么预习,没完成;三是学生预习时记住了,隔了一夜忘了……原因不同,该如何了解真正的情况,再进行完善?
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一.拼成的平行四边形与原来的三角形面积有什么关系?
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的'平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
三角形面积的教学反思(17)
三角形面积教学反思范文
三角形的面积是在学生学习了平行四边形面积的基础上进行教学的。这节课让学生在实际情境中,自主探索、经历推导三角形面积公式的过程。能用三角形的面积公式计算有关图形的面积,解决实际问题。
教学前,我先让学生预习教材25页内容,找出自己不懂的地方,初步理解三角形和平行四边形的关系。并自己剪出两个完全相同的三角形,为进一步学习做准备。
教学过程中,我安排学生先动手操作把两个完全一样的三角形拼一拼,看看能拼成什么图形?学生通过用图形拼,很容易就知道能拼成一个平行四边形,也有的学生用两个直角三角形拼成了长方形,换一种拼法,也就拼成了平行四边形。通过动手操作,学生了解了三角形能拼成长方形和平行四边形。
最关键的是让学生思考:拼成平行四边形的底和三角形的底、平行四边形的高和三角形的`高的关系。在这个重要环节中,我组织学生看着拼好的图形,先思考,然后说出自己的想法。学生热烈的交谈着,拿着三角形比划着、说着,最后得出结论:两个完全一样的三角形,能拼成一个平行四边形,这个平行四边形的底等于三角形的底,高等于三角形的高,三角形面积是拼成的平行四边形面积的一半。
看着学生动手操作、动脑思考、热烈交流,我知道学生是真的融入探索知识的过程中,他们的思维被打开,探索欲望被激活,学习兴趣也提高了。
除了两个完全一样的三角形拼成一个平行四边形,还可以怎样把三角形转化成平行四边形呢?
这次可难坏了许多学生,他们开始剪的时候,也发现拼不成平行四边形,最后费好大劲才发现:只要沿着中间一条线剪,就可以拼成平行四边形。
通过学生自主探索,利用转化和剪拼的方法探索出三角形面积的计算公式:
三角形面积 = 底 × 高 ÷ 2
用字母表示:S = a h ÷ 2
本节课,学生学会了利用转化法和割补法,把三角形转化成学过的平行四边形来推导出三角形面积的计算方法,培养了学生独自探索、合作交流和利用多种方法解决问题的能力。
三角形面积的教学反思(18)
《三角形的面积》教学反思范文
《三角形的面积》是在教学了长方形的面积和平行四边形的面积之后进行的新的图形的面积的计算内容。本节课的重点是让学生通过转化的思想能够找出求三角形面积的方法。难点是理解在三角形的面积公式中为什么要除以2。同时,突破重点的过程也是本节课的一个新的难点。尤其是对于那部分学困生来说,通过把三角形的面积转化成平行四边形的面积,从而在抽象出此时三角形的底和高与平行四边形的底和高是相等的这一重要环节上,肯定会出现一部分学生不知其所以然的局面。
在整个教学过程中,我通过以下环节来辅助本节课突破重难点:
1、学生掌握了学习平行四边形面积的方法,所以本节课我设计了提问导入:“三角形的面积跟什么图形有关系,可以让我们想办法求出三角形的面积”。学生有过学习平行四边形面积的经验,因此今天我在抛出问题之后,只是稍作考虑就想到了可以把三角形转化成平行四边形的面积来计算。学生们通过讨论活动,得出方法,很高兴,同时也找到了解决今后类似问题的思考方向。
2、为了突破这个难点,本节课在课前准备的时候我准备了三组完全相同的.锐角、直角、钝角三角形。让学生在想到能把三角形的面积转化成求平行四边形的面积之后,看着老师给出示的几组图形,然后把它们拼一拼摆一摆,看看能不能得出我们想要的图形来。学生动手操作之后发现:那两个完全相同的三角形可以拼成一个平行四边形、两个完全相同的直角三角形可以平成一个长方形,这样,我们只要先计算出平行四边形或长方形的面积,然后除以2 就可以得到三角形的面积了。学生的思路顿时打开,畅所欲言中巩固对三角形面积的理解:三角形的面积=平行四边形的面积÷2。然后进一步吧平行四边形的面积用底乘高代换了,就得到了三角形的面积公式:三角形的面积=底×高÷2、这样,本节课的重点就算是在学生的动手操作中完成了。
3、练习时,设计的梯度是由易到难,主要是先让学生学会熟练的应用三角形的面积公式求出面积来,然后再给出已知面积求高或底的题目,这样的升华是让不同的 学生在不同层次上有个全面的提升,从而实现“共同富裕”!本节课的练习设计是经过仔细挑选的,因此比较有代表性,更能检测出本节课学生理解的程度。
然而,在课堂上,学生喊得是轰轰烈烈,练习完成的也很不错,几乎全班同学在结束的时候都已经熟记了三角形的面积公式,也知道是怎么来的了。但是,却忽略了很重要的环节:课上没有强调平行四边形与三角形的关系,抛出一个问题全班同学都认为是对的——平行四边形的面积是三角形的面积的2倍。因为我们三角形的面积是有平行四边形面积推导出来的,所以学生理所当然的认为这句话是正确的。我在讲解平行四边形与三角形的关系的时候没给学生讲透彻,这两个图形必须是等底等高的情况下,才有2倍的关系,否则是无法比较的。为了解决这个问题我在黑板上画了两个图形:一个大大的三角形和一个小小的平行四边形,让学生观察这两个图形,然后来判断他们的面积大小是不是老师给出的那个结论中的话,学生才恍然大悟,原来这二者的关系必须建立在等底等高的前提下才能成立。这也正是因为我在新授环节中没能给学生讲清楚,因此才在快下课的时候用了近5分钟的时间给学生重新“灌输”!哎,看来教学这个东西,在课前必须是实实际际、方方面面都要考虑到才行啊!
教学总是在教然后知学的困惑,如果在教之前就能够把学中遇到的问题都扫清的话,相信每节课都会是精品课,无可挑剔!
三角形面积的教学反思(19)
五年级数学《三角形的面积》教学反思
《三角形的面积》这节课是这节课是在学生已经学习了平行四边形面积的基础上进行的,在教学时,上课的前一天我布置了预习作业:1.剪一剪,每人剪一对完全相同的三角形(我把学生分为四组,一组的同学每人剪一对完全相同的锐角三角形,二组每人剪一对完全相同的钝角三角形,三组每人剪一对完全相同的直角三角形,四组每人剪一对完全相同的等腰直角三角形)。2.拼一拼,将剪好的两个三角形拼一拼,能否拼成一个平行四边形。3.观察,拼成的平行四边形和三角形之间有怎样的关系?4.想一想,三角形的面积公式怎样表示?
课的开始,我先检查学生的预学情况,提问:谁知道三角形的面积公式?学生生纷纷举手回答,接着,我又问:你是怎知道的?多数学生脸上一片茫然,于是带着疑问,学生走进了课堂。
课堂中,我开展了学生动手活动,活动一:我让学生分组展示课前剪拼的图形,一组同学拼成了一个平行四边形,二组同学也拼成了一个平行四边形,三组同学拼成了一个平行四边形或长方形,四组同学拼成了一个平行四边形或正方形。通过学生展示,不难发现,两个完全相同的三角可以拼成一个平行四边形(长方形和正方形也属于特殊的平行四边形),接着,我引导学生观察发现:拼成的平行四边形的面积是三角形面积的2倍,三角形的面积是平行四边形面积的一半。而且,其中的一个三角形和拼成的平行四边形是等底等高的,因此得出三角形的面积公式是:三角形的面积=底×高÷2,用字母表示s=ah÷2。接着我进行第二个活动:我让一组和三组,二组和四组的同学,每人交换自己手上其中的一个三角形,看看,交换后的两个三角形能否拼成一个平行四边形,学生很快发现,不能拼成一个平行四边形,原因很简单,两个形状不同三角形不能拼成一个平行四边形。也就是说,必须是完全相同的两个三角形才能拼成一个平行四边形。最后我进行第三活动:我让一组的同学拿出一个三角形和二组的同学拼成的平行四边形作比较,三组的同学拿出你的一个三角形和四组同学拼成的平行四边形作比较,看看你的三角形面积是不是他拼成的`平行四边形面积的一半,学生很快做出正确判断,不是。那你知道这是为什么?学生很纳闷,于是,我让学生四人小组共同探讨,不一会儿,有的学生就发表自己的看法,因为我的三角形和他那个平行四边形不是等底等高的,所以我的三角形的面积不是他的平行四边形面积的一半,于是,同学们得出结论:等底等高(或同底等高)的三角形的面积是平行四边形面积的一半。强调:等底等高。
这节课下来,我觉得我教的很轻松,学生学的很愉快。回顾整个堂课,我发觉学生真正是课堂的主人,教师真正是课堂的组织者、引导者。学生的学习是积极的、主动地,而不是被动的。猛然间,我意识到这样的精彩课堂来源于我将课前预习落到了实处,学生从课前预学到参与课堂活动,他们经历了对新知识的发现,对问题的思考,对结论的概括。同时,教师精心指导,生生交流,展示他们对知识的理解和认识,教师在课堂中适时点拨,梳理学生预学中的的盲点。既突出了重点,又突破了难点。课堂效果良好。由此可见,学生课前预学至关重要,课前预学为落实学生成为课堂的的主人提供了保障。学生课前预学是课堂教学的前提和基础,是课外到课内的桥梁和纽带。学生参与课前预学不但对新知识有了一定的了解,而且好奇心促使学生对新知识进一步思考、探究、发现问题。然后带着问题、带着疑惑走进课堂。这样,学生才能成为课堂的主人。这样的课堂何乐而不为?
三角形面积的教学反思(20)
小学五年级数学《三角形的面积计算》教学反思
“长方形和正方形的面积” 通过这一堂课我希望学生掌握什么?如果单纯是学会长方形的面积计算,那么传统的“传递——接受”式教学只要花很少的时间就可以做到,但是这样的话,学生只是接受知识的一个容器,他今后再学习类似知识仍然需要老师的灌装 ;而现代的教学更注重学生在学习知识的过程中学会学习。因此在设计时,我把通过探究活动得出长方形的面积计算公式作为本节课的重点。希望学生在获取知识的同时,也让学生体会到这些知识是如何被发现的,结论是如何获得的。而我作为一名教师在这个环节中所要做的,不是要告诉学生什么,而是听听学生发现了什么,做好学生学习的激发者。为了促进学生的`探究,我设计了几个环节。
首先,请学生观察一组因长和宽变化而引起面积变化的长方形,使学生直观感知到长方形的面积与它的长、宽有关,让学生的思维有一定的指向和集中,并唤起进一步学习的需求。
接着,通过实验来寻求它们之间的关系,先铺满整个长方形数出面积单位的个数。到只铺一行一列就可以求出面积;再到没有办法摆面积单位了,用尺量来长、宽来算出面积。在这个过程中,希望学生通过自己动手和动脑,从直观到抽象,自己发现规律,获得长方形面积的计算方法。
最后,验证自己的发现,并用来解决问题。整个探究过程除了让学生得到知识以外,还渗透实验-发现-验证的学习方法,让学生在今后的学习中也能运用。
实际教学中,学生通过观察能够想到长方形的面积大小是与它的长、宽有关的。从铺满面积单位到铺一行一列得出长方形的面积,学生都比较地顺利找到方法,只是要在用尺量长和宽来算出面积时,学生对从比较形象过渡到抽象的思维时显得有点困难。对此,我反思自己的教学,发现是在中间铺一行一列得出面积时,处理得不够好,当个别人用了这种方法后,就急于希望全体学生都会用。在这个环节中,如果我在学生出现这种方法后及时追问“为什么你这样摆就可以知道它的面积了?”“你明白他的想法了吗?”把个别同学的思考方法与大家分享,让其余学生在头脑中有一个想象的过程,有一从个形象到半形象的过渡过程,一定会对接下来抽象出计算方法有很大的帮助,这样的话更符合学生对问题思维的规律,才能真正起到促进学生学习的作用。另外,在引导学生探究的过程中,有些时候还是‘引’得太多,不能大胆地放手让学生独立去寻求解决问题的办法,显得对学生有束手束脚的感觉。
按照新课程的要求,教师要为学生的学习服务,创设丰富的教学环境,与学生分享自己的感情和想法,帮助他们学会学习。要做好学生学习的促进者、引导者,现在仅仅是一个开始,今后仍需要我们在教学中去不断的实践。